JPH03280309A - Manufacture of cross-linked polyolefin insulated cable - Google Patents

Manufacture of cross-linked polyolefin insulated cable

Info

Publication number
JPH03280309A
JPH03280309A JP7946990A JP7946990A JPH03280309A JP H03280309 A JPH03280309 A JP H03280309A JP 7946990 A JP7946990 A JP 7946990A JP 7946990 A JP7946990 A JP 7946990A JP H03280309 A JPH03280309 A JP H03280309A
Authority
JP
Japan
Prior art keywords
cable
cross
heating
drying
linked polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7946990A
Other languages
Japanese (ja)
Inventor
Minoru Okashita
稔 岡下
Hajime Tanimoto
元 谷本
Shoichi Uchiumi
内海 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP7946990A priority Critical patent/JPH03280309A/en
Publication of JPH03280309A publication Critical patent/JPH03280309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To improve the heating efficiency of a cable sheathed with a cross- linked polyolefin insulator forming its cross-link using an organic peroxide so as to dry the cable in a short time by heating and drying the cable while vacuum-drawing it. CONSTITUTION:A cable sheathed with a cross-linked polyolefin insulator forming its cross-link using an organic peroxide is heated and dried while being vacuum- drawn. This suppresses the generation of water as the result that the resolved residue of the organic peroxide causes the secondary resolution thereof, and also removes the generated water so that a stable characteristic cable prevented from the generation of a water tree can be manufactured. Moreover, since the core of the cable is inductively heated by an inductive heating coil installed in a drying kiln at the time of heating and drying the cable while vacuum- drawing it, the heating efficiency of the cable can be substantially increased to quicken the heating speed thereof while the whole of the cross-linked polyolefin insulator can be heated and dried uniformly. Because the cable can be dried in a short time, the stable characteristic cross-linked polyolefin insulated cable not generating water tree can be manufactured with excellent manufacturing efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、有機過酸化物架橋による架橋ポリオレフィン
を被覆した架橋ポリオレフィン絶縁ケーブルのM遣方法
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in the M-threading method for a crosslinked polyolefin insulated cable coated with a crosslinked polyolefin formed by crosslinking with an organic peroxide.

(従来の技術) 従来より架橋ポリオレフィン絶縁ケーブルの絶縁体の架
橋方法として、絶縁体組成物にジクミルパーオキサイド
(DCP)等の有機過酸化物からなる架橋剤を添加して
加熱架橋するという方法が広く行われている。
(Prior art) Conventionally, as a method for crosslinking the insulator of a crosslinked polyolefin insulated cable, a crosslinking agent made of an organic peroxide such as dicumyl peroxide (DCP) is added to an insulator composition and crosslinking is carried out by heating. is widely practiced.

しかしながら、このような有機過酸化物による架橋にお
いては、架橋工程でかかる熱によって有機過酸化物の分
解残渣(架橋剤がDCPの場合はクミルアルコール)が
さらに二次分解を起こして水を生成するなめ、絶縁体中
に水分が残留してしまう。この残留水分は、架橋処理を
高、!!!高圧水蒸気によらずに不活性ガスによって行
う、いわゆる乾式架橋の場合でも約200 ppm程度
に達し、ポリエチレンの許容飽和水分量50ppHに対
してがなりの過飽和状態となっている。そのうえ、有機
過酸化物の分解残渣は、その後のケーブル使用時にがか
る熱履歴によっても二次分解を起こすので、絶縁体中の
残留水分は一時的に数百ppmにも達することがある、 絶縁体中でのこのような高濃度の残留水分は、水トリー
の発生を促進し、ケーブルの電気特性を低下させる原因
となる。
However, in crosslinking using such an organic peroxide, the heat applied during the crosslinking process causes further secondary decomposition of the decomposition residue of the organic peroxide (cumyl alcohol when the crosslinking agent is DCP) to produce water. As a result, moisture remains in the insulation. This residual moisture increases the crosslinking process! ! ! Even in the case of so-called dry crosslinking, which is carried out using an inert gas without using high-pressure steam, the amount reaches about 200 ppm, which is a supersaturation state with respect to the permissible saturated water content of polyethylene of 50 ppm. Furthermore, the decomposition residue of organic peroxides undergoes secondary decomposition due to the thermal history that occurs during subsequent use of the cable, so the residual moisture in the insulator can temporarily reach several hundred ppm. Such a high concentration of residual moisture inside the cable promotes the occurrence of water trees and causes deterioration of the electrical properties of the cable.

このような問題に対して、有機過酸化物の分解残渣の二
次分解は空気(酸素)の存在下ではさらに促進されるた
め、導体上のポリオレフィン絶縁体を架橋した後、これ
をケーブルドラムに巻き付けて乾燥釜に収納し、真空引
きしながら加熱乾燥して残留水分を低減させるというケ
ーブル製造方法が既に提案されている。しかしながら、
ゲーブル乾煤釜は、通常その二重になった壁面間に水蒸
気を充満して壁面温度を上昇させ、壁面からの熱輻射と
乾燥釜内の空気の対流によってケーブルを加熱するとい
う加熱方法をとっており、このため、真空引きしながら
加熱を行うと、熱媒体である空、気の存在が極めて稀薄
であるため、壁面からの熱輻射のみに頼ることとなり、
ケーブルの加熱効率が非常に悪いという新たな問題を生
じている。従って、加熱乾燥時間が長期化し、生産性の
低下や燃料消費量の増加を生じるとともに、ケーブルの
加熱状態にむらが生じることもある。
To solve this problem, the secondary decomposition of organic peroxide decomposition residue is further accelerated in the presence of air (oxygen), so after crosslinking the polyolefin insulation on the conductor, it is necessary to attach it to the cable drum. A cable manufacturing method has already been proposed in which the cable is wound, stored in a drying pot, and then heated and dried under vacuum to reduce residual moisture. however,
Gable dry soot ovens usually use a heating method in which water vapor is filled between the double walls to raise the wall temperature, and the cable is heated by heat radiation from the walls and convection of air inside the drying oven. For this reason, if heating is performed while vacuuming, the presence of air, which is a heat medium, is extremely thin, so you will rely only on heat radiation from the wall surface.
A new problem has arisen in that the heating efficiency of the cable is very poor. Therefore, the heating and drying time is prolonged, resulting in a decrease in productivity and an increase in fuel consumption, as well as uneven heating of the cable.

(発明が解決しようとする課題) 以上の点に鑑みて、本発明は有機過酸化物架橋による架
橋ポリオレフィン絶縁ケーブルの残留水分量を低減させ
て水トリーの発生を防止するなめ真空引きしながら加熱
乾燥する工程において、クープルの加熱効率を高め、所
要加熱時間を大幅に短縮し、しかもケーブル全体に渡っ
てむら無く均一に加熱乾燥することのできる架橋ポリオ
レフィンP!縁クープルの製造方法を提供することを目
的とする。
(Problems to be Solved by the Invention) In view of the above points, the present invention aims to reduce the residual moisture content of a cross-linked polyolefin insulated cable by organic peroxide cross-linking and to prevent the occurrence of water trees by heating while vacuuming. In the drying process, cross-linked polyolefin P increases the heating efficiency of the couple, significantly shortens the required heating time, and evenly heats and dries the entire cable. It is an object of the present invention to provide a method for manufacturing an edge couple.

(課題を解決するための手段) 本発明は即ち、有機過酸化物を架橋剤として配合したポ
リオレフィン組成物を導体上に被覆し架橋させて架橋ポ
リオレフィン絶縁体を形成した後、誘導加熱コイルの設
置された乾燥釜に収納して真空引きしながら誘導加熱に
より加熱し乾燥することを特徴とする架橋ポリオレフィ
ン絶縁ケーブルの製造方法に関する。
(Means for Solving the Problems) The present invention consists of coating a conductor with a polyolefin composition containing an organic peroxide as a crosslinking agent and crosslinking it to form a crosslinked polyolefin insulator, and then installing an induction heating coil. The present invention relates to a method for manufacturing a crosslinked polyolefin insulated cable, which comprises storing the cable in a dried drying pot and heating and drying it by induction heating while drawing a vacuum.

本発明におけるポリオレフィン組成物としては、ポリエ
チレン、ポリプロピレン、エチレン−プロピレン共重合
体(EP)、エチレン−酢酸ビニル共重合体(EVA)
等のエチレン系共重合体等のポリオレフィンをベースに
、DCPや1,3−ビス(t−ブチル・パーオキシ・イ
ソプロピル)ベンゼン等のこれらのポリマーに通常使用
される有機過酸化物架橋剤を適宜選択して配合し、さら
に必要に応じて無機充填剤、老化防止剤その他の添加剤
を添加したものが使用できる。
The polyolefin composition in the present invention includes polyethylene, polypropylene, ethylene-propylene copolymer (EP), and ethylene-vinyl acetate copolymer (EVA).
Based on polyolefins such as ethylene-based copolymers such as It is possible to use a composition in which the composition is blended with an inorganic filler, an anti-aging agent, and other additives as necessary.

本発明においては、このようなポリオレフィン組成物を
導体上に押出し被覆し、水蒸気架橋または乾式架橋など
の常法により架橋した後、誘導加熱コイルを設置した乾
燥釜内に収納して真空引きを行いながら誘導加熱により
80〜90°Cの温度で所定時間加熱乾燥する。加熱乾
燥は、絶縁体の電気特性の低下が現れない程度、即ち残
留水分量がポリオレフィンの許容飽和水分量である50
Elpm以下になる肱で続けて行うことが好ましい。
In the present invention, such a polyolefin composition is extruded and coated onto a conductor, crosslinked by a conventional method such as steam crosslinking or dry crosslinking, and then placed in a drying pot equipped with an induction heating coil and evacuated. The film is then dried by induction heating at a temperature of 80 to 90°C for a predetermined period of time. The heat drying is carried out to the extent that no deterioration of the electrical properties of the insulator appears, that is, the residual moisture content is the permissible saturated moisture content of the polyolefin.
It is preferable to continue the process at the elbow where the temperature is below Elpm.

次に、ケーブルの誘導加熱方法について図面にしたがっ
て説明する。第1図および第2図は、本発明の製造方法
の一実施例を示す断面図である。
Next, a cable induction heating method will be explained with reference to the drawings. FIGS. 1 and 2 are cross-sectional views showing an embodiment of the manufacturing method of the present invention.

第1図においては、製造したケーブルコア5を巻き付け
たケーブルドラム6の中心部分に鉄心2を垂直に設置し
、乾燥釜1の床面3より下の部分に誘導加熱コイル4を
コイル巻きする。この場合、ケーブルコア5の両端を常
法により電気的に接続しておく、このようにして誘導加
熱コイル4に電流を流して磁界の変化を生じさせれば、
ケーブル導体に回路電流が流れてケーブルコアは加熱さ
れる。
In FIG. 1, an iron core 2 is installed vertically at the center of a cable drum 6 around which a manufactured cable core 5 is wound, and an induction heating coil 4 is wound around a portion below the floor surface 3 of the drying oven 1. In this case, both ends of the cable core 5 are electrically connected in a conventional manner, and if a current is caused to flow through the induction heating coil 4 in this way to cause a change in the magnetic field,
A circuit current flows through the cable conductors, heating the cable core.

また、第2図に示すように乾燥釜1の蓋部分に設置し7
′、−誘導加熱コイル4に電流を流せば電S誘導により
ケーブル導体にうず電流が流れて導体抵抗により発熱し
、ケーブルコア5は加熱される。
In addition, as shown in Fig. 2, it is installed on the lid of the drying pot 1.
', - When a current is passed through the induction heating coil 4, an eddy current flows through the cable conductor due to S induction, heat is generated due to the conductor resistance, and the cable core 5 is heated.

なお、このようならず電流を利用する場合は、誘導加熱
コイルは乾燥釜の底部に設置しても良く、また蓋部分と
底部の両方に使用しても良い。また、乾燥釜1の内壁面
に沿って2つの磁極を対峙して配置し、乾燥釜1の外側
に2つの誘導加熱コイルをm極性側に配置するようにし
ても、ケーブル導体にうず電流を発生させて誘導加熱す
ることができる。
If this is not the case and an electric current is used, the induction heating coil may be installed at the bottom of the drying oven, or may be used at both the lid and the bottom. Furthermore, even if two magnetic poles are placed facing each other along the inner wall surface of the drying pot 1, and two induction heating coils are placed outside the drying pot 1 on the m-polarity side, eddy currents will not be generated in the cable conductor. can be generated and heated by induction.

このようにして、誘導加熱によりケーブルコアを内部か
ら加熱することにより、架橋ポリオレフイン絶縁体の加
熱効率は大きく向上し、残留水分の乾燥時間の短縮をは
かることができる。
By heating the cable core from the inside by induction heating in this manner, the heating efficiency of the crosslinked polyolefin insulator is greatly improved, and the drying time for residual moisture can be shortened.

なお、このような乾燥処理により、水分だけでなく架橋
剤の分解残渣も減少する。例えばDCPの場合、後に二
次分解して水分を発生するようなりミルアルコールは、
この様な乾燥処理を行わない場合に比べて約二分の一以
下の0.1〜0,5重量%にまで減少する。
Note that such a drying process reduces not only moisture but also decomposition residues of the crosslinking agent. For example, in the case of DCP, mill alcohol will later undergo secondary decomposition and generate water.
The amount is reduced to 0.1 to 0.5% by weight, which is about one-half or less compared to the case where such drying treatment is not performed.

本発明においては、乾燥釜内を真空引きしながらケーブ
ルコアを誘導加熱し、加熱乾燥終了後は乾燥釜内を常圧
訣で戻すが、このとき不活性ガス(fIAえば窒素ガス
)を用いるのがより望ましい。
In the present invention, the cable core is heated by induction while the inside of the drying pot is evacuated, and after heating and drying, the inside of the drying pot is returned to normal pressure. is more desirable.

不活性ガスで常圧に戻すことにより、その後の酸素の侵
入、拡散および架橋剤分解残渣の二次分解が抑制されて
、残留水分の増加量が極めて少なくなるからである。
This is because by returning the pressure to normal pressure using an inert gas, the subsequent intrusion and diffusion of oxygen and secondary decomposition of the crosslinking agent decomposition residue are suppressed, and the amount of increase in residual moisture becomes extremely small.

(作用) 本発明方法においては、有機過酸化物架橋の架橋ポリオ
レフィン絶縁体を有するケーブルを真空引きしながら加
熱乾燥しているので、有機過酸化物の分解残渣が二次分
解して水分を発生するのを抑制し、また発生した水分を
除去するので、水トリーの発生を防止した安定した特性
のケーブルを製造することができる。さらに真空引きし
ながら加熱乾燥する際に、乾燥釜に設置した誘導加熱コ
イルによってケーブルコアを誘導加熱しているので、加
熱効率を大幅に引上げて加熱速度を速めることができる
とともに、架橋ポリオレフィン絶縁体の全体を均一に加
熱乾燥することができる。
(Function) In the method of the present invention, a cable having a cross-linked polyolefin insulator made of organic peroxide cross-links is heated and dried while being vacuumed, so that the decomposition residue of the organic peroxide secondary decomposes and generates moisture. Since it suppresses the occurrence of water tree and removes the generated moisture, it is possible to manufacture a cable with stable characteristics that prevents the occurrence of water trees. Furthermore, when heating and drying while vacuuming, the cable core is heated by induction using an induction heating coil installed in the drying oven, which greatly increases heating efficiency and speeds up the heating rate. The entire surface can be uniformly heated and dried.

(実施例) 本発明の実施例について説明する。(Example) Examples of the present invention will be described.

実施PA] 半導電層形成用のEVAをベースとし、架橋剤としてパ
ーヘキシン(商品名)を添加した架橋可能な半導電性組
成物(A)、絶縁体形成用のポリエチレンをベースとし
てDCPを添加した架橋可能な絶縁性組成物(B)を用
意した。これを直径45關の導体上に、(A)、(B)
、(A)の順に厚さが1,3m、27m、1.0mmと
なるように三層同時押出し被覆し、乾式加熱架橋して内
部半導電層、絶縁体層、外部半導電層を形成した後、ケ
ーブルドラムに巻き取った9次いで、これを第2図に示
すように蓋部に誘導加熱コイルを取り付けた乾燥釜に収
納し、真空ポンプ(図示せず)で0、5TOrr以下に
乾燥釜内部を真空引きしながら、誘導加熱コイルに電流
を流してケーブルコアを内部から加熱した。絶縁体表面
温度が90°Cに達するまでに要した時間は24時間で
あった。この温度を維持するようにさらに20〜25日
間加熱を続けたところ、絶縁体中の水分量は151)p
llになった。加熱終了後、窒素ガス雰囲気中で常圧ま
で戻した。
Implementation PA] A crosslinkable semiconducting composition (A) based on EVA for forming a semiconducting layer and adding Perhexine (trade name) as a crosslinking agent, and a polyethylene based composition (A) for forming an insulator with DCP added. A crosslinkable insulating composition (B) was prepared. Place this on a conductor with a diameter of 45 mm (A), (B)
, (A) were coated in three layers by co-extrusion so that the thicknesses were 1.3 m, 27 m, and 1.0 mm in this order, and dry heat crosslinking was performed to form an inner semiconductive layer, an insulating layer, and an outer semiconductive layer. After that, it was wound up on a cable drum and then placed in a drying pot with an induction heating coil attached to the lid as shown in Fig. 2, and heated to below 0.5 TOrr using a vacuum pump (not shown). While the inside was evacuated, a current was passed through the induction heating coil to heat the cable core from inside. It took 24 hours for the insulator surface temperature to reach 90°C. When heating was continued for another 20 to 25 days to maintain this temperature, the moisture content in the insulator was 151) p
It became ll. After heating, the pressure was returned to normal pressure in a nitrogen gas atmosphere.

比較例] 実施例1と同様のケーブルコアをケーブルトラムに巻き
取り、次いでこれを内壁と外壁の間隙に水蒸気を充満さ
せた従来の乾燥釜に収納し、真空ポンプで0.5Tor
r以下に乾燥釜内部を真空引きしながらケーブルコアを
加熱した。絶縁体表面温度が90″Cに達するまでに要
した時間は261時間であった。この温度を維持するよ
うに加熱を続けなところ、絶縁体中の水分量が151)
I)itになるまでにさらに25〜30日の加熱を要し
た。
Comparative Example] A cable core similar to that in Example 1 was wound onto a cable tram, and then placed in a conventional drying oven in which the gap between the inner and outer walls was filled with water vapor, and heated to 0.5 Tor with a vacuum pump.
The cable core was heated while the inside of the drying pot was evacuated to below r. The time required for the surface temperature of the insulator to reach 90"C was 261 hours. When heating was continued to maintain this temperature, the moisture content in the insulator increased to 151".
It took an additional 25-30 days of heating to reach I)it.

比較例2 乾燥釜内部を真空引きしないで、それ以外は実施例1と
同様にしてケーブルコアを誘導加熱により内部から加熱
した。絶縁体表面温度が90°Cに達する訣でに要した
時間は5〜10時間であった。
Comparative Example 2 The cable core was heated from the inside by induction heating in the same manner as in Example 1 except that the inside of the drying pot was not evacuated. The time required for the insulator surface temperature to reach 90°C was 5 to 10 hours.

この温度を維持するように加熱をさらに30日間続C−
)なか、絶縁体中の水分量は50pI)In以下になら
なかった。
Continue heating to maintain this temperature for an additional 30 days C-
), the moisture content in the insulator did not fall below 50 pI).

(発明の効果) 以上の実施例からも明らかなように、本発明方法によれ
ば真空引きしながら絶縁体中の残留水分を加熱乾燥によ
り除去するにあたり、加熱効率を大幅に向上させ、短時
間のうちに乾燥を行うことができるので、水トリーの発
生しない、安定した特性の架橋ポリオレフィン絶縁クー
プルを生産効率良く製造することができる。
(Effects of the Invention) As is clear from the above examples, according to the method of the present invention, when removing residual moisture in an insulator by heating and drying while vacuuming, heating efficiency is greatly improved and a short time is achieved. Since drying can be carried out during the drying process, a crosslinked polyolefin insulation couple with stable characteristics without water tree generation can be produced with high production efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、本発明の製造方法の−実施例を
示す断面図である。 1・・・乾燥釜 4・・・誘導加熱コイル 5・・・ケーブルコア 第 図 第 図
1 and 2 are cross-sectional views showing an embodiment of the manufacturing method of the present invention. 1...Drying pot 4...Induction heating coil 5...Cable core Fig.

Claims (1)

【特許請求の範囲】[Claims] (1)有機過酸化物を架橋剤として配合したポリオレフ
ィン組成物を導体上に被覆し架橋させて架橋ポリオレフ
ィン絶縁体を形成した後、誘導加熱コイルの設置された
乾燥釜に収納して真空引きしながら誘導加熱により加熱
し乾燥することを特徴とする架橋ポリオレフィン絶縁ケ
ーブルの製造方法。
(1) After coating a conductor with a polyolefin composition containing an organic peroxide as a crosslinking agent and crosslinking it to form a crosslinked polyolefin insulator, it is placed in a drying pot equipped with an induction heating coil and evacuated. A method for producing a crosslinked polyolefin insulated cable, characterized by heating and drying by induction heating.
JP7946990A 1990-03-28 1990-03-28 Manufacture of cross-linked polyolefin insulated cable Pending JPH03280309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7946990A JPH03280309A (en) 1990-03-28 1990-03-28 Manufacture of cross-linked polyolefin insulated cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7946990A JPH03280309A (en) 1990-03-28 1990-03-28 Manufacture of cross-linked polyolefin insulated cable

Publications (1)

Publication Number Publication Date
JPH03280309A true JPH03280309A (en) 1991-12-11

Family

ID=13690749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7946990A Pending JPH03280309A (en) 1990-03-28 1990-03-28 Manufacture of cross-linked polyolefin insulated cable

Country Status (1)

Country Link
JP (1) JPH03280309A (en)

Similar Documents

Publication Publication Date Title
US4732722A (en) Process for producing a crosslinked polyolefin insulated power cable
JPH03280309A (en) Manufacture of cross-linked polyolefin insulated cable
JPH103823A (en) Direct current power cable insulated by cross-linked polyethylene
JP3030063B2 (en) Method for producing crosslinked polyolefin insulated cable
JPH04342731A (en) Production of crosslinked polyolefin insulated cable
JPH06260042A (en) Manufacture of electric cable
JP2892384B2 (en) Method of bridging mold insulator at cable connection
JPH0428118A (en) Coaxial cable
JPH04355013A (en) Manufacture of crosslinked polyolefine insulated cable
JP4007844B2 (en) CV cable manufacturing method
JPH01258311A (en) Rubber-plastic insulated power cable
JPH08287740A (en) Electric power cable and its manufacture
JPH07312118A (en) Wire and cable
JPH0452571B2 (en)
JPH02129806A (en) Electric insulating material for electric wire and cable
JPH0268809A (en) Electric insulator for wire and cable
US3167610A (en) Process for applying insulation to cables
JPH04342732A (en) Production of crosslinked polyolefin insulated cable
JPH08315638A (en) Electric insulation composition, electric wire and cable
JPH03127412A (en) Manufacture of bridging polyolefine insulated cable
JPH02201822A (en) Manufacture of cross-linked polyolefine
JPH07288039A (en) Electrical insulation resin composition, wire, and cable
JPH0317907A (en) Electric insulation material for electric wire and cable
JPH0562770A (en) Manufacture of enameled wire
JPH0531729A (en) Preparation of crosslinked polyolefin insulating cable