JPH0327872B2 - - Google Patents

Info

Publication number
JPH0327872B2
JPH0327872B2 JP60239914A JP23991485A JPH0327872B2 JP H0327872 B2 JPH0327872 B2 JP H0327872B2 JP 60239914 A JP60239914 A JP 60239914A JP 23991485 A JP23991485 A JP 23991485A JP H0327872 B2 JPH0327872 B2 JP H0327872B2
Authority
JP
Japan
Prior art keywords
signal
circuit
signals
output
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60239914A
Other languages
Japanese (ja)
Other versions
JPS6298282A (en
Inventor
Kazumasa Yamauchi
Hironobu Inoe
Yasunori Yonezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP23991485A priority Critical patent/JPS6298282A/en
Publication of JPS6298282A publication Critical patent/JPS6298282A/en
Publication of JPH0327872B2 publication Critical patent/JPH0327872B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [技術分野] 本発明は移動物体検知装置、さらに詳しくは、
監視空間に超音波を送出し監視空間内での被検知
物体の移動に伴なつて反射波に生じる周波数偏移
を検出することにより被検知物体の移動を検出す
る、いわゆるドツプラ効果型の移動物体検知装置
であつて、送波器と受波器とが1個の超音波振動
子により兼用された移動物体検知装置に関するも
のである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a moving object detection device, more specifically,
A so-called Doppler effect type moving object that detects the movement of an object by sending out ultrasonic waves into the monitoring space and detecting the frequency shift that occurs in the reflected waves as the object moves within the monitoring space. The present invention relates to a moving object detection device in which a single ultrasonic transducer serves as both a transmitter and a receiver.

[背景技術] 一般に監視空間に超音波を送出し監視空間内に
存在する被検知物体からの反射波を受波し、被検
知物体が移動してドツプラー効果である周波数偏
移が生じたときに送波周波数と受波周波数との差
を検出して移動物体を検知するようにしたこの種
の移動物体検知装置では、送波周波数に対する受
波周波数の周波数偏移を検出する必要があるか
ら、送波超音波を連続的に送出しているものであ
り、送波信号と受波信号とが混合されないように
一般的には送波器と受波器とが別体に構成されて
いる。しかしながら、送波器と受波器とが別体で
あると、監視空間の設定に当たつて両者の位置決
めが面倒になるとともに、超音波振動子が2個必
要となつてコスト高になるという問題が生じる。
[Background technology] Generally, ultrasonic waves are transmitted into a monitoring space and reflected waves from a detected object existing in the monitored space are received, and when the detected object moves and a frequency shift occurs due to the Doppler effect. In this type of moving object detection device that detects a moving object by detecting the difference between the transmitting frequency and the receiving frequency, it is necessary to detect the frequency deviation of the receiving frequency with respect to the transmitting frequency. Ultrasonic waves are continuously transmitted, and the transmitter and receiver are generally constructed separately so that the transmitted and received signals are not mixed. However, if the transmitter and receiver are separate, it becomes difficult to position them when setting up the monitoring space, and two ultrasonic transducers are required, which increases costs. A problem arises.

この問題を解消するために、第4図に示すよう
に、送波器と受波器とが1個の超音波振動子で兼
用されたものを考えることができる。この構成で
は送波超音波の周波数に等しい周波数で発振する
発振回路11より出力された送波信号が増幅回路
12で増幅された後、ピエゾ素子で形成された超
音波振動子13に入力されて超音波が監視空間に
送出される。監視空間内に存在する物体で反射さ
れた超音波は超音波を送出したのと同じ超音波振
動子13で受波され受波信号に変換された後、こ
の受波信号と上記増幅回路12の出力とを入力と
する検波回路21で検波される。ここで、検波回
路21への入力信号は受波信号と送波信号とが混
合されているから、受波信号と送波信号との周波
数が異なつていると重ね合わせの原理によりビー
ト成分を生じることになる。つまり、監視空間内
に存在する物体が移動すると受波信号にはドツプ
ラ効果である周波数偏移が生じるから、検波回路
21への入力信号にはビート成分が生じるのであ
る。検波回路21の出力は増幅回路22で増幅さ
れた後、比較回路23に入力され、増幅回路22
の出力レベルが所定値以上であると検知信号が出
力され、スイツチング回路24より接点出力が得
られるのである。
In order to solve this problem, it is possible to consider a system in which a single ultrasonic transducer serves as both a transmitter and a receiver, as shown in FIG. In this configuration, a transmission signal output from an oscillation circuit 11 that oscillates at a frequency equal to the frequency of the transmission ultrasound is amplified by an amplifier circuit 12, and then input to an ultrasound transducer 13 formed of a piezo element. Ultrasonic waves are transmitted into the monitoring space. The ultrasonic wave reflected by an object existing in the monitoring space is received by the same ultrasonic transducer 13 that sent out the ultrasonic wave and converted into a received signal, and then the received signal and the amplifier circuit 12 are combined. The signal is detected by a detection circuit 21 which receives the output as an input. Here, since the input signal to the detection circuit 21 is a mixture of the received signal and the transmitted signal, if the frequencies of the received signal and the transmitted signal are different, a beat component is generated due to the principle of superposition. It turns out. In other words, when an object existing in the monitoring space moves, a frequency shift, which is the Doppler effect, occurs in the received signal, so a beat component occurs in the input signal to the detection circuit 21. The output of the detection circuit 21 is amplified by the amplifier circuit 22 and then input to the comparison circuit 23.
When the output level is equal to or higher than a predetermined value, a detection signal is output, and a contact output is obtained from the switching circuit 24.

以上の構成においては、風や雑音のような外乱
によるノイズがないときには正常に動作をする
が、そのようなノイズが存在していると、増幅回
路22として帯域増幅回路を用いて所定の周波数
成分のみが通過できるようにしてもノイズの影響
を完全に防止することができないものである。つ
まり、被検知物体の移動による周波数偏移で生じ
たビート周波数と、ノイズにより生じたビート周
波数とに重複部分が存在することがあり、これは
帯域増幅回路では分離不能な成分であつて、この
回路構成ではノイズによる誤動作が生じるという
問題がある。
The above configuration operates normally when there is no noise due to disturbances such as wind or noise, but when such noise is present, a band amplification circuit is used as the amplifier circuit 22 to detect a predetermined frequency component. Even if only noise is allowed to pass through, the influence of noise cannot be completely prevented. In other words, there may be an overlap between the beat frequency caused by the frequency shift caused by the movement of the object to be detected and the beat frequency caused by noise, and this is a component that cannot be separated by the band amplification circuit. The problem with the circuit configuration is that malfunctions occur due to noise.

[発明の目的] 本発明は上述の点に鑑みて為されたものであつ
て、その主な目的とするところは、送波器と受波
器とが1個の振動子で兼用された移動物体検知回
路において、外乱のノイズによる誤動作が生じな
いようにした移動物体検知装置を提供することに
ある。
[Object of the Invention] The present invention has been made in view of the above points, and its main purpose is to provide a moving device in which a single vibrator serves as both a transmitter and a receiver. An object of the present invention is to provide a moving object detection device in which malfunctions due to disturbance noise do not occur in an object detection circuit.

[発明の開示] 実施例 1 本発明の構成を第1図に基づいて説明する。第
1図に示すように、一定周波数で連続的に発振す
る発振回路11の出力は増幅回路12により増幅
された後、インピーダンス回路14に入力され
る。インピーダンス回路14は出力インピーダン
スが大きく設定された回路であつて、後段からの
信号の回り込みが少なくなるようにするものであ
る。インピーダンス回路14の出力は超音波振動
子13に入力され、超音波振動子13からは一定
周波数の超音波が監視空間に向かつて連続的に発
射される。超音波振動子13から発射された超音
波は監視空間内に存在する物体により反射されそ
の反射波が再び超音波振動子13に受波され、こ
れが受波信号に変換される。超音波振動子13は
ピエゾ素子などで構成されており、付与された電
気振動の振動数に一致した超音波が発射されると
ともに、受波された超音波の振動数に一致した受
波信号を出力する。超音波振動子13で受信され
た受波信号は送波信号に重畳された状態でコンバ
ータ回路20に入力される。ここで、上記インピ
ーダンス回路14の存在により、受波信号が送波
側の回路に回り込むことが防止され、受信感度が
大きくとれるようにしているのである。コンバー
タ回路20は、発振回路11の出力信号をそれぞ
れ90度ずらす一対の移相回路25a,25bと、
各移相回路25a,25bの出力信号である基準
信号と受波信号とをそれぞれ混合する一対のミキ
サ回路26a,26bと、各ミキサ回路26a,
26bの出力である中間信号をそれぞれ検波する
一対の検波回路21a,21bと、各検波回路2
1a,21bの出力をそれぞれ増幅する一対の増
幅回路22a,22bとから構成される。ここで
移相回路25a,25bの一方は発振回路11の
出力信号の位相を90度進めて基準信号を出力し、
他方は90度後らせて基準信号を出力する。
[Disclosure of the Invention] Example 1 The configuration of the present invention will be explained based on FIG. As shown in FIG. 1, the output of an oscillation circuit 11 that continuously oscillates at a constant frequency is amplified by an amplifier circuit 12 and then input to an impedance circuit 14. The impedance circuit 14 is a circuit whose output impedance is set to be large, and is designed to reduce the looping of signals from the subsequent stage. The output of the impedance circuit 14 is input to the ultrasonic transducer 13, and the ultrasonic transducer 13 continuously emits ultrasonic waves of a constant frequency toward the monitoring space. The ultrasonic wave emitted from the ultrasonic transducer 13 is reflected by an object existing in the monitoring space, and the reflected wave is received by the ultrasonic transducer 13 again, which converts it into a received signal. The ultrasonic transducer 13 is composed of a piezo element, etc., and emits an ultrasonic wave that matches the frequency of the applied electric vibration, and also emits a received signal that matches the frequency of the received ultrasonic wave. Output. The reception signal received by the ultrasonic transducer 13 is input to the converter circuit 20 in a state where it is superimposed on the transmission signal. Here, the existence of the impedance circuit 14 prevents the received signal from going around to the circuit on the transmitting side, thereby increasing receiving sensitivity. The converter circuit 20 includes a pair of phase shift circuits 25a and 25b that respectively shift the output signals of the oscillation circuit 11 by 90 degrees;
A pair of mixer circuits 26a, 26b that mix the reference signal and the received signal, which are the output signals of each phase shift circuit 25a, 25b, and each mixer circuit 26a,
A pair of detection circuits 21a and 21b each detecting the intermediate signal output from the detection circuit 26b, and each detection circuit 2
It is composed of a pair of amplifier circuits 22a and 22b that amplify the outputs of 1a and 21b, respectively. Here, one of the phase shift circuits 25a and 25b advances the phase of the output signal of the oscillation circuit 11 by 90 degrees and outputs a reference signal.
The other outputs the reference signal with a delay of 90 degrees.

コンバータ回路20の出力は、信号の正負に対
応して出力レベルを“H”または“L”とする2
進数変換回路、コンバータ回路20の出力信号で
ある2信号を基準軸とするベクトル平面において
受波信号が属する象限を検出する象限検出回路、
象限検出回路で検出された象限の転移を検出する
象限転移検出回路、所定回数の象限転移が連続し
て生じたときに検出信号を出力する出力回路など
からなる信号処理回路30に入力され、被検知物
体の移動が検出されたときに信号処理回路30の
出力として得られる検知信号によりスイツチング
回路31が閉成して表示装置等が駆動されるよう
になつている。この信号処理回路については特開
昭55−63774号等において開示された従来周知の
ものが利用できる。
The output of the converter circuit 20 has an output level of "H" or "L" depending on whether the signal is positive or negative.
a quadrant detection circuit that detects the quadrant to which the received signal belongs in a vector plane whose reference axis is the two signals that are the output signals of the converter circuit 20;
The detected signal is input to the signal processing circuit 30, which includes a quadrant transition detection circuit that detects the quadrant transition detected by the quadrant detection circuit, and an output circuit that outputs a detection signal when a predetermined number of quadrant transitions occur in succession. When the movement of the sensing object is detected, the switching circuit 31 is closed by a detection signal obtained as an output of the signal processing circuit 30, and a display device or the like is driven. As for this signal processing circuit, a conventionally known circuit disclosed in Japanese Patent Laid-Open No. 55-63774 and the like can be used.

(動作) 以下、コンバータ回路20の動作を説明する。
第2図aは発振回路11の出力信号S1を示し、同
図bはコンバータ回路20への入力信号S2を示
す。コンバータ回路20への入力信号S2は発振回
路11の出力信号S1と超音波振動子13の出力信
号である受波信号との混合された信号であつて、
発振回路11の出力信号S1、受波信号、コンバー
タ回路20への入力信号S2をそれぞれベクトルで
b1,b2,bと表わせば、<b>=<b1>+<b2
という関係が成り立つ。ここで各ミキサ回路26
a,26bではコンバータ回路20への入力信号
S2と発振回路11の出力信号S1に対して位相が90
度ずれた基準信号(第2図c,d)が混合される
のであつて、受波信号に周波数偏移が存在しない
状態で、各ミキサ回路26a,26bにそれぞれ
入力される両信号の振幅が等しいものとすると、
重ね合わせの原理により、各ミキサ回路26a,
26bの出力信号S5,S6は第2図e,fに示すよ
うに、発振回路11の出力信号S1に対して位相が
45度ずれた信号となる。ここで一方の移相回路2
5aは発振回路11の出力信号S1に対して位相を
90度進め(第3図中c)、他方の移相回路25b
は位相を90度後らせている(第3図中d)から、
第3図のようにベクトルの関係で示せば、ミキサ
回路26aの出力eは発振回路11の出力信号a
に対して位相が45度進み、ミキサ回路26bの出
力fは位相が45度遅れることが分かる。つまり、
両ミキサ回路26a,26bの出力信号e,fに
は90度の位相差が生じることになる。被検知物体
が移動して受波信号に周波数偏移が含まれている
場合には、上述したように送波信号に受波信号が
加算されることになるから、ベクトル平面におい
ては、コンバータ回路20への入力信号bは、ミ
キサ回路26a,26bの出力信号e,fに受波
信号b2を加算したものと等しくなる。すなわち、
各ミキサ回路26a,26bの出力である中間信
号S5,S6の基準となる信号e,fは互いの位相差
が90度であり、この信号を基準軸としてベクトル
平面を考えれば、受波信号b2はこのベクトル平面
の原点の回りで回転する回転ベクトルと考えるこ
とができる。つまり、ミキサ回路26a,26b
の出力を検波し、その正負の符号に対応した信号
を検出すれば、それは受波信号が上記ベクトル平
面において存在する象限を表わすことになるので
ある。各ミキサ回路26a,26bを検波した出
力の正負の符号に対応した信号をそれぞれ軸符号
信号X,Yとすれば、超音波を反射する物体が接
近するときには反射波の周波数が発振周波数より
も高くなるから軸符号信号Xの位相は軸符号信号
Yの位相よりも遅れることになり、逆に物体が遠
ざかるときには反射波の周波数が発振周波数より
も低くなるから軸符号信号Xの位相が軸符号信号
Yに対して進むものである。したがつて、各軸符
号信号X,Yを基本軸とするベクトル平面におい
て、物体が接近するときには受波信号の表わす回
転ベクトルは原点の回りに右回りに回転し、物体
が遠ざかるときには左回りに回転するのである。
これを信号処理回路30において検出すれば被検
知物体の移動、およびその移動向きを検出するこ
とができるのである。
(Operation) The operation of the converter circuit 20 will be described below.
2a shows the output signal S 1 of the oscillation circuit 11, and FIG. 2b shows the input signal S 2 to the converter circuit 20. FIG. The input signal S2 to the converter circuit 20 is a mixed signal of the output signal S1 of the oscillation circuit 11 and the received signal which is the output signal of the ultrasonic transducer 13,
The output signal S 1 of the oscillation circuit 11, the received signal, and the input signal S 2 to the converter circuit 20 are each expressed as a vector.
If expressed as b 1 , b 2 , b, <b>=<b 1 >+<b 2 >
This relationship holds true. Here, each mixer circuit 26
a, 26b are input signals to the converter circuit 20;
The phase is 90 with respect to S 2 and the output signal S 1 of the oscillation circuit 11.
The reference signals (FIG. 2 c, d) shifted by a certain degree are mixed, and the amplitudes of both signals input to each mixer circuit 26a, 26b are Assuming that they are equal,
By the principle of superposition, each mixer circuit 26a,
As shown in FIG .
The signal will be shifted by 45 degrees. Here, one phase shift circuit 2
5a indicates the phase with respect to the output signal S1 of the oscillation circuit 11.
Advance by 90 degrees (c in Figure 3), the other phase shift circuit 25b
Since the phase is delayed by 90 degrees (d in Figure 3),
As shown in the vector relationship as shown in FIG. 3, the output e of the mixer circuit 26a is the output signal a of the oscillation circuit 11.
It can be seen that the phase of the output f of the mixer circuit 26b is delayed by 45 degrees, and the phase of the output f of the mixer circuit 26b is delayed by 45 degrees. In other words,
A phase difference of 90 degrees will occur between the output signals e and f of both mixer circuits 26a and 26b. If the detected object moves and the received signal includes a frequency shift, the received signal will be added to the transmitted signal as described above, so in the vector plane, the converter circuit The input signal b to the mixer circuit 20 is equal to the sum of the output signals e and f of the mixer circuits 26a and 26b and the received signal b2 . That is,
The signals e and f, which serve as the reference for the intermediate signals S 5 and S 6 which are the outputs of the mixer circuits 26a and 26b, have a phase difference of 90 degrees, and if we consider a vector plane with these signals as the reference axis, the received wave The signal b 2 can be thought of as a rotation vector rotating around the origin of this vector plane. In other words, the mixer circuits 26a, 26b
If the output of the vector is detected and a signal corresponding to the positive or negative sign is detected, this will represent the quadrant in which the received signal exists in the vector plane. If the signals corresponding to the positive and negative signs of the outputs detected by the mixer circuits 26a and 26b are the axis code signals X and Y, respectively, when an object that reflects ultrasonic waves approaches, the frequency of the reflected wave will be higher than the oscillation frequency. Therefore, the phase of the axis code signal It advances against Y. Therefore, in a vector plane with the axis code signals X and Y as the basic axes, when an object approaches, the rotation vector represented by the received signal rotates clockwise around the origin, and when the object moves away, it rotates counterclockwise. It rotates.
If this is detected by the signal processing circuit 30, the movement of the object to be detected and the direction of movement thereof can be detected.

以上のように、受波信号を互いに位相の異なる
一対の中間信号に変換したことにより、両中間信
号を基準軸とするベクトル平面での受波信号の振
舞いを検出すれば、適宜信号処理回路を用いるこ
とにより物体の移動に基づいて生じた周波数偏移
成分と外乱のノイズ成分とを容易に分離できるも
のであり、ノイズによる誤動作が防止できるので
ある。
As described above, by converting the received signal into a pair of intermediate signals with different phases, if the behavior of the received signal on the vector plane with both intermediate signals as the reference axis is detected, the signal processing circuit can be adjusted as appropriate. By using this, it is possible to easily separate the frequency shift component caused by the movement of the object from the noise component of the disturbance, and malfunctions due to noise can be prevented.

[発明の効果] 本発明は上述のように、一定周波数の送波信号
を連続的に出力する発振回路と、送波信号を受け
て超音波を監視空間に送波するとともに監視空間
内の被検知物体からの反射波を受波して受波信号
を出力する送受兼用の超音波振動子と、送波信号
と同周波数で180度の位相差を有した一対の基準
信号と送波信号に重畳された受波信号とを混合し
て90度の位相差を有した一対の中間信号に変換す
るコンバータ回路と、両中間信号を基本軸とする
ベクトル平面において受波信号が存在する象限の
転移を検出することにより被検知物体の移動を検
出して検知信号を出力する信号処理回路とを備え
ているので、送波器と受波器とが1個の振動子で
兼用された移動物体検知回路において、送波信号
に重畳された受波信号を180度の位相差を有した
一対の基準信号と混合して90度の位相差を有した
一対の中間信号に変換したことにより、両中間信
号を基準軸とするベクトル平面での受波信号の振
舞いを検出すれば、適宜信号処理を行なうことで
物体の移動に基づいて生じた周波数偏移成分と外
乱のノイズ成分とを容易に分離できるものであ
り、外乱のノイズによる誤動作を防止することが
できるという利点を有するのである。しかも、発
振回路は送波信号を連続的に送出するとともに、
送受兼用の超音波振動子を用いることによつて、
受波信号が送波信号に重畳されることになるが、
一対の基準信号の位相差を180度に設定したこと
によつて、90度の位相差を有する一対の中間信号
を得ることができるのである。その結果、物体の
移動を常時検知することができるのであつて、盗
難防止等の目的で監視空間を常時監視する必要が
ある場合にとくに有効な構成となつているのであ
る。
[Effects of the Invention] As described above, the present invention includes an oscillation circuit that continuously outputs a transmission signal of a constant frequency, and an oscillation circuit that receives the transmission signal and transmits ultrasonic waves to a monitoring space. A transmitting and receiving ultrasonic transducer that receives reflected waves from a sensing object and outputs a received signal, and a pair of reference signals and transmitting signals that have the same frequency as the transmitting signal and a 180 degree phase difference. A converter circuit that mixes the superimposed received signal and converts it into a pair of intermediate signals with a 90 degree phase difference, and a transition of the quadrant in which the received signal exists in a vector plane with both intermediate signals as the basic axes. Since it is equipped with a signal processing circuit that detects the movement of the object to be detected by detecting the movement of the object to be detected and outputs a detection signal, it is possible to detect moving objects in which a single transducer serves as both a transmitter and a receiver. In the circuit, the received signal superimposed on the transmitted signal is mixed with a pair of reference signals having a phase difference of 180 degrees and converted into a pair of intermediate signals having a phase difference of 90 degrees. By detecting the behavior of the received signal on a vector plane with the signal as the reference axis, it is possible to easily separate the frequency shift component caused by the movement of the object from the disturbance noise component by performing appropriate signal processing. This has the advantage of being able to prevent malfunctions due to disturbance noise. Moreover, the oscillation circuit continuously sends out the transmission signal, and
By using an ultrasonic transducer for both transmission and reception,
The received signal will be superimposed on the transmitted signal, but
By setting the phase difference between the pair of reference signals to 180 degrees, it is possible to obtain a pair of intermediate signals having a phase difference of 90 degrees. As a result, the movement of objects can be detected at all times, making this a particularly effective configuration when it is necessary to constantly monitor the monitoring space for purposes such as theft prevention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロツク図、
第2図は同上の動作説明図、第3図は同上のベク
トル表現の動作説明図、第4図は従来例を示すブ
ロツク図である。 11は発振回路、13は超音波振動子、20は
コンバータ回路、30は信号処理回路である。
FIG. 1 is a block diagram showing one embodiment of the present invention;
FIG. 2 is an explanatory diagram of the same operation as above, FIG. 3 is an explanatory diagram of operation of the vector representation same as above, and FIG. 4 is a block diagram showing a conventional example. 11 is an oscillation circuit, 13 is an ultrasonic transducer, 20 is a converter circuit, and 30 is a signal processing circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 一定周波数の送波信号を連続的に出力する発
振回路と、送波信号を受けて超音波を監視空間に
送波するとともに監視空間内の被検知物体からの
反射波を受波して受波信号を出力する送受兼用の
超音波振動子と、送波信号と同周波数で180度の
位相差を有した一対の基準信号と送波信号に重畳
された受波信号とを混合して90度の位相差を有し
た一対の中間信号に変換するコンバータ回路と、
両中間信号を基本軸とするベクトル平面において
受波信号が存在する象限の転移を検出することに
より被検知物体の移動を検出して検知信号を出力
する信号処理回路とを具備して成ることを特徴と
する移動物体検知装置。
1 An oscillation circuit that continuously outputs a transmission signal of a constant frequency, and an oscillation circuit that receives the transmission signal and transmits ultrasonic waves to the monitoring space, and also receives reflected waves from the detected object in the monitoring space. An ultrasonic transducer that outputs wave signals for both transmitting and receiving purposes, a pair of reference signals that have the same frequency as the transmitting signal and a phase difference of 180 degrees, and a receiving signal superimposed on the transmitting signal are mixed. a converter circuit that converts into a pair of intermediate signals having a phase difference of degrees;
and a signal processing circuit that detects the movement of the object to be detected by detecting the transition of the quadrant in which the received signal exists in a vector plane with both intermediate signals as the basic axes, and outputs a detection signal. Characteristic moving object detection device.
JP23991485A 1985-10-25 1985-10-25 Detecting device for moving body Granted JPS6298282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23991485A JPS6298282A (en) 1985-10-25 1985-10-25 Detecting device for moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23991485A JPS6298282A (en) 1985-10-25 1985-10-25 Detecting device for moving body

Publications (2)

Publication Number Publication Date
JPS6298282A JPS6298282A (en) 1987-05-07
JPH0327872B2 true JPH0327872B2 (en) 1991-04-17

Family

ID=17051725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23991485A Granted JPS6298282A (en) 1985-10-25 1985-10-25 Detecting device for moving body

Country Status (1)

Country Link
JP (1) JPS6298282A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068833A (en) * 1983-09-24 1985-04-19 株式会社島津製作所 Automatic setting apparatus of blood flow speed measuring position

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068833A (en) * 1983-09-24 1985-04-19 株式会社島津製作所 Automatic setting apparatus of blood flow speed measuring position

Also Published As

Publication number Publication date
JPS6298282A (en) 1987-05-07

Similar Documents

Publication Publication Date Title
JPH10268035A (en) Ultrasonic sensor
JPH0327872B2 (en)
JPH0327873B2 (en)
JP2994828B2 (en) Doppler object detector
JPS61246686A (en) Detector for moving object
JP2676533B2 (en) Doppler sensor
JP3101893B2 (en) Ultrasonic sensor with intruding object detection function
JPH063446A (en) Position sensor
JPS6298281A (en) Detecting device for moving body
JPH0479589B2 (en)
JP2953181B2 (en) Ultrasonic sensor
JPH0733185Y2 (en) Ultrasonic detector
JP3181123B2 (en) Underwater detector
JP2573403B2 (en) Ultrasonic sensor
JPH0357427B2 (en)
JPH01287491A (en) Moving body detecting device
JPS61234381A (en) Operation checker for doppler type ultrasonic detector
JPH02151759A (en) Ultrasonic detector
JPS6025981U (en) Monopulse radar device
JPS6333682A (en) Ultrasonic sensor
JPS6227681A (en) Hearing doppler detection circuit for fm transmission
JPH02223885A (en) Moving object detector
JPH01307685A (en) Ultrasonic switch
JPH0383197A (en) Ultrasonic alarm
JPH0255185U (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term