JPH03279784A - Powder particle cooling device - Google Patents

Powder particle cooling device

Info

Publication number
JPH03279784A
JPH03279784A JP7710290A JP7710290A JPH03279784A JP H03279784 A JPH03279784 A JP H03279784A JP 7710290 A JP7710290 A JP 7710290A JP 7710290 A JP7710290 A JP 7710290A JP H03279784 A JPH03279784 A JP H03279784A
Authority
JP
Japan
Prior art keywords
cooling
air
powder
passage
powder particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7710290A
Other languages
Japanese (ja)
Inventor
Masayasu Yamazaki
正康 山崎
Masahiro Nagamochi
永持 正宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP7710290A priority Critical patent/JPH03279784A/en
Publication of JPH03279784A publication Critical patent/JPH03279784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE:To provide a cooling device of which initial cost is low, its operation is simple and its cooling efficiency is high by a method wherein several slit-like downstream passages where powder particles automatically flow down and gaseous flow passages crossed at a right angle in a downstream direction with walls of the downstream passages being spaced apart are stored in a housing. CONSTITUTION:Powder particle lime 3 baked in a fluidized bed type baking furnace 1 is fed into a hopper 7 disposed at an upper part of a cooling machine through a shoot 6, distributed into a powder particle passage 12 opened at a discharging side of the hooper and each of the powder particles is discharged out of a system by a discharging machine 20 mounted at the lower end of the passage. Cooling air for each of the cooling chambers 11 is fed from an air inlet port 12 into the cooling chamber 11 and the powder particle lime in the powder particle passage 13 is cooled by a heat exchanging operation while the lime is passing through the air passage 15 disposed at a peripheral surface of each of the powder particle passage 13. The air is heated and fed into the baking furnace as the fluidizing air and combustion air 4 for the baking furnace 1.

Description

【発明の詳細な説明】 〔産業上の利用分野1 石灰石等の粉粒体を流動層または噴流層で焼成した焼成
物を冷却するとともに、冷却用の気体を加熱し、焼成炉
の燃焼用空気として利用するようにした粉粒体の冷却装
置。
[Detailed Description of the Invention] [Industrial Application Field 1] A fired product obtained by firing granular materials such as limestone in a fluidized bed or a spouted bed is cooled, and the cooling gas is heated, and the combustion air of the firing furnace is heated. A cooling device for powder and granular materials designed to be used as a

[従来の技術] 石灰石又はセメント原料等を流動炉又は噴流層等で焼成
し、焼成物を流動式冷却機で冷却する装置ならびにその
方法については、特開昭55−750号公報又は特開昭
62−202844号公報等に開示されている。これら
の冷却装置は、いずれも流動層を用いたものである。
[Prior Art] A device and method for firing limestone or cement raw materials in a fluidized furnace or a spouted bed, etc. and cooling the fired product in a fluidized cooler are disclosed in JP-A-55-750 or JP-A-Sho. It is disclosed in 62-202844 and the like. All of these cooling devices use a fluidized bed.

第7図はこれを例示したもので、焼成炉1において流動
焼成された焼成物3はシュート6を経て別体の流動式冷
却装置21で冷却され排出口22から排出される。流動
式冷却装置21では、多孔板等よりなる流動床を介して
流動層に吹込まれた空気との熱交換により、焼成物29
は冷却され、一方、導入管23から導入された空気26
は加熱されて冷却機出口24より排出され、集塵装置2
5により焼成物を分離した後、ファン27等により焼成
炉1等に吹込まれ焼成炉排出口28から排出されていた
FIG. 7 shows an example of this, in which the fired product 3 fluidized in the firing furnace 1 passes through the chute 6, is cooled by a separate fluidized cooling device 21, and is discharged from the discharge port 22. In the fluidized cooling device 21, the fired product 29
is cooled, while the air 26 introduced from the introduction pipe 23
is heated and discharged from the cooler outlet 24, and is transferred to the dust collector 2.
After the fired product was separated by 5, it was blown into the firing furnace 1 etc. by a fan 27 etc. and discharged from the firing furnace outlet 28.

[発明が解決しようとする課題1 第7図の如く流動層を使用した焼成炉と冷却機をシリー
ズで連結した場合、流動層と分散盤による圧力損失が通
常1.OOOmmAq程度に達するため、冷却機のフリ
ーボードの圧力を焼成炉の空気室の圧力以上にするか、
あるいはファン等を用いて昇圧する必要がある。
[Problem to be Solved by the Invention 1] When a firing furnace using a fluidized bed and a cooling machine are connected in series as shown in Fig. 7, the pressure loss due to the fluidized bed and the dispersion plate is usually 1. In order to reach approximately OOOmmAq, the pressure of the freeboard of the cooler should be made higher than the pressure of the air chamber of the kiln, or
Alternatively, it is necessary to boost the pressure using a fan or the like.

したがって、焼成炉と冷却機との間に圧力差が生じ、両
者を連結するシュートを介して気流が流れるため、これ
を防止し焼成物のみ流れるようにするには、高温状態で
おおかかすなシール装置が必要であり、この部分に故障
等が発生しネックとなる可能性が大である。
Therefore, a pressure difference occurs between the firing furnace and the cooling machine, and airflow flows through the chute that connects the two, so in order to prevent this and ensure that only the fired product flows, it is necessary to install a large seal at high temperatures. A device is required, and there is a high possibility that a failure or the like will occur in this part and become a bottleneck.

また1台のファンで流動層をシリーズに連結することは
、風量に比べて圧力の高いファンを使用しなければなら
ず、ファンの種類等が限定される。
Furthermore, connecting the fluidized bed in series with one fan requires the use of a fan with higher pressure than the air volume, which limits the types of fans.

両者の間にファンを介在させる場合でも、上記対策のほ
か、後段のファン並びに焼成炉の分散盤の摩耗並びに分
散盤の詰まり対策より集塵設備が必要となるばかりでな
く、冷却機よりの空気の取り出しを一箇所にすれば、取
り出す空気の温度が低くなるため、冷却機を多室に分割
して高温の空気を取り出すようにすれば、ファンの材質
が問題となる。すなわちファン自体は、材質上高温高圧
になるほど価格が高価となり、発明者らの経験では通常
材質のファンであれば、350〜360℃程度が連続運
転の限界であり、これ以上の温度で使用する場合、セラ
ミック等の特殊な材質を使用する必要があり、価格が数
段高価となる。
Even if a fan is interposed between the two, in addition to the above-mentioned measures, not only will dust collection equipment be required to prevent wear and clogging of the downstream fan and distribution disk of the firing furnace, but also the air from the cooling machine will need to be installed. If the air is taken out from one place, the temperature of the air taken out will be low, but if the cooler is divided into multiple rooms and the high temperature air is taken out, the material of the fan becomes an issue. In other words, the higher the temperature and pressure of the fan itself due to its material, the more expensive it becomes.According to the inventors' experience, the limit for continuous operation of fans made of normal materials is around 350 to 360 degrees Celsius, and it should not be used at temperatures higher than this. In this case, it is necessary to use a special material such as ceramic, which makes the price much higher.

[課題を解決するための手段] 本発明者らは、上記問題点を解決し、イニシャルコスト
が安く、操作が簡単でしかも冷却効率のよい冷却装置を
開発することを目的として種々検討した結果、次に示す
隔壁直交式気固熱交換装置を開発した。
[Means for Solving the Problems] As a result of various studies aimed at solving the above-mentioned problems and developing a cooling device with low initial cost, easy operation, and high cooling efficiency, the present inventors found that We have developed the following bulkhead orthogonal gas-solid heat exchange equipment.

(1)密閉ボックス型のハウジングよりなる冷却室を設
ける。
(1) A cooling chamber consisting of a closed box type housing is provided.

(2)冷却室を貫通して、粉粒体が上から下へ自然流下
する多数列平行スリット状の通路を冷却室内に設置する
(2) A multi-row parallel slit-shaped passage is installed in the cooling chamber, through which the powder and granules naturally flow down from top to bottom.

(3)該粉粒体通路外面と接触する空気通路を設ける。(3) Provide an air passageway that comes into contact with the outer surface of the powder passageway.

(4)冷却室に冷却用空気を導入する空気導入口と、該
空気を排出する空気排出口を設ける。
(4) An air inlet for introducing cooling air into the cooling chamber and an air outlet for discharging the air are provided.

(5)上記冷却室を複数段積重ね、各粉粒体通路を連通
ずる。
(5) A plurality of the cooling chambers are stacked one on top of the other, and the powder passages are communicated with each other.

以上の望ましい態様として、 (a)縦断面形状が平行四辺形よりなるボックス型の冷
却室を設ける。
As the above preferred embodiments, (a) a box-shaped cooling chamber whose vertical cross-sectional shape is a parallelogram is provided;

(b)該冷却室の幅より小さく、かつ上下を開放した断
面長方形の中空柱状の粉粒体通路を、各側面に平行に該
冷却室を貫通して、複数列貫設する。
(b) A plurality of rows of hollow columnar powder passages, which are smaller than the width of the cooling chamber and have a rectangular cross section and are open at the top and bottom, are provided through the cooling chamber in parallel to each side surface.

(c)粉粒体通路間の両長辺の面に空気通路を形成し、
かつ該冷却室内に一体化した通路を形成するように、該
粉粒体通路側(短辺)面と冷却室側壁との間のどちらか
一方に仕切板を列毎に交互に設ける。
(c) forming air passages on both long sides between the powder passages;
In addition, partition plates are provided alternately in each row on one side between the powder passage side (short side) surface and the side wall of the cooling chamber so as to form an integrated passage within the cooling chamber.

(d)空気通路始端側下端隅部に冷却用空気を導入する
(d) Cooling air is introduced into the lower corner of the starting end of the air passage.

(e)空気通路終端側上端隅部に冷却用空気排出口を設
ける。
(e) A cooling air outlet is provided at the upper end corner of the air passage terminal side.

(f)上記冷却室を複数段積重ね、各粉粒体が通路が連
通ずるように接続する。
(f) A plurality of the cooling chambers are stacked one on top of the other, and the powder and granules are connected so that the passages communicate with each other.

更に、以上の如く構成した冷却装置に、次の構成を追加
すると冷却効率が向上しより好適である。
Furthermore, it is more preferable to add the following configuration to the cooling device configured as described above to improve the cooling efficiency.

■ 上記冷却室内の空気通路を水平または垂直に複数段
に仕切り、該仕切り板の空気流路終端隅部に連通口を設
ける。
(2) The air passage within the cooling chamber is partitioned horizontally or vertically into multiple stages, and a communication port is provided at the end corner of the air passage of the partition plate.

■ 該粉粒体通路の各長辺面間あるいは該面と相対する
壁面間にフィン状の邪魔板を千鳥状に配設する。
(2) Fin-shaped baffles are arranged in a staggered manner between the long sides of the powder passage or between the walls facing the long sides.

[作用1 本発明の冷却装置は粉粒体と気体とを隔壁で分けている
ので、焼成室と冷却装置とを均圧する必要がな(、流動
達成炉と組合わせて用いる場合、組合わせが容易である
[Effect 1] Since the cooling device of the present invention separates the powder and the gas by a partition wall, there is no need to equalize the pressure between the firing chamber and the cooling device (when used in combination with a fluidized furnace, the combination It's easy.

また高温ガスを昇圧するファン等を必要とせずファンの
温度制約の問題がない。
Furthermore, there is no need for a fan to boost the pressure of high-temperature gas, so there is no problem of fan temperature restrictions.

[実施例] 本発明の実施例について詳細に説明する。[Example] Examples of the present invention will be described in detail.

第1図は、本発明の冷却装置の一実施例の模式この冷却
装置は積重ねられた4室の冷却室より構成されている。
FIG. 1 is a schematic diagram of one embodiment of the cooling device of the present invention. This cooling device is composed of four stacked cooling chambers.

各冷却室11は、縦断面形状が平行四辺形状になってお
り、20x400x2400mmのボックス型のハウジ
ングを有し、このハウジングの天井と底板を貫通し、か
つ冷却室の斜面と平行に上端と下端とを開放した外寸法
30X400X2400mmの中空長方柱形の粉粒体通
路13を等間隔に多数列配置しており、更に粉粒体通路
13の側面とハウジング内壁との間隙部を片側のみ該通
路毎に交互に閉止することにより、ハウジング下部隅部
に設けた冷却用空気導入口12とハウジング上部隅部に
設けた排出口16とを連通ずる空気通路15を形成させ
る構造となっている。
Each cooling chamber 11 has a parallelogram shape in vertical cross section, has a box-shaped housing of 20 x 400 x 2400 mm, and penetrates the ceiling and bottom plate of this housing, and has an upper end and a lower end parallel to the slope of the cooling room. A large number of hollow rectangular columnar powder passages 13 with open external dimensions of 30 x 400 x 2400 mm are arranged in rows at equal intervals, and the gap between the side surface of the powder passage 13 and the inner wall of the housing is separated on one side only for each passage. By alternately closing the openings, an air passage 15 is formed which communicates the cooling air inlet 12 provided at the lower corner of the housing with the outlet 16 provided at the upper corner of the housing.

各冷却室11(]、1a、llb、11. c、1]、
d)は、該粉粒体通路13がじぐざぐ型を形成するよう
に直列に4室連結した。
Each cooling chamber 11(], 1a, llb, 11.c, 1],
In d), four chambers were connected in series so that the powder passage 13 formed a zigzag shape.

また、各粉粒体通路]3の下端部には、通路毎に排出機
20を設けている。
Furthermore, a discharger 20 is provided at the lower end of each powder passageway 3 for each passageway.

前記空気導入口12とファンとを空気管を介して連結す
ると共に、排出口16と焼成炉1の空気室2を連結して
いる。
The air inlet 12 and the fan are connected through an air pipe, and the outlet 16 and the air chamber 2 of the firing furnace 1 are connected.

流動式焼成炉lで焼成された粉粒状生石灰3は、シュー
ト6を経て冷却機の上部に設置されているホッパ7に導
入される。ホッパ7内の生石灰は、ホッパの排出部に開
口している粉粒体通路12に配分され、各粉粒体を通路
の下端部に設置されている排出機20により系外に排出
される。
Powdered quicklime 3 fired in the fluidized firing furnace 1 is introduced into a hopper 7 installed at the top of the cooler through a chute 6. The quicklime in the hopper 7 is distributed to a powder passage 12 that opens to the discharge portion of the hopper, and each powder is discharged out of the system by a discharger 20 installed at the lower end of the passage.

各冷却室11の冷却用空気は、入り口側に設けた冷却用
ファンにより、空気導入口12から冷却室11内に導入
され各粉粒体通路13の周面に設けられている空気通路
15を通過する間に熱交換により、粉粒体通路13内の
粉粒状生石灰を冷却するとともに空気は加熱され、焼成
炉1の流動化空気兼燃焼用空気4として焼成炉に導入す
る。
Cooling air in each cooling chamber 11 is introduced into the cooling chamber 11 from an air inlet 12 by a cooling fan provided on the entrance side, and is introduced into the cooling chamber 11 through an air passage 15 provided on the circumferential surface of each powder passage 13. While passing through the air, the quicklime particles in the powder passage 13 are cooled and heated by heat exchange, and the air is introduced into the kiln 1 as fluidizing air and combustion air 4 of the kiln 1.

第3区は空気通路に多数のフィン状の邪魔板を配設した
例を示した。また、第4図は、前記(令却室の空気通路
を水平に3段に仕切った例を示したものであり、空気通
路15を長(取ることができるので、冷却効率を向上さ
せることができる。
Section 3 shows an example in which a large number of fin-shaped baffles are arranged in the air passage. Moreover, FIG. 4 shows an example in which the air passage in the cooling room is horizontally partitioned into three stages, and since the air passage 15 can be made longer, the cooling efficiency can be improved. can.

第6図は本発明の例の理解を容易にするために斜視図で
示したものであり、第5図はその平面図である。
FIG. 6 is a perspective view of an example of the present invention for easy understanding, and FIG. 5 is a plan view thereof.

[発明の効果1 本発明の発明の冷却機を用いることにより次のように優
れた効果を奏する。
[Effects of the Invention 1] By using the cooler of the present invention, the following excellent effects are achieved.

高温の粉粒体を直列に仕切り順次冷却してゆくので、必
要とする高温の燃焼用空気の温度のみを取出すことが可
能であり、燃焼用空気の温度を下げずに、粉粒体の温度
を単独で低温まで冷却することができる。
Since the high-temperature powder and granules are partitioned in series and cooled down one after another, it is possible to take out only the temperature of the high-temperature combustion air that is required. can be cooled down to low temperatures by itself.

焼成炉と冷却機とが、直接連結していないので制御を別
々に行うことが可能であるばかりでなく、連結部に複雑
な仕切り装置等を必要とせず、故障等が少なく制御も容
易である。
Since the firing furnace and the cooling machine are not directly connected, it is not only possible to control them separately, but there is no need for complicated partitioning devices at the connecting part, so there are fewer breakdowns, etc., and control is easy. .

焼成炉を複数の部屋に仕切り、予熱、焼成、焼結等を単
体の窯で実施する場合、それぞれの部屋の状況に応じて
、温度の異なった空気を必要量吹込むことが可能である
When a firing furnace is divided into multiple rooms and preheating, firing, sintering, etc. are carried out in a single kiln, it is possible to blow in the required amount of air at different temperatures depending on the situation in each room.

焼成、冷却機の系統を比較的低圧で操業可能であり、動
力費を節約することができる。
The firing and cooling system can be operated at relatively low pressure, saving power costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を達成炉と組合わせた模式側面
図、第2図は実施例の平面図、第3図、第4図はそれぞ
れ他の実施例の説明図、第5図は実施例の平面図、第6
図は斜視図、第7図は従来のフローシートを示す。
Fig. 1 is a schematic side view of an embodiment of the present invention combined with an achievement furnace, Fig. 2 is a plan view of the embodiment, Figs. 3 and 4 are explanatory diagrams of other embodiments, and Fig. 5 is a plan view of the embodiment, No. 6
The figure is a perspective view, and FIG. 7 shows a conventional flow sheet.

Claims (1)

【特許請求の範囲】 1 粉粒体が自然流下する多数のスリット状の流下路と
該流下路壁を隔てて流下方向に直交して冷却気体が流れ
る気体流路とをハウジング内に内蔵したことを特徴とす
る粉粒体冷却装置。 2 気体通路を上下複数の段の直列通路に仕切る仕切板
を設けたことを特徴とする請求項1記載の粉粒体の冷却
装置。 3 ハウジング内壁面及び粉粒体流路外壁に多数のワイ
ン状の邪魔板を突設したことを特徴とする請求項1記載
の粉粒体の冷却装置。
[Scope of Claims] 1. A housing has built-in a large number of slit-shaped flow paths through which powder and granular materials naturally flow down, and a gas flow path through which cooling gas flows perpendicularly to the flow direction across the walls of the flow paths. A powder cooling device featuring: 2. The powder cooling device according to claim 1, further comprising a partition plate that partitions the gas passage into a plurality of upper and lower stages of serial passages. 3. The powder cooling device according to claim 1, further comprising a plurality of wine-shaped baffles protruding from the inner wall surface of the housing and the outer wall of the powder flow path.
JP7710290A 1990-03-28 1990-03-28 Powder particle cooling device Pending JPH03279784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7710290A JPH03279784A (en) 1990-03-28 1990-03-28 Powder particle cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7710290A JPH03279784A (en) 1990-03-28 1990-03-28 Powder particle cooling device

Publications (1)

Publication Number Publication Date
JPH03279784A true JPH03279784A (en) 1991-12-10

Family

ID=13624426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7710290A Pending JPH03279784A (en) 1990-03-28 1990-03-28 Powder particle cooling device

Country Status (1)

Country Link
JP (1) JPH03279784A (en)

Similar Documents

Publication Publication Date Title
US4333522A (en) Casings for heat exchangers and burner/recuperator assemblies incorporating such casings
US2866272A (en) Cyclone heat exchange apparatus
CA1273004A (en) Gas and solid particulate material heat exchanger
JPH03279784A (en) Powder particle cooling device
US3721017A (en) Apparatus for cooling particles
US4596079A (en) Heating and drying apparatus for powdery or granular materials
CN113758223A (en) Sorting storage bin equipment
EP1254341B1 (en) Airbox in a regenerative thermal oxidiser
CN111692887A (en) Powder cooler
CA1329338C (en) Fluidized bed heat exchanger and method of operating same
JP2880463B2 (en) Apparatus and method for operating powdery and granular raw materials
CN219714037U (en) Kiln cooling structure
JP2558770Y2 (en) Continuous falling grain drying equipment
GB1244048A (en) The supply and/or discharge of solid particles in contact heat exchangers
CN216080879U (en) Sorting storage bin equipment
CN112229252B (en) High-temperature powder material fluidization cooling device
CN202973974U (en) Cabin type heat exchanger
RU2024808C1 (en) Shaft furnace
CN104236256A (en) Horizontal fluidized bed dryer
RU2214571C2 (en) Installation for high-speed roasting of mineral materials
KR20040092859A (en) perpendicular type calcining furnace
JPH09169552A (en) Grate plate and clinker cooler having this grate plate
JPH0240955B2 (en)
JPH0235785Y2 (en)
JPS6130156Y2 (en)