JPH03279763A - Multiple heat exchanger - Google Patents
Multiple heat exchangerInfo
- Publication number
- JPH03279763A JPH03279763A JP8038890A JP8038890A JPH03279763A JP H03279763 A JPH03279763 A JP H03279763A JP 8038890 A JP8038890 A JP 8038890A JP 8038890 A JP8038890 A JP 8038890A JP H03279763 A JPH03279763 A JP H03279763A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- header
- tube
- headers
- side heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 33
- 238000005192 partition Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000005219 brazing Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
Landscapes
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明はカークーラー用の凝縮器、蒸発器、オイルク
ーラー等に使用される熱交換器、特に複数の熱交換器に
よって構成される複式熱交換器に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to heat exchangers used in condensers, evaporators, oil coolers, etc. for car coolers, and particularly to multiple heat exchangers composed of a plurality of heat exchangers. Regarding.
従来の技術
上記用途に用いられる熱交換器として、マルチフロータ
イブと称されるような熱交換器が多くの注目を浴びてい
る。この熱交換器は、例えば特開昭63−34466号
公報に示されるように、複数の偏平チューブが並列状に
配置されるとともに、隣接チューブ間にコルゲートフィ
ンが配置され、かつ各チューブの両端が1対の中空ヘッ
ダーに連通接続された構成を有している。かかるマルチ
フロータイブの熱交換器では、冷媒がチューブ群によっ
て構成される冷媒回路を流通する間にチューブ間を流通
する空気と熱交換を行うものとなされており、極薄型に
構成しえてしかも優れた熱交換効率を有する点で従来汎
用型のサーペンタイン型熱交換器等に較べ卓越した性能
を有することが認められている。BACKGROUND OF THE INVENTION As a heat exchanger used for the above-mentioned applications, a heat exchanger called a multi-flow type has been attracting a lot of attention. This heat exchanger has a plurality of flat tubes arranged in parallel, corrugated fins are arranged between adjacent tubes, and both ends of each tube are It has a configuration in which it is communicatively connected to a pair of hollow headers. In such a multi-flow type heat exchanger, while the refrigerant flows through a refrigerant circuit made up of a group of tubes, it exchanges heat with the air flowing between the tubes. It is recognized that it has superior performance compared to conventional general-purpose serpentine heat exchangers in terms of heat exchange efficiency.
発明が解決しようとする課題
ところで、上記のマルチフロータイブの熱交換器におい
て、交換熱量の増大を図る必要が生ずる場合があるが、
設置スペースとの関係で股肉に、熱交換器の縦、横寸法
即ちチューブ長さやチューブ本数の増加に対し寸法的な
制約を受ける場合が多い。このため、チューブの幅換言
すれば熱交換器の奥行きを大にして交換熱量の増大に対
処することが行われている。Problems to be Solved by the Invention By the way, in the above-mentioned multi-flow type heat exchanger, it may be necessary to increase the amount of heat exchanged.
Due to the installation space, there are often dimensional restrictions on the length and width of the heat exchanger, ie, increases in tube length and number of tubes. For this reason, the width of the tube, in other words, the depth of the heat exchanger is increased to cope with the increase in the amount of heat exchanged.
しかしながら、チューブの幅を広く設定するとそれに伴
ってヘッダーの外径も大きくなるため、熱交換に寄与す
るチューブの有効長さが減少し、所期するほどの交換熱
量の増大が得られないというような欠点があった。However, if the tube width is set wide, the outer diameter of the header also increases accordingly, which reduces the effective length of the tube that contributes to heat exchange, making it impossible to obtain the desired increase in heat exchange. There was a drawback.
而して、本願出願人は先の出願において上記欠点を解消
するために、マルチフロータイブの熱交換器(A)(B
)を複数個用い、これらを空気流通方向において前後に
並設して1の複式熱交換器に構成したものを提案した(
第11図参照)。Therefore, in order to eliminate the above-mentioned drawbacks in the previous application, the applicant of the present application developed multi-flow type heat exchangers (A) (B).
) was proposed, which was constructed by arranging them one behind the other in the air flow direction to form a single duplex heat exchanger (
(See Figure 11).
しかし、このように前後に並設すると、空気流通方向に
おいてヘッダーどおしが前後に重なった状態に配置され
るため熱交換器全体としての厚さが厚くなって嵩張って
しまうという難がある。特に、取付側が車体のフロント
′グリル部分のように緩い弧状等に形成されている場合
には、それとの間にデッドスペースが生じてしまう。However, when the headers are arranged side by side in this way, the headers are arranged so that they overlap one another in the air flow direction, resulting in the problem that the overall thickness of the heat exchanger becomes thick and bulky. . In particular, if the mounting side is formed in a gentle arc shape, such as the front grille of a vehicle, a dead space will be created between the mounting side and the front grille.
この発明は上述の問題点をも解消することができ、かつ
交換熱量をより一層増大できる熱交換器の提供を目的と
する。An object of the present invention is to provide a heat exchanger that can solve the above-mentioned problems and further increase the amount of heat exchanged.
課題を解決するための手段
上記目的を達成するために、この発明は、マルチフロー
タイブの熱交換器であって、ヘッダー間寸法の異なるも
のを空気流通方向において前後隣接状態に並設して1の
複式熱交換器に構成しようというものである。Means for Solving the Problems In order to achieve the above objects, the present invention provides a multi-flow type heat exchanger in which header-to-header dimensions of different sizes are arranged side by side adjacently in the air flow direction. The idea is to configure it into a dual heat exchanger.
即ちこの発明は、複数本のチューブが並列状に配置され
るとともに、これら隣接チューブ間にフィンが配置され
、かつ各チューブの両端が一対の中空ヘッダーに連通接
続された、ヘッダー間寸法の異なる少なくとも2個の熱
交換器を有し、これら両熱交換器が、空気流通方向にお
いて前後隣接状態に並設され、かつ各熱交換器の冷媒回
路が直列あるいは並列に接続されてなることを特徴とす
るものである。That is, the present invention provides at least one tube in which a plurality of tubes are arranged in parallel, fins are arranged between these adjacent tubes, and both ends of each tube are connected to a pair of hollow headers, and the dimensions between the headers are different. It has two heat exchangers, these heat exchangers are arranged side by side, front and back, adjacent to each other in the air flow direction, and the refrigerant circuits of each heat exchanger are connected in series or in parallel. It is something to do.
作用
前後に並設した各熱交換器において流通空気と熱交換が
行われるから、全体の交換熱量は増大する。Since heat exchange is performed with the circulating air in each heat exchanger arranged in parallel before and after the action, the total amount of heat exchanged increases.
ヘッダー間寸法の異なる熱交換器が、空気流通方向にお
いて前後隣接状態に並設されているので、ヘッダーどお
しが重なるようなこともなく熱交換器全体としての厚さ
を薄くできる。Since the heat exchangers with different header-to-header dimensions are arranged side by side adjacently in the air flow direction, the thickness of the heat exchanger as a whole can be reduced without overlapping the headers.
実施例
第1図〜第9図はこの発明をカークーラー用のアルミニ
ウム製凝縮器に適用した実施例を示すものである。これ
らの図において、(H)は複式熱交換器であり、この複
式熱交換器(H)は熱交換用空気の流通方向(W)にお
いて前後2段に並設された風上側の前両熱交換器(A)
と風下側の後両熱交換器(B)とからなる。Embodiment FIGS. 1 to 9 show an embodiment in which the present invention is applied to an aluminum condenser for a car cooler. In these figures, (H) is a multiple type heat exchanger, and this multiple type heat exchanger (H) has front and rear heat exchangers arranged in two stages in parallel in the flow direction (W) of heat exchange air. Exchanger (A)
and a rear heat exchanger (B) on the leeward side.
前両熱交換器(A)は、水平状態で上下方向に配置され
た複数のチューブ(1)と、隣接するチューブ(1)(
1)間に介在されたコルゲ−トフィン(2)と、左右の
ヘッダー(3)(4)とを有している。チューブ(1)
はアルミニウム利による偏平状の押出形材をもって構成
されたものである。このチューブ(1)はいわゆるハモ
ニカチューブと称されるような多孔型のものを用いても
良く、また押出形材によらず電縫管を用いても良いが、
いずれの場合にも内圧に十分耐え得るようにする目的で
上下両内壁面を連結する補強仕切壁ないしは補強仕切桟
等を有するものを用いることが好ましい。コルゲートフ
ィン(2)はチューブ(1)とほぼ同じ幅を有し、ろう
付によりチューブに接合されている。コルゲートフィン
(2)もアルミニウム製であり、望ましくはルーバーを
切り起こしたちのを用いるのが良い。ヘッダー(3)(
4)は、断面円形のアルミニウム製パイプをもって形成
されたものである。各ヘッダーには長さ方向に沿って間
隔的にチューブ挿入孔(5)が穿設されるとともに、鎖
孔に各チューブ(1)の両端が挿入され、かつろう付に
より強固に接合連結されている。また左ヘッダー(3)
の上下端には蓋片(6)(6)が取着されるとともに、
右ヘッダー(4)の上下端にも蓋片(7)(7)が取着
されている。なお最外側のコルゲートフィン(2)の外
側にはサイドプレート(8)(8)が配置されている。The front heat exchanger (A) includes a plurality of tubes (1) arranged vertically in a horizontal state, and adjacent tubes (1) (
1) It has a corrugated fin (2) interposed therebetween, and left and right headers (3) and (4). Tube (1)
It is constructed from a flat extruded section made of aluminum. This tube (1) may be of a porous type such as a so-called harmonica tube, or an electric resistance welded tube may be used instead of an extruded shape.
In either case, it is preferable to use one having a reinforcing partition wall or a reinforcing partition bar that connects both the upper and lower inner wall surfaces in order to sufficiently withstand internal pressure. The corrugated fin (2) has approximately the same width as the tube (1) and is joined to the tube by brazing. The corrugated fin (2) is also made of aluminum, preferably with louvers cut and raised. Header (3) (
4) is formed from an aluminum pipe with a circular cross section. Tube insertion holes (5) are bored in each header at intervals along the length direction, and both ends of each tube (1) are inserted into the chain holes and are firmly joined and connected by brazing. There is. Also left header (3)
Lid pieces (6) (6) are attached to the upper and lower ends of the
Lid pieces (7) (7) are also attached to the upper and lower ends of the right header (4). Note that side plates (8) (8) are arranged on the outside of the outermost corrugated fin (2).
一方、後両熱交換器(B)において、(21)はチュー
ブ、(22)はコルゲートフィン、(23)(24)は
左右のヘッダー (25)はチューブ挿入孔、(2G)
(2B) (27) (27)は蓋片、(28
)(28)はサイトプレー1・であり、前両熱交換器(
A)とほぼ同様の構成を有しているが、ヘッダー間寸法
(LA)が前両熱交換器(A)のヘッダー間寸法(LD
)よりも長く設定されている。On the other hand, in both rear heat exchangers (B), (21) is a tube, (22) is a corrugated fin, (23) and (24) are left and right headers, (25) is a tube insertion hole, (2G)
(2B) (27) (27) is a lid piece, (28
) (28) is site play 1, and both front heat exchangers (
It has almost the same configuration as A), but the dimension between headers (LA) is the same as the dimension between headers (LD) of both front heat exchangers (A).
).
そしてこの後両熱交換器(B)の前面側中央部に前両熱
交換器(A)が、空気流通方向においてヘッダー(3)
(23)、(4) (24)とおしが重ならない
前後隣接状態で並設されている。After this, both front heat exchangers (A) are placed in the center of the front side of both heat exchangers (B), and a header (3) is installed in the air flow direction.
(23), (4), and (24) are arranged side by side so that they do not overlap and are adjacent to each other.
上記の前両熱交換器(A)と後両熱交換器(B)とはそ
れぞれの冷媒回路が直列に接続されている。即ち、後両
熱交換器(B)の左ヘッダー(23)上部には冷媒入口
管(40)が接続される一方、前両熱交換器(A)の左
ヘッダー(3)の下部には冷媒出口管(50)が接続さ
れている。そして後両熱交換器(B)と前両熱交換器(
A)の左ヘッダー(23) (3)どうしが接続管(
60)にて連通接続されている。なお、第2図〜第4図
に示す(71) (72)は該熱交換器の車体への取
付用ブラケットである。ところで、後両熱交換器(B)
の左ヘッダー(23)には、そのほぼ中央部に仕切板(
29)が設けられてヘッダーが上下2室に仕切られてい
る。これに対し、前両熱交換器(A)の左ヘッダー(3
)には中央部の上側と下側の位置に各1個合計2個の仕
切板(9)(9)が設けられ、ヘッダー(3)内が3室
に仕切られる一方、右ヘッダー(4)にもそのほぼ中央
部に仕切板(10)が設けられ、ヘッダー内が2室に仕
切られている。The refrigerant circuits of the front heat exchanger (A) and the rear heat exchanger (B) are connected in series. That is, the refrigerant inlet pipe (40) is connected to the upper part of the left header (23) of the rear heat exchanger (B), while the refrigerant is connected to the lower part of the left header (3) of the front heat exchanger (A). An outlet pipe (50) is connected. Then, the rear heat exchanger (B) and the front heat exchanger (
A) left header (23) (3) is connected to the connecting pipe (
60). Note that (71) and (72) shown in FIGS. 2 to 4 are brackets for attaching the heat exchanger to the vehicle body. By the way, the rear heat exchanger (B)
The left header (23) has a partition plate (
29) is provided to partition the header into two upper and lower chambers. On the other hand, the left header (3) of the front heat exchanger (A)
) is equipped with two partition plates (9) (9), one each on the upper and lower sides of the center, dividing the inside of the header (3) into three rooms, while the right header (4) A partition plate (10) is provided almost at the center of the header, and the inside of the header is partitioned into two chambers.
かかる仕切板(29) (9) (10)の設置に
より、冷媒入口管(40)から後両熱交換器(B)の左
ヘッダー(23)に流入した冷媒は、第9図に示すよう
に、後両熱交換器(B)のチューブ群を1回蛇行して左
ヘッダー(23)の下部へと流れたのち、接続管(60
)を介して前両熱交換器(A)の左ヘッダー(3)の上
部に至り、ここから前両熱交換器(A)のチューブ群を
3回蛇行しつつ下降して左ヘッダー(3)の下部に至り
、冷媒出口管(50)から器外へと流出する。By installing the partition plates (29), (9), and (10), the refrigerant flowing from the refrigerant inlet pipe (40) into the left header (23) of the rear heat exchanger (B) is as shown in FIG. , after meandering once through the tube groups of both rear heat exchangers (B) and flowing to the lower part of the left header (23), the connection pipe (60
) to reach the upper part of the left header (3) of both front heat exchangers (A), and from there it descends while meandering three times through the tube group of both front heat exchangers (A) and reaches the left header (3). The refrigerant reaches the lower part of the refrigerant and flows out of the refrigerant outlet pipe (50).
そして冷媒が前後熱交換器(A)(B)の各チューブを
流通する間に矢印(W)で示す方向に流通する空気との
間で熱交換が行われる。このように、後両熱交換器(B
)から前両熱交換器(A)へと冷媒を流通させるのは、
まず風下側の熱交換器に流通させ次いで風上側の熱交換
器に流通させることにより、各熱交換器とこれに流通す
る空気との温度差を大きくでき、熱交換効率の増大を図
るためである。While the refrigerant flows through each tube of the front and rear heat exchangers (A) and (B), heat exchange is performed with the air flowing in the direction shown by the arrow (W). In this way, the rear heat exchanger (B
) to the front heat exchanger (A).
By first circulating the air to the leeward heat exchanger and then to the windward heat exchanger, the temperature difference between each heat exchanger and the air flowing therein can be increased, increasing heat exchange efficiency. be.
また、前両熱交換器(A)および後両熱交換器(B)の
蛇行する各通路群の通路断面積は人口側から出口側に至
るに従って、漸次的に小さくなるように設定されている
。この通路断面積の設定は、仕切板(9) (10)
(29)の仕切位置により定まるチューブ(2)
(21)本数によって決定されるものであり、入口側
から出口側に至る各通路群を構成するチューブ本数は1
3本、10本、8本、6本、5本、4本にそれぞれ設定
されている。このように通路断面積を漸次的に小さくし
たのは、冷媒の体積変化に応じて通路断面積を変化させ
た凝縮器となすためである。即ち、後両熱交換器(B)
に流入した流入直後の冷媒はいまだ体積の大きいガス化
状態にあるが、各冷媒通路を通過するうちに熱交換され
て徐々に冷却されて液化し体積が漸減する。In addition, the passage cross-sectional area of each meandering passage group of the front heat exchanger (A) and the rear heat exchanger (B) is set to gradually become smaller from the population side to the outlet side. . This passage cross-sectional area is set using the partition plate (9) (10).
Tube (2) determined by the partition position of (29)
(21) The number of tubes constituting each passage group from the inlet side to the outlet side is 1.
They are set to 3, 10, 8, 6, 5, and 4, respectively. The reason why the passage cross-sectional area is gradually reduced in this way is to create a condenser in which the passage cross-sectional area changes in response to changes in the volume of the refrigerant. That is, the rear heat exchanger (B)
Immediately after the refrigerant flows into the refrigerant, it is still in a gasified state with a large volume, but as it passes through each refrigerant passage, heat is exchanged and the refrigerant is gradually cooled and liquefied, and its volume gradually decreases.
従って、冷媒がガス化状態にある冷媒入口側はど冷媒通
路断面積を大きく確保して十分な熱交換を行わしめると
ともに、冷媒体積の減少に伴い各通路断面積を漸減せし
めて、熱交換器全体の熱交換効率を向上させ、併せて圧
力損失の可及的抑制をも図ったものである。Therefore, a large cross-sectional area of the refrigerant passage on the refrigerant inlet side where the refrigerant is in a gasified state is ensured to ensure sufficient heat exchange, and the cross-sectional area of each passage is gradually reduced as the refrigerant volume decreases. This aims to improve the overall heat exchange efficiency and also suppress pressure loss as much as possible.
また、後側の熱交換器(B)のフィンピッチ0
(PpA)は前側の熱交換器(A)のフィンピッチ(P
pB)より大きく設定されている。このように前後でフ
ィンピッチ(ppA) (FpB)を変更したのは、圧
力損失を増大させることなく熱交換効率を向上させるた
めである。Also, the fin pitch 0 (PpA) of the rear heat exchanger (B) is the fin pitch (PpA) of the front heat exchanger (A).
pB). The reason why the fin pitch (ppA) (FpB) was changed before and after in this way is to improve heat exchange efficiency without increasing pressure loss.
前後熱交換器(A)(B)のその他の好ましい設計条件
について説明すると次のとおりである。Other preferable design conditions for the front and rear heat exchangers (A) and (B) will be explained as follows.
前記チューブ(1) (21)はその幅(Wt )を
6〜20#の範囲に、高さ(Ht)を1.5〜7mIn
に、チューブ内の冷媒通路の高さ(Hp)を1.0#l
#I以上にそれぞれ設定するのが好ましく、またコルゲ
ートフィン(2) (22)はその高さ(Hf)すな
わち隣接チューブ(1)(1)(21) (21)の
間隔を6〜16IIunの範囲に、フィンピッチ(F
p)を1.6−4.0mmの範囲にそれぞれ設定するの
が好ましい。以下、それぞれの理由について説明する。The tube (1) (21) has a width (Wt) in the range of 6 to 20# and a height (Ht) of 1.5 to 7 mIn.
The height (Hp) of the refrigerant passage in the tube is 1.0 #l.
#I or above is preferable, and the height (Hf) of the corrugated fins (2) (22), that is, the interval between adjacent tubes (1) (1) (21) (21), is set in the range of 6 to 16IIun. , the fin pitch (F
p) is preferably set in the range of 1.6-4.0 mm. Each reason will be explained below.
チューブ幅(wBは、これが6mm未満では隣接チュー
ブ(1)(1)あるいは(21) (21)1
間に介在されるコルゲートフィン(2) (22)の
幅も小さいものとなり、熱交換性能が劣化する。逆に2
0#を超えて広幅に形成されるとフィン(2) (2
2)の幅も大きくなり流通空気の流通抵抗の増大による
圧力損失の増大、及び凝縮器の重量の増大を招来する。If the tube width (wB) is less than 6 mm, the width of the corrugated fins (2) (22) interposed between the adjacent tubes (1) (1) or (21) (21) 1 will also be small, resulting in poor heat exchange performance. Deteriorates.On the contrary, 2
If the width exceeds 0#, the fin (2) (2
The width of 2) also increases, leading to an increase in pressure loss due to an increase in the flow resistance of the circulating air and an increase in the weight of the condenser.
従って好ましくは6〜16#I#Iとするのが良く、最
も好適な範囲は10〜14mmである。Therefore, it is preferably 6 to 16 #I #I, and the most suitable range is 10 to 14 mm.
チューブ高さ(Ht)は、これが7mmを超えて高くな
ると、流通空気の圧力損失が高くなり、逆に1. 5#
lIl+未満ではチューブ内の冷媒通路高さ(Hp)を
チューブ肉厚との関係で1.0mm以上確保するのが困
難となる。好ましくは1゜5〜5#lll+とするのが
良い。最も好適な範囲は2゜5〜4mである。If the tube height (Ht) exceeds 7 mm, the pressure loss of the circulating air will increase; 5#
If it is less than lIl+, it becomes difficult to ensure the refrigerant passage height (Hp) in the tube to be 1.0 mm or more in relation to the tube wall thickness. Preferably, it is 1°5 to 5#lll+. The most preferred range is 2°5-4m.
チューブ(1) (21)内の冷媒通路高さ(Hp)
は、これが1.、Os未満では冷媒の圧力損失が高くな
り、熱交換効率の低下を招来する。Refrigerant passage height in tubes (1) (21) (Hp)
Well, this is 1. , Os, the pressure loss of the refrigerant increases, resulting in a decrease in heat exchange efficiency.
好ましくは1,5〜2.0#とするのが良い。Preferably it is 1.5 to 2.0 #.
一方、フィン高さ(Hf)は、これが6#未2
満では流通空気の圧力損失が増大し、逆に16m以上で
は全体のフィン数が少なくなりフィン効率が低下し熱交
換性能が悪くなる。好ましくは8〜16mとするのが良
い。最も好適な範囲は8〜12InInである。On the other hand, when the fin height (Hf) is less than 6 m, the pressure loss of the circulating air increases, and conversely, when it is 16 m or more, the total number of fins decreases, the fin efficiency decreases, and the heat exchange performance deteriorates. Preferably it is 8 to 16 m. The most preferred range is 8-12 InIn.
またフィンピッチ(PpA) (FpI3)はいずれも
、1.6111111未満では空気の圧力損失が増大し
、逆に4.0mを超えると熱交換性能が劣化する。Moreover, when the fin pitch (PpA) (FpI3) is less than 1.6111111, the air pressure loss increases, and conversely, when it exceeds 4.0 m, the heat exchange performance deteriorates.
好ましくは1.6〜3.2mとするのが良い。The length is preferably 1.6 to 3.2 m.
最も好適な範囲は2,0〜3.2mmである。The most preferred range is 2.0-3.2 mm.
このように、凝縮器の性能に影響を及ぼすチューブ(1
) (21)とコルゲートフィン(2)(22)に関
し、チューブ幅、チューブ高さ、チューブ内の冷媒通路
高さ、フィン高さ、フィンピッチを上記のような最も適
正な範囲に設定することにより、重量の増大を招来する
ことなく、冷媒や流通空気の圧力損失と熱交換性能とが
より一層調和した効率の良い最適状態で動作せしめうる
凝縮器の提供が可能となる。In this way, the tube (1
) (21) and corrugated fins (2) and (22), by setting the tube width, tube height, refrigerant passage height in the tube, fin height, and fin pitch to the most appropriate ranges as above. Therefore, it is possible to provide a condenser that can be operated in an optimal state with high efficiency in which the pressure loss of the refrigerant and circulating air and heat exchange performance are more harmonized without causing an increase in weight.
なお、上記実施例では熱交換器を前後2段に3
並設したものを示したが、この発明はこれに限られるも
のではなく第10図に示すように熱交換器(B)の前後
にヘッダー間寸法の小さい熱交換器(A)(C)を並設
したもの、あるいはそれ以上に並設したものについても
適用しうる。In the above embodiment, three heat exchangers were arranged in two stages, front and rear, but the present invention is not limited to this, and as shown in FIG. It can also be applied to heat exchangers (A) and (C) with small header-to-header dimensions arranged side by side, or even more arranged side by side.
発明の効果
この発明は、上述の次第で、複数のチューブが並列状に
配置されるとともに、隣接チューブ間にフィンが配置さ
れ、かつ各チューブの両端が一対の中空ヘッダーに連通
接続された熱交換器が、空気流通方向において前後隣接
状態に並設され、かつ各熱交換器の冷媒回路が直列ある
いは並列に接続されてなるものである。従って、各熱交
換器において熱交換が行われるから、交換熱量の増大を
図ることができる。しかも、熱交換器を複数個組合せた
ことでヘッダーの仕切位置や仕切りの数等を冷媒流通形
態に応じて適宜変更することに対しての変更自由性を拡
大でき、高熱交換効率、低圧力損失を得るために最適な
設計使用を選択でき、優れた性能を有する4
熱交換器となしうる。Effects of the Invention As described above, the present invention provides a heat exchanger in which a plurality of tubes are arranged in parallel, fins are arranged between adjacent tubes, and both ends of each tube are communicatively connected to a pair of hollow headers. The heat exchangers are arranged adjacently in front and back in the air flow direction, and the refrigerant circuits of each heat exchanger are connected in series or in parallel. Therefore, since heat exchange is performed in each heat exchanger, it is possible to increase the amount of heat exchanged. Moreover, by combining multiple heat exchangers, it is possible to expand the flexibility of changing the partition position and number of partitions in the header as appropriate depending on the refrigerant distribution form, resulting in high heat exchange efficiency and low pressure loss. The optimum design and use can be selected to obtain a heat exchanger with excellent performance.
しかも、前両熱交換器のヘッダー間寸法と後両熱交換器
のヘッダー間寸法とが異に設定され、これら熱交換器が
空気流通方向において前後隣接状態に並設されているか
ら、複数個の熱交換器を前後に並設した複式熱交換器で
ありながらヘッダーどおしが前後に重ならず熱交換器全
体としての厚さを薄くすることができ、コンパクト化を
図ることができると共に、取付側の形状を考慮した最適
な形状設計が可能となり、取付状態において取付側との
間のデッドスペースをなくすことができる。Moreover, the dimensions between the headers of the front heat exchangers and the headers of the rear heat exchangers are set differently, and since these heat exchangers are arranged side by side in the front and rear in the air flow direction, multiple Although it is a multiple heat exchanger with heat exchangers arranged in front and back, the headers do not overlap front to back, making it possible to reduce the thickness of the entire heat exchanger, making it more compact. , it is possible to design an optimal shape taking into consideration the shape of the mounting side, and it is possible to eliminate dead space between the mounting side and the mounting state.
第1図〜第10図はこの発明の実施例を示すもので、第
1図は前後熱交換器を分離して示した斜視図、第2図は
複式熱交換器全体の正面図、第3図は同じく平面図、第
4図は同じく側面図、第5図は前側または後両熱交換器
のヘッダーとチューブとコルゲートフィンを分離して示
した斜視図、第6図は第2図の■−■線断面図、第5
7図は第6図と同一方向から見た前側または後両熱交換
器の拡大断面図、第8図はコルゲートフィンとチューブ
を示す拡大正面図、第9図は冷媒回路図、第10図は他
の実施例を示す概略平面図である。第11図は従前の複
式熱交換器の概略平面図である。
(H)・・・複式熱交換器、(A)・・・前両熱交換器
、(B)・・・後両熱交換器、(1) (21)・・
・チューブ、 (2) (22)・・・フィン、 (
3) (3)(23) (24)・・・ヘッダー
(LA) (LB)・・・ヘッダー間寸法。
以上
61 to 10 show embodiments of the present invention, in which FIG. 1 is a perspective view showing the front and rear heat exchangers separated, FIG. 2 is a front view of the entire duplex heat exchanger, and FIG. Figure 4 is a side view, Figure 5 is a perspective view showing the header, tubes, and corrugated fins of both the front and rear heat exchangers separated, and Figure 6 is the same as Figure 2. -■ line sectional view, Figure 57 is an enlarged sectional view of both the front and rear heat exchangers seen from the same direction as Figure 6, Figure 8 is an enlarged front view showing the corrugated fins and tubes, and Figure 9 is A refrigerant circuit diagram, FIG. 10 is a schematic plan view showing another embodiment. FIG. 11 is a schematic plan view of a conventional dual heat exchanger. (H)...Double heat exchanger, (A)...Both front heat exchanger, (B)...Both rear heat exchanger, (1) (21)...
・Tube, (2) (22)...Fin, (
3) (3) (23) (24)...Header
(LA) (LB)... Dimension between headers. Above 6
Claims (1)
つ各チューブの両端が一対の中空ヘッダーに連通接続さ
れた、ヘッダー間寸法の異なる少なくとも2個の熱交換
器を有し、これら両熱交換器が、空気流通方向において
前後隣接状態に並設され、かつ各熱交換器の冷媒回路が
直列あるいは並列に接続されてなることを特徴とする複
式熱交換器。[Claims] A plurality of tubes are arranged in parallel, fins are arranged between these adjacent tubes, and both ends of each tube are connected to a pair of hollow headers, the headers having different dimensions. It is characterized by having at least two heat exchangers, these heat exchangers being arranged side by side in a front and rear adjacent state in the air flow direction, and the refrigerant circuits of each heat exchanger being connected in series or parallel. A double heat exchanger with
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8038890A JPH03279763A (en) | 1990-03-27 | 1990-03-27 | Multiple heat exchanger |
US08/176,416 US5529116A (en) | 1989-08-23 | 1993-12-30 | Duplex heat exchanger |
US08/619,994 US5743328A (en) | 1989-08-23 | 1996-03-21 | Duplex heat exchanger |
US09/034,450 US6021846A (en) | 1989-08-23 | 1998-03-04 | Duplex heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8038890A JPH03279763A (en) | 1990-03-27 | 1990-03-27 | Multiple heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03279763A true JPH03279763A (en) | 1991-12-10 |
Family
ID=13716906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8038890A Pending JPH03279763A (en) | 1989-08-23 | 1990-03-27 | Multiple heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03279763A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03244226A (en) * | 1990-02-22 | 1991-10-31 | Sanyo Electric Co Ltd | Radio telephony |
JPH043274U (en) * | 1990-04-18 | 1992-01-13 | ||
JPH11264688A (en) * | 1998-03-18 | 1999-09-28 | Nippon Light Metal Co Ltd | Multistage heat exchanger |
JP2010526982A (en) * | 2007-05-11 | 2010-08-05 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Heat exchange method in a vapor compression heat transfer system and a vapor compression heat exchange system including an intermediate heat exchanger using a double row evaporator or double row condenser |
CN106123403A (en) * | 2015-05-08 | 2016-11-16 | Lg电子株式会社 | The heat exchanger of air conditioner |
JP2018136105A (en) * | 2017-02-23 | 2018-08-30 | 三菱電機株式会社 | Heat exchange unit and dehumidifier |
-
1990
- 1990-03-27 JP JP8038890A patent/JPH03279763A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03244226A (en) * | 1990-02-22 | 1991-10-31 | Sanyo Electric Co Ltd | Radio telephony |
JPH043274U (en) * | 1990-04-18 | 1992-01-13 | ||
JPH11264688A (en) * | 1998-03-18 | 1999-09-28 | Nippon Light Metal Co Ltd | Multistage heat exchanger |
JP2010526982A (en) * | 2007-05-11 | 2010-08-05 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Heat exchange method in a vapor compression heat transfer system and a vapor compression heat exchange system including an intermediate heat exchanger using a double row evaporator or double row condenser |
CN106123403A (en) * | 2015-05-08 | 2016-11-16 | Lg电子株式会社 | The heat exchanger of air conditioner |
JP2018136105A (en) * | 2017-02-23 | 2018-08-30 | 三菱電機株式会社 | Heat exchange unit and dehumidifier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3030036B2 (en) | Double heat exchanger | |
US6786277B2 (en) | Heat exchanger having a manifold plate structure | |
JPH04203895A (en) | Heat exchanger | |
JP3036892B2 (en) | Heat exchanger | |
JP2006509182A (en) | Heat exchanger | |
JPH0345300B2 (en) | ||
JPH05312492A (en) | Heat exchanger | |
JPH0245945B2 (en) | ||
JPH03279763A (en) | Multiple heat exchanger | |
JP2901338B2 (en) | Heat exchanger | |
JP2989855B2 (en) | Double heat exchanger | |
JPH0833287B2 (en) | Aluminum condenser for air conditioner | |
JP3214874B2 (en) | Heat exchanger | |
JP2891486B2 (en) | Heat exchanger | |
JPH0345302B2 (en) | ||
JPH0195288A (en) | Heat exchanger | |
JPH03279762A (en) | Multiple heat exchanger | |
JPH064218Y2 (en) | Integrated heat exchange device with condenser and other heat exchangers | |
JPH0345301B2 (en) | ||
JP2001215096A (en) | Heat exchanger | |
JP3218053B2 (en) | Condenser | |
JPH0459425A (en) | Heat exchanger | |
JPH0624710Y2 (en) | Heat exchanger | |
JPS63131993A (en) | Heat exchanger | |
JPH04363591A (en) | Heat exchanger |