JPH0327935A - Film laminate - Google Patents

Film laminate

Info

Publication number
JPH0327935A
JPH0327935A JP16508989A JP16508989A JPH0327935A JP H0327935 A JPH0327935 A JP H0327935A JP 16508989 A JP16508989 A JP 16508989A JP 16508989 A JP16508989 A JP 16508989A JP H0327935 A JPH0327935 A JP H0327935A
Authority
JP
Japan
Prior art keywords
film
layer
erg
resin
surface energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16508989A
Other languages
Japanese (ja)
Inventor
Katsuhiko Nose
克彦 野瀬
Atsushi Saito
斉藤 厚
Katsuro Kuze
勝朗 久世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16508989A priority Critical patent/JPH0327935A/en
Publication of JPH0327935A publication Critical patent/JPH0327935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To enable a resin film having a highly fluorinated surface to be obtained in a short time by providing a specific surface layer on a thermoplastic resin film surface, after that, plasma-processing it under fluorine gas. CONSTITUTION:The A layer surface of a thermoplastic resin laminated film consisting of at least A, B layers is discharge-processed under the existence of fluorine gas, and made to satisfy formulas, I, II. In the formulas I, II, gamman/A shows the polar force component (erg/cm<2>) in entire surface energy of the A layer surface prior to the discharge process, gamman/AF shows the entire surface energy (erg/cm<2>) of the A layer surface after the discharge process, and gammaB shows the entire surface energy (erg/cm<2>) of the B layer surface. For instance, on one side of polyester, the resin being 10erg/cm<2> or less in its polar force component of the entire surface energy is laminated, and the A layer surface is plasma-processed under the existence of fluorine gas. Thus, a film laminated matter being cheap and having processing aptitude can be obtained, wherein it has a fluorine contained polymeric film with excellent durability in one side and also has easy adhesiveness in the other side.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は片而が耐久t生の優れた含フッ素高分子化合物
被膜をf1−シ、ILつもう 一方の1n1がb接It
性をイrしている、女価なフイルム積別物に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention provides a coating of a fluorine-containing polymer compound having excellent durability, one of which is f1-1, and one of which is b-contact.
It concerns a collection of film that is sexually charged and has a female value.

(従来の技術) ポリエステル、ポリアミド、ポリプロピレンなどの熱+
1J塑姓樹脂フイルム、特にポリエチレンテレフタレー
トなどのポリエステルフイルムは機械的強度、寸法安定
性、透明性、耐熱性、耐薬品性に優れ、磁気テープ用ベ
ースフイルム、絶縁テープ、写真フイルム、トレーシン
グフィルム、食品包装用フイルム、などの用途に広く用
いられている。
(Conventional technology) Heat + of polyester, polyamide, polypropylene, etc.
1J plastic resin films, especially polyester films such as polyethylene terephthalate, have excellent mechanical strength, dimensional stability, transparency, heat resistance, and chemical resistance, and are used as base films for magnetic tapes, insulating tapes, photographic films, tracing films, Widely used in applications such as food packaging films.

しかし、これらの熱可塑rt樹脂フイルムは通常、撥水
vL1撥浦性、防汚性、防曇姓、耐摩耗P1六耐候性、
耐水性、耐吸湿tzh ,耐ブリートアウト性、耐プロ
ッキング性等に欠ける。
However, these thermoplastic RT resin films usually have water repellency, stain resistance, anti-fog properties, abrasion resistance, P16 weather resistance,
It lacks water resistance, moisture absorption resistance, bleat-out resistance, blocking resistance, etc.

従来、これらの欠点を補なうために例えばポリテトラフ
ルオ口エチレン、ポリフッ化ビニル、ボリフ“ソ化ビニ
リデン、バーフルオロアルキルビニルエーテルーテトラ
フルオロエチレン共屯合体、四フノ化エチレン六フソ化
プロピレン共重合体、エチレンーテトラフルオ口エチレ
ン共重合体、ポリフロロトリフルオ口エチレンなどのフ
ッ素系フイルl、が用いられるが、これらフィルムは極
めて商価であり、史に通常積層状態で用いるが、その場
合、これらの表向を1一分に易接着性にするには、危険
な薬品処理を必要とし史に高コストになる欠点を0゛シ
ている。
Conventionally, in order to compensate for these drawbacks, for example, polytetrafluoroethylene, polyvinyl fluoride, boron-fluorinated vinylidene, perfluoroalkyl vinyl ether-tetrafluoroethylene copolymer, tetrafluoroethylene hexafluoropropylene copolymer were used. Fluorinated films such as ethylene-tetrafluoroethylene copolymer, polyfluorotrifluoroethylene, etc. are used, but these films are extremely commercially priced and are usually used in a laminated state. In order to make these surfaces easily adhesive in one minute, the disadvantage of requiring dangerous chemical treatments and resulting in historically high costs is eliminated.

・方ポリエステルフィルムなどの熱可塑性樹脂フイルム
にフッ素樹脂などをコーティングする方法があるが、撥
水性などを高めると、基材との密m性が低く、密着性を
高めると撥水性などが低くなる等の欠点を有している。
・There is a method of coating thermoplastic resin films such as polyester films with fluororesin, etc., but increasing water repellency lowers the adhesion to the base material, and increasing adhesion lowers water repellency. It has the following drawbacks.

史にフッ素ガスドでのプラズマ処Pl!で表面改質をす
る力法があるが、例えばポリエステルフイルムにポリテ
トラフルオロエチレンなみの特性を付与するには長時間
を必要とするために高価になり、使用可能な用途が少な
いなどの欠点をイrしている。
Plasma treatment with fluorine gas in history! There is a force method to modify the surface of polyester film, but it requires a long time to impart properties similar to polytetrafluoroethylene to polyester film, making it expensive and having the disadvantages that there are few applications for which it can be used. I'm angry.

また、ポリエステルフィルムなどを製造する際、フソ素
系の低分子あるいは高分子をブレンドする?法があるが
、撥水1/1ミなどを発現できるはとの量をブレンドし
た場合、ベースフイルム口体の物t/Lが低ドするなと
の欠点を打している。
Also, when manufacturing polyester films etc., do we blend fluorine-based low molecules or polymers? There is a method, but the drawback is that if you blend enough amount to achieve water repellency of 1/1 mm, the T/L of the base film mouth will be low.

(発明が解伏しようとする間通点) 本発明は以Lのような問題点を解決しようとしタモので
ベースフイルムの物外を損なわず、片面が耐久性の優れ
たフ,素化a有高分−r被膜を有し、LLつもう ・方
の而が易接着性を打している安価で、加君適性を汀した
フイルム積層物を得んとするものである。
(Intermediate Points to be Solved by the Invention) The present invention attempts to solve the following problems, and therefore, it does not damage the external properties of the base film, and one side has a highly durable film, and is coated with a It is an object of the present invention to obtain a film laminate having a high-density-R coating, LL coating, which has easy adhesion, is inexpensive, and has good adhesion properties.

(問題点を解決するための手段) 本発明省らは上記した事情に監かみ鋭意研究し本発明に
到達した。
(Means for Solving the Problems) In view of the above-mentioned circumstances, the Ministry of the Invention and others conducted intensive research and arrived at the present invention.

すなわち、本発明は少くともA1B層からなる熱可塑性
樹脂積層フイルムでA層面がフッ素ガスのH在下で放電
処理され、かつ、下記−・般式を満足することを特徴と
する塾凸I塑↑lI:.樹脂積屑フイルムである。
That is, the present invention provides a thermoplastic resin laminated film consisting of at least A1B layers, the surface of the A layer being subjected to discharge treatment in the presence of fluorine gas, and satisfying the following general formula: lI:. It is a resin waste film.

γ父≦10 γAP−γ■≦−20 〔ここで、γ父は放電処11!前のA層表面の全表rf
1j工不ルギー中の極外力成分( erg/cJ ) 
、γ父,は放電処即後のA層表面の全表面エネルギー(
 erg/cril)、γ,,はBfl表市1の全表+
fii xネルギー( erg/clTl)を表わす〕 史に詳しくは例えばポリエステルの片面に全表面エネル
ギー中の極性力成分が1 0 erg/c+fl以ドで
ある樹脂を積層し、該A層表面をフッ素ガスの存在下で
プラズマ処理することによりA層表而の全表面エネルギ
ーをドげ、B層すなわちポリエステル而の全表面エネル
ギーとの差を−2 0 erg/cI1!以下にするこ
とにより高い疎水性を有したフッ素化されたA層面と良
好な接着性を有したポリエステルよりなるB層面とから
なる積層フイルムである。
γ father≦10 γAP−γ■≦−20 [Here, γ father is discharge treatment 11! Full surface rf of previous A layer surface
1j Extreme force component in ergy (erg/cJ)
, γ is the total surface energy of the A layer surface immediately after discharge treatment (
erg/cril), γ,, is the entire table of Bfl table city 1 +
fii x energy (erg/clTl)] In detail, for example, a resin whose polar force component in the total surface energy is 10 erg/c+fl or more is laminated on one side of polyester, and the surface of layer A is treated with fluorine gas. By plasma treatment in the presence of polyester, the total surface energy of layer A is reduced, and the difference from the total surface energy of layer B, that is, polyester, is -20 erg/cI1! This is a laminated film consisting of a fluorinated A-layer surface with high hydrophobicity and a B-layer surface made of polyester with good adhesiveness.

該積層フイルムはポリエステルフィルムの取扱い易さを
何し、かつ、片而はフッ素フイルムに匹適する疎水性を
ffシたフイルムである。
The laminated film is a film that has the ease of handling of a polyester film, and on the other hand, has hydrophobicity comparable to that of a fluorine film.

更に、A層面と反対側のBN表而にポリエステルよりも
企表而エネルギーが高く、接青性や印刷性等がポリエス
テルよりも優れた樹脂を積眉する11rによって、史に
付加価値の高いフィルムにすることができる。
Furthermore, 11R, which is coated with a resin on the BN surface on the opposite side of the A-layer surface, has higher mechanical energy than polyester and has better blue engraving and printability than polyester, creating a film with high added value. It can be done.

本発明においてA層を積層するノ』法としてはノ(押出
し法、押出しラミネート法、ドライラミネート法、及び
コーティング法があり、コーティング法においてはオフ
ラインコーティング法及びインラインコーティング法が
あるが前記した様に密着性の点でインラインコーティン
グ法が好ましい。
In the present invention, methods for laminating layer A include extrusion method, extrusion lamination method, dry lamination method, and coating method, and coating methods include offline coating method and inline coating method, as described above. In-line coating method is preferred from the viewpoint of adhesion.

更に詳しくはB層が配向結晶化完了させた、フイルム積
層物でありかつB層の配向結晶化の完−rする前にA層
が積層されていることが好ましい。
More specifically, it is preferable that the B layer is a film laminate that has undergone oriented crystallization, and that the A layer is laminated before the oriented crystallization of the B layer is completed.

本発明における易接着層を設ける方法も易フソ素化表而
を設ける方法と何んら変るrpがなくまた設けなくても
良い。
The method of providing an easily adhesive layer in the present invention is no different from the method of providing an easily fluorinated surface, and there is no need to provide it.

従ってA層と易接着層を同時に設けた後、フ,素ガス下
でA層面を放電処理する方法が最も奸ましい実施態様で
あるが、これに限定されるものでない。例えばA層と易
接it h’Jを順次設けたり、その間にフッ素放電処
理がされるなど多秤の組合せが想定されるのでコスト、
用途により適宜選択すればよい。
Therefore, the most suitable embodiment is a method in which the A layer and the adhesive layer are simultaneously provided and then the surface of the A layer is subjected to discharge treatment under fluorine gas, but the method is not limited thereto. For example, it is assumed that many combinations will be required, such as sequentially providing the A layer and the easy-to-contact h'J, and performing fluorine discharge treatment in between.
It may be selected as appropriate depending on the purpose.

本発明におけるA層に川いられる樹脂としては、全表面
エネルギー中の極性力成分が1 0 erg/cJ以ド
であれば特に限定されないが、例えば次の様なものが挙
げられる。ポリエチレンやエチレンー酢酸ビニル共重含
体、エチレンーメチルメタクリレートノ(市合体、エチ
レンーエチルアクリレート共il体、エチレンーメチル
アクリレートノ(屯合体、エチレンーエチルアクリレー
ト− jjl(水マレイン酸共市合体、エチレンーアク
リル酸共重合体、エチレンーメタアクル酸共重合体、無
水マレイン酸グラフトポリエチレン、エチレンービニル
アルコール共張合体などのエチレン系ポリマー、ポリプ
ロピレン、塩素化ポリプロピレンなどのプロピレン系ボ
リマー ポリブタジエン、ポリイソブレン、スチレンブ
タノエン共重合体、アクリル=トリル、ブタジエンノ(
重合体、ポリクロロプレン、エチレンープロピレン共重
合体、などのゴム系樹脂等である。
The resin that can be used in layer A in the present invention is not particularly limited as long as the polar force component in the total surface energy is 10 erg/cJ or less, but examples include the following. Polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate, ethylene-ethyl acrylate, ethylene-ethyl acrylate, ethylene-ethyl acrylate, Ethylene polymers such as ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, maleic anhydride grafted polyethylene, ethylene-vinyl alcohol co-adhesive polymer, propylene polymer such as polypropylene, chlorinated polypropylene, polybutadiene, polyisobrene, Styrene-butanoene copolymer, acrylic-tolyl, butadiene copolymer (
Polymers, rubber resins such as polychloroprene, ethylene-propylene copolymers, etc.

また必聾にエ仁、して、A層面と反対1f■に積浩され
るvJ接m M+等を向1ユさせる樹脂としては、エチ
レングリコールやベンタエリスリトールなどの多価アル
コールを用いて調整されるエボキシ樹脂、;ポリ酢酸ビ
ニル、ポリ塩化ビニル、ボリル化ビニリデンおよびその
ノ(重合体などのビニル系樹脂;アクリル酸、メチルメ
タクリレート、ヒドロキ/メチルアクリレート、スチレ
ン、グリシノルメタクリレート、メチルアクリレート、
エチルアクリレートなどを用いて調製されるアクリル系
樹脂;イソフタル酸、アジピン酸、セバチン酸、エチレ
ングリコーノレ、ジエチレングリコーノレ、ネオペンチ
ノレグリコーノレ、ポリエチレングリコーノレ、ポリテ
トラメチレングリコールなどを用いて調製されるポリエ
ステル系樹脂;およびト.泥グリコール預と、ジイソシ
アネート類とにより調製されるポリウレタン系樹脂、ナ
イロン6、メトキシメチル化ナイロン6などのボリアミ
ド樹脂、ボリカーボネート、ポリエステルポリカーボネ
ートなどのカーボネート系樹脂、アルキロールあるいは
アルコキシアルキル基をf−1する尿素系、エチレンW
素系、メラミン系などの樹脂などが卒けられる。たとえ
ば、これらの積層樹脂とB層との密at’I=をli+
J t=させるために架橋剤専の添加剤を併用すること
は何らさしつかえない。以Lの樹脂は前記式を満足する
場合はA層に用いることができる。
In addition, as a resin for directing VJ contact M+, etc., which is stacked on the 1st floor opposite to the A layer surface, polyhydric alcohols such as ethylene glycol and bentaerythritol are used. Vinyl resins such as polyvinyl acetate, polyvinyl chloride, vinylidene borylate and their polymers; acrylic acid, methyl methacrylate, hydroxy/methyl acrylate, styrene, glycinol methacrylate, methyl acrylate,
Acrylic resins prepared using ethyl acrylate, etc.; Acrylic resins prepared using isophthalic acid, adipic acid, sebacic acid, ethylene glycol, diethylene glycol, neopentylene glycol, polyethylene glycol, polytetramethylene glycol, etc. polyester resin; and g. Polyurethane resins prepared from mud glycol deposits and diisocyanates, polyamide resins such as nylon 6 and methoxymethylated nylon 6, carbonate resins such as polycarbonate and polyester polycarbonate, and alkylol or alkoxyalkyl groups with f-1 Urea-based, ethylene W
Materials such as base resins and melamine resins can be used. For example, the density between these laminated resins and layer B is li+
There is no problem in using additives exclusively for crosslinking agents in order to achieve Jt=. The following resins L can be used for the A layer if they satisfy the above formula.

L記樹脂が積層される熱可塑性樹脂フィルム(ベースフ
イルム)としては、ポリエステルフイルム、ポリアミド
フイルム、ポリカーボネートフイルム、ボリフェニレン
サルファイドフイルム、ポリエーテルイミドフイルム、
ポリエーテルスルホンフイルム、ポリオレフィン系フイ
ルム、セルロース系フイルム、PVA系フイルム、アク
リル系フイルム、塩化ビニル系フィルムなどが挙げられ
、最終的に得られる積層フイルムの用途および必要とさ
れる特性に応じて最適な素材が選択される。
The thermoplastic resin film (base film) on which the L resin is laminated includes polyester film, polyamide film, polycarbonate film, polyphenylene sulfide film, polyetherimide film,
Examples include polyether sulfone film, polyolefin film, cellulose film, PVA film, acrylic film, and vinyl chloride film. The material is selected.

最も一般的に用いられるのはポリエステルフイルム、ボ
リアミドフイルム、ポリカーボネートフイルム、セルロ
ース系フイルムなどでアル。
The most commonly used materials include polyester film, polyamide film, polycarbonate film, and cellulose film.

L記ベースフイルムは、その素材である,44可794
性樹脂を通常、溶融・fill出により、あるいは該樹
脂を溶剤に溶解させてキヤステングすることにより、得
られる。このような未延伸フィルムを必・畏に応じて−
軸もしくは二軸延伸した後に、その表面に11記組成物
が後述の方法により付’j(”?I’.)される。未延
伸もしくは一軸延伸したベースフィルムに組成物を塗i
′.シ、これを必要にもしてさらに延伸する方法が、ベ
ースフィルムと組成物との密着性、易滑性付与および得
られたフィルムの耐久性などの点から、より好ましい。
The base film listed in L is its material, 44 794
It is usually obtained by melting and filling the resin, or by dissolving the resin in a solvent and casting the resin. Such unstretched films can be processed as needed.
After axial or biaxial stretching, the composition No. 11 is attached to the surface by the method described below.The composition is applied to the unstretched or uniaxially stretched base film.
'. A method of further stretching, if necessary, is more preferable from the viewpoints of adhesion between the base film and the composition, ease of slipping, and durability of the obtained film.

史に上記樹脂の厚みは最低0.01μであり、これ以ド
ではフン素ガス下での放電処理効果がでにくい。
Historically, the thickness of the above-mentioned resin is at least 0.01 μm, and if the thickness is less than that, it is difficult to obtain the effect of the discharge treatment under fluorine gas.

本発明における放電処理とはグロー放電、コロナ放電、
アーク放電があるが、グロー放電によるプラズマ処胛が
好ましい。
Discharge treatment in the present invention includes glow discharge, corona discharge,
Although arc discharge is present, plasma treatment with glow discharge is preferred.

本発明における用いるフノ素ガスとしては、炭素数がl
〜15のil′J:錆状、分峡状、環状のアルヵンアル
ケンの1以−14のフン素により置換された化合物、好
ましくは1/2以−1二の水素がフ,素にょり1値換さ
れた化合物であり−・部の水素が戊素、曳素、塩素で置
換されていてもよい。54体的な化合物としてはCF4
,C2F4,C.,F.,C2 H2F,C2 HF:
+ + C2 c QF:+ + CF2”CH2 .
 C:] FN + C4 F I+1+ C++ F
 141CB rF:l+ Cc (!.2 F2 +
 Cc Q:+ F+CHF3.C2F.,などが挙げ
られる。これらを各々1挿又は2柿以If合して用いる
ことができる。
The fluorine gas used in the present invention has a carbon number of 1
~15 il'J: a rust-like, split-like, cyclic alkane alkene substituted with 1 to 14 fluorine atoms, preferably 1/2 to 12 hydrogen atoms are fluorine atoms, and 1 value is substituted with fluorine atoms. It is a compound in which the hydrogen in the - part is replaced with boron, boron, or chlorine. CF4 as a 54-like compound
,C2F4,C. , F. , C2 H2F, C2 HF:
+ + C2 c QF: + + CF2”CH2 .
C:] FN + C4 F I+1+ C++ F
141CB rF:l+ Cc (!.2 F2 +
Cc Q:+F+CHF3. C2F. , etc. Each of these can be used in combination of one or two or more persimmons.

本発明は、上記フン素ガスの雰囲気中に積層した熱可望
性樹脂フイルムを置いて、例えばグロー放電を行う。フ
ッ素ガスの流速については特に制限はないが、通常は放
電域の体積IQに対して約0. 0 5 〜3 0 S
TPcril/m i nとするのが好ましい。
In the present invention, a laminated thermoplastic resin film is placed in the above-mentioned fluorine gas atmosphere, and glow discharge is performed, for example. There are no particular restrictions on the flow rate of fluorine gas, but it is usually about 0.0% with respect to the volume IQ of the discharge area. 05~30S
It is preferable to set it as TPcril/min.

また、グロー放電域に不活性ガスを混合することも{.
T: 意である。グロー放電は、公知の方法に従えば裏
く、例えば−20〜100℃、仔ましくはO〜50′C
の温度、0.0 1 〜3To r rs奸ましくは0
.5 〜2.OTo r rの雰囲気を容ZlQ当り2
 〜l O O wの放電Iu力で0.1〜100MH
zの,H:b’周波電界ドに置くのが奸ましい。
It is also possible to mix an inert gas in the glow discharge area.
T: I mean it. Glow discharge can be performed according to a known method, for example at -20 to 100°C, preferably from O to 50'C.
temperature, 0.0 1 to 3 Torrs preferably 0
.. 5 ~2. OTo r r atmosphere 2 per ZlQ
0.1-100MH with discharge Iu power of ~l O O w
It is foolish to place it in the H:b' frequency electric field of z.

以ト述べた条件を満足する!1『によって、極めて短I
+,″f間で低表曲エネルギーをイlする樹脂フイルム
が得られる。詳しくは、例えば通常30秒以1・.のフ
,素ガスFでのプラズマ処理を必要とするが本発明によ
れば、30秒以下のプラズマ処理でも充分な表面フン素
化がiIf能であり極めて低い表而エネルギーが得られ
、安価に製造する事ができる。
Satisfy the conditions mentioned above! 1 'By, extremely short I
It is possible to obtain a resin film that exhibits a low surface bending energy between + and ``f.Specifically, it normally requires plasma treatment with fluorine gas F for 30 seconds or more, but according to the present invention, For example, sufficient surface fluorination can be achieved even with plasma treatment for 30 seconds or less, extremely low metaphysical energy can be obtained, and manufacturing can be done at low cost.

これらのメリントを生かすには、バッチ式の放電処理方
式より、Air  to  Airの連続走行型の放電
処理方式が仔ましい。この方式における大きなポイント
となるのは予じめ、易フッ素化表面を樹脂フイルムに形
成させる=lEによる。この表面設計と放電処pitの
組合せによって初めて短時間の放電処押で高度なフソ素
化表面を汀する樹脂フイルムが得られる。
In order to take advantage of these advantages, an air-to-air continuous running type discharge treatment method is preferable to a batch type discharge treatment method. The key point in this method is to form an easily fluorinated surface on the resin film in advance (lE). The combination of this surface design and the discharge treatment pit makes it possible for the first time to obtain a resin film that has a highly fluorinated surface with a short discharge treatment.

次いで実胞例および比較例により本発明を説明する。尚
、以下において、表面エネルギー、耐水性、防?r;外
、防曇性は次の方法で測定した。
Next, the present invention will be explained using actual cell examples and comparative examples. In addition, in the following, surface energy, water resistance, waterproof? r: Antifogging properties were measured by the following method.

1. 表面エネルギー 水及びヨウ化メチレンの接触角から,D.K.OI’l
ENS.らの方法(J.Appl.Polym.Scl
..VoLI3 PP 174 1 −1747(19
69))に準じて、表而エネルギーの極外力成分及び分
散力成分を1;l算した。全表面エネルギーはこれらの
和で表わす。
1. From the contact angle of surface energy water and methylene iodide, D. K. OI'l
ENS. method (J. Appl. Polym. Scl
.. .. VoLI3 PP 174 1 -1747 (19
69)), the extreme force component and dispersion force component of the physical energy were calculated by 1;l. The total surface energy is expressed as the sum of these.

2 耐水性 樹脂フイルムを水に7 2 115間浸清後90〜10
0″Cで30分間乾燥し、表面エネルギーを算出した。
2 Water-resistant resin film is immersed in water for 7 to 115 minutes, then 90 to 10
It was dried at 0''C for 30 minutes and the surface energy was calculated.

3.防iFi性 樹脂フイルムLにB重7′ll+を1 cc適ドした3
0分後余分のB重hl+をふきとり、汚れの程度をJI
S’/’j s用グレースケールで判定した。
3. 3 with 1 cc of B weight 7'll+ applied to IFi-proof resin film L
After 0 minutes, wipe off the excess B heavy hl+ and check the degree of dirt with JI.
Judgment was made using gray scale for S'/'j s.

4.防曇性 水を約半分入れたビーカーを処Pf而が内面になる様に
密閉し35゜Cで24U.’j間放置後その状態を判定
した。
4. A beaker half filled with antifogging water was sealed so that the inner surface of the beaker was heated at 35°C for 24U. After leaving it for a period of time, the condition was determined.

A 全くくもらない B 一部くもる C 完全にくもる 5.処即而の転写性 処理而と非処理面を重ね合せ、3cmX3cmの広さの
フイルム1−.に5 kgの右t重をかけ4 0 ”C
、90%RHで72時間放置後の非処Fl! iT+i
の水Yトインキを印刷し、その外観を判定した。
A Not cloudy at all B Partially cloudy C Completely cloudy 5. The immediately transferable treated and non-treated surfaces were superimposed, and a film 1-. Apply 5 kg of right weight to 40”C
, Non-treatment Fl after being left at 90%RH for 72 hours! iT+i
The water Y ink was printed and its appearance was evaluated.

実施例1 エチレン60モル%、メチルメタクリレート38モル%
、ヒドロキシエチルアクリレート2モル%よりなる共重
合体lOO部、トリメチローハプロパンとトリレンジイ
ソシアナート(1 : 1)の反応物10部をトルエン
500部、キシレン300部、N−メチルピロリドン1
 0 0 ?A<に溶解させ、塗工液を作成した。
Example 1 60 mol% ethylene, 38 mol% methyl methacrylate
, 10 parts of a copolymer consisting of 2 mol% of hydroxyethyl acrylate, 10 parts of a reaction product of trimethylohapropane and tolylene diisocyanate (1:1), 500 parts of toluene, 300 parts of xylene, 1 part of N-methylpyrrolidone.
0 0? A coating solution was prepared by dissolving it in A<.

別にポリエチレンテレフタレートを280〜300″C
で溶融押出し、l5゜Cの冷却ロールで玲却しPl.さ
5 0 0 tt mの未延伸フィルムを得、この米延
伸フイルl、を周速の異なる85℃の一対のロール間を
通して縦方向3.3倍に延伸した。
Separately, polyethylene terephthalate was heated to 280~300″C.
Melt extrusion was carried out at 15°C and cooled with a cooling roll at 15°C. An unstretched film with a diameter of 500 ttm was obtained, and this stretched film L was stretched 3.3 times in the longitudinal direction through a pair of rolls at different circumferential speeds of 85°C.

このフイルム表而に−L記牟1二液をエアナイフ方式で
塗王し、70゜Cの熱風で屹燥し、樹脂組成物J+=1
を形敗した。
Coat 1 and 2 liquids of -L on the surface of this film using an air knife method, dry with hot air at 70°C, and prepare resin composition J+=1.
was defeated.

このフイルムをテレターで98゜Cで横方向ニ3.3倍
延伸しさらに200〜210℃で熱国定し厚さ50μm
(エチレン系共重合体層0.11μm )の二軸延伸、
積贋フイルムを得た。
This film was stretched 3.3 times in the transverse direction at 98°C using a teletor, and further heated to a temperature of 200-210°C to a thickness of 50 μm.
Biaxial stretching of (ethylene copolymer layer 0.11 μm),
I got a counterfeit film.

このフイルムを史にCF4を用いガス圧力1.OTo 
r r11フ’5周波出力1 0 k W %処pli
速度10m/min(プラズマ照射時間1秒)でプラズ
マ処pllをした。
Using this film, CF4 was used at a gas pressure of 1. OTo
r r11f'5 frequency output 1 0 kW % processing pli
Plasma treatment was performed at a speed of 10 m/min (plasma irradiation time: 1 second).

その結果得られたフイルムの特性を表lに示す。The properties of the resulting film are shown in Table 1.

実地例2 夫施例1において、エチレン共市合体をボリスチレンに
代えた以外は吏施例1と同様にしてフイルムを得た。
Practical Example 2 A film was obtained in the same manner as in Example 1 except that the ethylene copolymer was replaced with polystyrene.

実施例3 実施例1において、二輔延伸フイルムに塗工する以外は
失地例lと同様に行なった。
Example 3 The same procedure as Example 1 was carried out in Example 1 except that two stretched films were coated.

比較例1 丈胞例1において積層処理なし以外はポリエステルフイ
ルムにプラズマ処理を実地例1と同様にして行なった。
Comparative Example 1 In Example 1, a polyester film was subjected to plasma treatment in the same manner as in Practical Example 1, except that the lamination treatment was not performed.

比較例2 実胞例1において、γ4が1 0 erg/crIl以
ヒになるポリエチレングリコール(分子ffl4000
)2モル%、テレフタル酸30モル%、イソフタル酸6
8モル%及ヒエチレングリコール80モル%、ジエチレ
ングリコール20モル%よりなる共重合体ポリエステル
を用いた以外は実胤例1と同様に行なった。
Comparative Example 2 In Cell Example 1, polyethylene glycol (molecular ffl4000
) 2 mol%, terephthalic acid 30 mol%, isophthalic acid 6
The same procedure as in Example 1 was carried out except that a copolymer polyester consisting of 8 mol% of hyethylene glycol, 80 mol% of diethylene glycol, and 20 mol% of diethylene glycol was used.

比較例3 実地例1において塗工液を市販フッ素系ポリマー(テト
ラフルオ口エチレン系)エマルジaンに代え、プラズマ
処理をしなかった以外は実施例1と同様にして行なった
Comparative Example 3 The same procedure as in Example 1 was carried out except that the coating liquid in Practical Example 1 was replaced with a commercially available fluorine-based polymer (tetrafluoroethylene-based) emulsion, and the plasma treatment was not performed.

表1より非積層フイルム(比較例1)、フン素プラズマ
処fI}!前の表向エネルギーの棒性力成分が1 0 
erg/cra  以上のフイルム(比較例2)、テフ
ロン系のエマルジdンコートフイルム(L−1例3)で
は本発明でいう諸特性を充分満足する事ができないが、
本発明法はすべて、満足する゜1fができる。
From Table 1, the non-laminated film (Comparative Example 1), fluorine plasma treatment fI}! The rod force component of the previous surface energy is 1 0
erg/cra or higher (Comparative Example 2) and Teflon-based emulsion coated film (L-1 Example 3) cannot fully satisfy the various characteristics defined in the present invention.
All of the methods of the present invention produce a satisfactory ゜1f.

(発明の効果) 本発明の積層樹脂フイルムはこのように熱可塑性樹脂フ
イルム表面に特定の表面層を設けた後、フッ素ガス下で
、プラズマ処理するSgによって極めて短時間に高度フ
ッ素下表面を有する樹脂フイルムを得る事ができる。
(Effects of the Invention) The laminated resin film of the present invention has a highly fluorinated surface in a very short time by providing a specific surface layer on the surface of the thermoplastic resin film and then subjecting it to Sg plasma treatment under fluorine gas. Resin film can be obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)少くともA、B層からなる熱可塑性樹脂積層フィ
ルムでA層面がフッ素ガスの存在下で放電処理され、か
つ、下記一般式を満足することを特徴とする熱可塑性樹
脂積層フィルム。 γ^n_A≦10 γ_A_F−γ_B≦−20 〔ここで、γ_Aは放電処理前のA層表面の全表面エネ
ルギー中の極性力成分(erg/cm^2)、γ_A_
Fは放電処理後のA層表面の全表面エネルギー(erg
/cm^2)、γ_BはB層表面の全表面エネルギー(
erg/cm^2)を表わす〕
(1) A thermoplastic resin laminate film comprising at least layers A and B, the surface of the A layer being subjected to discharge treatment in the presence of fluorine gas, and satisfying the following general formula. γ^n_A≦10 γ_A_F−γ_B≦−20 [Here, γ_A is the polar force component (erg/cm^2) in the total surface energy of the A layer surface before discharge treatment, γ_A_
F is the total surface energy (erg
/cm^2), γ_B is the total surface energy of the B layer surface (
erg/cm^2)]
JP16508989A 1989-06-26 1989-06-26 Film laminate Pending JPH0327935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16508989A JPH0327935A (en) 1989-06-26 1989-06-26 Film laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16508989A JPH0327935A (en) 1989-06-26 1989-06-26 Film laminate

Publications (1)

Publication Number Publication Date
JPH0327935A true JPH0327935A (en) 1991-02-06

Family

ID=15805674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16508989A Pending JPH0327935A (en) 1989-06-26 1989-06-26 Film laminate

Country Status (1)

Country Link
JP (1) JPH0327935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297831A (en) * 2005-04-22 2006-11-02 Fuji Photo Film Co Ltd Polymer film, and optical film, polarizing plate and image displaying device each using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297831A (en) * 2005-04-22 2006-11-02 Fuji Photo Film Co Ltd Polymer film, and optical film, polarizing plate and image displaying device each using it

Similar Documents

Publication Publication Date Title
JP2009083456A (en) Manufacturing method for antistatic polyester film
JP2009083455A (en) Manufacturing method for antistatic polyester film
EP0543293A2 (en) Coated article and method for producing same
JP2010037533A (en) Method of manufacturing antistatic polyester film, antistatic polyester film manufactured by the method and use thereof
EP2450188A1 (en) Laminated polyester film
JP4816946B2 (en) Gas barrier laminate film and method for producing the same
JPH10305542A (en) Gas barrier polyester film
JP2008036948A (en) Gas-barrier laminated film
JPH0327935A (en) Film laminate
US4372986A (en) Polyvinyl alcohol-clad shaped article of vinyl chloride resin
JP3294440B2 (en) Composite vapor-deposited film and method for producing the same
JPH09501893A (en) Multilayer film with self-regulating heat sealability
JPH0224298B2 (en)
JP5079181B2 (en) Polyolefin film for labels and seals with excellent printability
JPH0623890A (en) Production of label
JP3149505B2 (en) Transparent gas barrier film
JPH03155941A (en) Film laminate
JPH10244601A (en) Manufacture of base material plastic film for thin gas-barrier film
JP2700019B2 (en) Gas barrier film and packaging or gas barrier film using the same
JPH09111017A (en) Gas barrier film and its production
JP3070702B2 (en) Transparent gas barrier film
JP2008272944A (en) Gas barrier laminated film
JPH11157021A (en) Gas barrier film
KR101359625B1 (en) Anti-static polyester film and manufacturing method thereof
JP7218577B2 (en) laminated film