JPH0327788A - Dynamic brake for brushless synchronous motor - Google Patents

Dynamic brake for brushless synchronous motor

Info

Publication number
JPH0327788A
JPH0327788A JP1156778A JP15677889A JPH0327788A JP H0327788 A JPH0327788 A JP H0327788A JP 1156778 A JP1156778 A JP 1156778A JP 15677889 A JP15677889 A JP 15677889A JP H0327788 A JPH0327788 A JP H0327788A
Authority
JP
Japan
Prior art keywords
braking
motor
brushless synchronous
synchronous motor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1156778A
Other languages
Japanese (ja)
Inventor
Shigeru Kurauchi
倉内 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1156778A priority Critical patent/JPH0327788A/en
Publication of JPH0327788A publication Critical patent/JPH0327788A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively brake a motor in a motor low speed rotating range without necessity of a mechanical unit at a motor shaft by adding a device for consuming generating energy of a brushless synchronous motor to an inverter for driving the motor. CONSTITUTION:When a braking transistor 6 ia turned ON by a brake controller 9, 3-phase induction voltages are three-phase full-wave rectified by flywheel diodes DX-DZ and rectifying diodes DX'-DZ'. Further, a braking resistor 5 consumes as thermal energy due to the flow of a current by a full-wave rectified voltage. Accordingly, since a deceleration torque is consumed as generating energy via the resistor, braking time can be shortened as compared with the case in which it is stopped only by mechanical loss.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ブラシレス同期モータに係り、特にブラシレ
ス同期モータ減速時の時間短縮に好適な制動装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a brushless synchronous motor, and particularly to a braking device suitable for shortening the time during deceleration of a brushless synchronous motor.

〔従来の技術〕[Conventional technology]

ブラシレス同期モータの制動に関しては、文献ブラシレ
スサーボモータの基礎と応用、第200頁から第203
頁に記載のように、モータの軸に外部から摩擦力を与え
制動を行う摩擦ブレーキや、モータの軸に導電性の円筒
を直結し、別に設けた励磁コイルに直流電流を流し、磁
束を発生させ、この磁束の中を、前述の円筒が回転する
と円筒の各部に渦電流が発生し、その電磁力によって制
動力が生じる渦電流ブレーキや、前記渦電流ブレーキに
おいて用いた導電性の円板にヒステリシス材を用いたヒ
ステリシスブレーキや、モータを無負荷速度以上に回転
させた時に、モータは発電機として電力を発生し、この
電力を電源へ回生することによりモータをブレーキとし
て使用する回生制動がある. 〔発明が解決しようとするlI題〕 上記従来技術は、制動を行うためにモータ軸に機械的装
置が必要であったり、発電したエネルギを電源に回生ず
る装置が必要となり、前者に対しては高速回転軸や、空
中浮上回転軸の場合には、制動装置の設置が困難であり
、また後者に対しては、低速回転領域で制動力が弱く、
両者に対しては、それぞれ特別の装置が必要となり高価
になるという問題点があった。
Regarding the braking of brushless synchronous motors, see the literature Basics and Applications of Brushless Servo Motors, pages 200 to 203.
As described on the page, there are friction brakes that apply external frictional force to the motor shaft to perform braking, and a conductive cylinder that is directly connected to the motor shaft and a DC current passed through a separate excitation coil to generate magnetic flux. When the above-mentioned cylinder rotates in this magnetic flux, eddy currents are generated in each part of the cylinder, and the electromagnetic force generates braking force in the eddy current brake and the conductive disk used in the eddy current brake. There are hysteresis brakes that use hysteresis materials, and regenerative braking in which when the motor rotates above the no-load speed, the motor generates electricity as a generator, and this electricity is regenerated to the power source to use the motor as a brake. .. [Problem to be solved by the invention] The above conventional technology requires a mechanical device on the motor shaft to perform braking, or a device that regenerates the generated energy into a power source. It is difficult to install a braking device in the case of a high-speed rotating shaft or a floating rotating shaft, and for the latter, the braking force is weak in the low-speed rotating region.
Both methods have the problem that they require special equipment and are expensive.

本発明の目的は、制動を行うためにモータ軸に機械的な
装置を必要とせず,モータ低速回転領域で安価に制動を
行うためのブラシレス同期モータの制動装置を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a braking device for a brushless synchronous motor that does not require a mechanical device on the motor shaft to perform braking and can perform braking at low cost in a low-speed motor rotation range.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、ブラシレス同期モータを駆動するインバー
タ装置に、ブラシレス同期モータの発電エネルギを消費
する装置を付加することにより達威される。
The above object can be achieved by adding a device that consumes the energy generated by the brushless synchronous motor to an inverter device that drives the brushless synchronous motor.

〔作用〕[Effect]

ブラシレス同期モータは、ロータが永久磁石で構戊され
ており.ロータがフリーランしている場合には、ステー
タコイルに電圧を誘起する。これを誘起電圧といい,3
相モータ場合,3相の正弦波電圧となる。また、制動制
御回路は、モータ回転数が制動回転数になったことを判
定するものである。整流回路は、この3相の誘起電圧を
整流し、直流に変換するためのものである。前記整流回
路によって整流された誘起電圧すなわち、発電エネギを
抵抗によって熱として消費し、モータロータの回転エネ
ルギを熱エネルギに変換することによリ、制動力を得る
ことができる。
A brushless synchronous motor has a rotor made of permanent magnets. When the rotor is free running, it induces a voltage in the stator coil. This is called induced voltage, and 3
In the case of a phase motor, the voltage is a three-phase sine wave voltage. Further, the braking control circuit determines whether the motor rotation speed has reached the braking rotation speed. The rectifier circuit rectifies this three-phase induced voltage and converts it into direct current. Braking force can be obtained by consuming the induced voltage rectified by the rectifier circuit, that is, the generated energy, as heat through the resistance, and converting the rotational energy of the motor rotor into thermal energy.

〔実施例〕〔Example〕

以下本発明の一実施例を図面を用いて説明する.第1図
は、インバータ部トランジスタを、制動回路及びその制
御回路の全体構或図である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the overall structure of an inverter transistor, a braking circuit, and its control circuit.

第1図において、1はブラシレス同期モータ,2は、イ
ンバータで、トランジスタQU−QZ、及びフライホイ
ールダイオードDU−DZより成る.3は整流ダイオー
ドでDX’〜DZ’より成る.5は、制動抵抗で,モー
タからの発電エネルギを消費する.6は,制動トランジ
スタで、前記制動抵抗5を入切する.7はロータ位置検
出回路で、モータロータの周波数及び位相を検出する回
路である。8は速度制御回路で,ブラシレス同期モータ
1の回転速度を制御する回路である.9は制動制御回路
で、前記速度制御回路8からの速度信号により,制動回
転数を判定し、前記制動トランジスタ6をオンさせる回
路である. 第2図は、ブラシレス同期モータ1の誘起電圧波形で、
モータが三相のため,三相正弦波となる。
In FIG. 1, 1 is a brushless synchronous motor, and 2 is an inverter, consisting of transistors QU-QZ and flywheel diodes DU-DZ. 3 is a rectifier diode consisting of DX' to DZ'. 5 is a braking resistor that consumes the energy generated by the motor. 6 is a braking transistor that turns the braking resistor 5 on and off. 7 is a rotor position detection circuit, which is a circuit for detecting the frequency and phase of the motor rotor. 8 is a speed control circuit, which is a circuit that controls the rotation speed of the brushless synchronous motor 1. Reference numeral 9 denotes a braking control circuit, which determines the braking rotational speed based on the speed signal from the speed control circuit 8 and turns on the braking transistor 6. Figure 2 shows the induced voltage waveform of the brushless synchronous motor 1.
Since the motor is three-phase, it is a three-phase sine wave.

第3図は,制動回路の全体構成で、第l図の制動に係る
部分である. 第1図において、ブラシレス同期モータ1を減速させた
場合に,ロータ位置検出回路7及び速度制御回路8から
モータ回転速度を求め、速度信号とする。制動制御回路
9では前記速度信号から制動開始回転数になったことを
判定し,制動トランジスタ6にオン信号を与える. 以下,制動回路の動作を第2図及び第3図を用いて説明
する。
Figure 3 shows the overall configuration of the braking circuit, and shows the part related to braking in Figure 1. In FIG. 1, when the brushless synchronous motor 1 is decelerated, the motor rotation speed is determined from the rotor position detection circuit 7 and the speed control circuit 8, and is used as a speed signal. The braking control circuit 9 determines from the speed signal that the braking starting rotation speed has been reached, and provides an on signal to the braking transistor 6. The operation of the braking circuit will be explained below with reference to FIGS. 2 and 3.

ブラシレス同期モータ1は,ロータが永久磁石で構或さ
れているため,フリーランすると、第2図に示す様な三
和正弦波電圧を発生する。この電圧の振幅及び周波数は
モータ回転数に比例し、モータ回転数が高くなると振幅
も大きく、また周波数も高くなる。従って第3図に示す
様に三相電源と考えることができる。ここで、制動制御
回路9により,制動トランジスタ6をオンすると,三和
誘起電圧は、フライホイールダイオードDX〜DZ及び
,整流ダイオードDX’〜DZ’によリ三相全波整流さ
れ、第4図に示す全波整流波形となり、制動抵抗5には
その抵抗値と、全波整流電圧により電流が流れることに
より、制動抵抗5によって熱エネルギとして消費する.
ここで、制動抵抗5の抵抗値をR、モータロータの貫性
モーメントをJ、モータ誘起電圧係数をKω、モータ制
動開始角速度をωH、減速角速度をωLとすれば、制動
トルクでは下記となる。
Since the brushless synchronous motor 1 has a rotor made of a permanent magnet, when free running, it generates a triwa sine wave voltage as shown in FIG. The amplitude and frequency of this voltage are proportional to the motor rotation speed, and the higher the motor rotation speed, the larger the amplitude and the higher the frequency. Therefore, it can be considered as a three-phase power supply as shown in FIG. Here, when the braking transistor 6 is turned on by the braking control circuit 9, the Sanwa induced voltage is three-phase full-wave rectified by the flywheel diodes DX to DZ and the rectifying diodes DX' to DZ', as shown in FIG. A full-wave rectified waveform is obtained as shown in FIG. 2, and a current flows through the braking resistor 5 according to its resistance value and the full-wave rectified voltage, and is consumed as thermal energy by the braking resistor 5.
Here, if the resistance value of the braking resistor 5 is R, the penetrating moment of the motor rotor is J, the motor induced voltage coefficient is Kω, the motor braking start angular velocity is ωH, and the deceleration angular velocity is ωL, then the braking torque is as follows.

τ=−Jdω/dtより Ka・(Ll”/(RX(&))=−J d ω/d 
t従って、 d t=−J − R/(Kω2・ω)Xdωとなり、
上式を積分すれば制動時間Tは、T=−J aR/K(
1)”X 12n(ωo/ωL)となる。機械損失のみ
による減速時間をT′とすレハ、T’ −Tがこの制動
回路を付加しことによって短縮される時間である。
From τ=-Jdω/dt, Ka・(Ll”/(RX(&))=-J dω/d
t Therefore, d t=-J − R/(Kω2・ω)Xdω,
By integrating the above equation, the braking time T is calculated as T=-J aR/K(
1)"X 12n (ωo/ωL). Let T' be the deceleration time due to mechanical loss only, and T' - T is the time shortened by adding this braking circuit.

第5図は、第1図の制動回路を構或する制動トランジス
タを機械式接点に置き換えたものであり、インバータ部
トランジハタを含む主回路と制御回路の絶縁が容易であ
る. 第6図は、第l図の制動回路に、過電流・過負荷保護器
を設けたもので、制動抵抗に流れる電流が過電流になっ
た場合や、発電エネルギーが大きくなり、制動抵抗が過
負荷状態になった場合に、制動回路の保護を行うもので
ある。
In FIG. 5, the braking transistors constituting the braking circuit in FIG. 1 are replaced with mechanical contacts, and it is easy to isolate the main circuit including the inverter section transistor from the control circuit. Figure 6 shows the braking circuit shown in Figure 1 with an overcurrent/overload protector installed in case the current flowing through the braking resistor becomes an overcurrent or the generated energy increases and the braking resistor becomes overloaded. This protects the braking circuit in the event of a load condition.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、減速トルクを制動抵抗により発電エネ
ルギとして消費するため、機械損失のみで停止する場合
よりも制動時間を短縮できる。また、本発明による制動
回路はブラシレス同期モータを駆動するインバータ装置
内部に構成でき、かつ制動抵抗の入切を制御するため、
構或が簡単に安価にできる. また、ターボ形真空ポンプ等の高速回転体に用いた場合
、特に今後電磁軸受等の非接触軸受を用いた場合に、摩
擦損失は極めて少なく、またロータ部も真空中にあるた
め空気との摩擦損失もない。
According to the present invention, since the deceleration torque is consumed as generated energy by the braking resistance, the braking time can be shortened compared to the case where the vehicle stops due to mechanical loss alone. Further, the braking circuit according to the present invention can be configured inside an inverter device that drives a brushless synchronous motor, and in order to control the on/off of the braking resistor,
The structure can be easily and inexpensively constructed. In addition, when used in high-speed rotating bodies such as turbo-type vacuum pumps, especially when non-contact bearings such as electromagnetic bearings are used in the future, friction loss is extremely small, and since the rotor is in a vacuum, there is no friction with the air. No loss.

このため、機械的な制動装置の設置は非常に困難である
が、本発明によれば、機械的な機構は一切必要としない
ので構造が簡単にできる。
Therefore, it is very difficult to install a mechanical braking device, but according to the present invention, the structure can be simplified because no mechanical mechanism is required.

さらに制動抵抗の抵抗値の大きさ,容量を変えることに
より制動力を可変することができる。
Furthermore, the braking force can be varied by changing the resistance value and capacity of the braking resistor.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係わる説明図で、第1図は、ブラシレス
同期モータの制動回路を含むインバータの全体構或図、
第2図は、三和誘起電圧波形図、第3図は、制動回路の
構或図、第4図は、三和誘起電圧の全波整流波形図、第
5図,第6図は、制動回路の構或図である。 l・・・ブラシレス同期モータ、2・・・インバータ部
トランジスタ、3・・・整流ダイオード、5・・・制動
抵抗、罵 Z 図 罵 3 図 葛 4 困 第 5 図 篤 6 図
The drawings are explanatory diagrams related to the present invention, and FIG. 1 is a diagram showing the overall structure of an inverter including a braking circuit for a brushless synchronous motor;
Fig. 2 is a Sanwa induced voltage waveform diagram, Fig. 3 is a diagram of the structure of the braking circuit, Fig. 4 is a full-wave rectified waveform diagram of Sanwa induced voltage, and Figs. 5 and 6 are braking circuit diagrams. It is a diagram showing the structure of a circuit. l: Brushless synchronous motor, 2: Inverter transistor, 3: Rectifier diode, 5: Braking resistor, Z Figure 3 Figure 4 Figure 5 Figure Atsushi 6 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、ブラシレス同期モータにおいて、モータ制動回転数
を判定する手段と、モータ逆起電圧を整流する手段と、
モータ発電エネルギを消費するための手段を備えたこと
を特徴とするブラシレス同期モータの発電制動装置。
1. In a brushless synchronous motor, a means for determining a motor braking rotation speed, a means for rectifying a motor back electromotive voltage,
A dynamic braking device for a brushless synchronous motor, characterized by comprising means for consuming energy generated by the motor.
JP1156778A 1989-06-21 1989-06-21 Dynamic brake for brushless synchronous motor Pending JPH0327788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1156778A JPH0327788A (en) 1989-06-21 1989-06-21 Dynamic brake for brushless synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1156778A JPH0327788A (en) 1989-06-21 1989-06-21 Dynamic brake for brushless synchronous motor

Publications (1)

Publication Number Publication Date
JPH0327788A true JPH0327788A (en) 1991-02-06

Family

ID=15635109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1156778A Pending JPH0327788A (en) 1989-06-21 1989-06-21 Dynamic brake for brushless synchronous motor

Country Status (1)

Country Link
JP (1) JPH0327788A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418518B1 (en) * 1997-01-14 2004-04-17 페어차일드코리아반도체 주식회사 Peaking preventing circuit for motor driver ic
EP1418664A2 (en) * 2002-11-08 2004-05-12 Arnold Müller GmbH & Co. KG Synchronmotor
JP2006205722A (en) * 2004-12-28 2006-08-10 Shonan Plastic Mfg Co Ltd Apparatus for inverting lining material
JP2007124728A (en) * 2005-10-25 2007-05-17 Shinano Kenshi Co Ltd Motor driving circuit
US10479577B2 (en) 2015-02-23 2019-11-19 Printpack Illinois, Inc. Printed multilayer polymeric films and methods of manufacture and use thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418518B1 (en) * 1997-01-14 2004-04-17 페어차일드코리아반도체 주식회사 Peaking preventing circuit for motor driver ic
EP1418664A2 (en) * 2002-11-08 2004-05-12 Arnold Müller GmbH & Co. KG Synchronmotor
EP1418664A3 (en) * 2002-11-08 2005-10-12 AMK Arnold Müller GmbH & Co.KG Synchronmotor
JP2006205722A (en) * 2004-12-28 2006-08-10 Shonan Plastic Mfg Co Ltd Apparatus for inverting lining material
JP2007124728A (en) * 2005-10-25 2007-05-17 Shinano Kenshi Co Ltd Motor driving circuit
US10479577B2 (en) 2015-02-23 2019-11-19 Printpack Illinois, Inc. Printed multilayer polymeric films and methods of manufacture and use thereof

Similar Documents

Publication Publication Date Title
US5149998A (en) Eddy current drive dynamic braking system for heat reduction
US5659231A (en) Brake for DC brushless motor
JPS61199442A (en) Motor and power tool
WO2012042278A2 (en) Electromechanical device
TW200945739A (en) Generator-brake integration type rotating machine
Fu et al. Investigation of operational characteristics and efficiency enhancement of an ultrahigh-speed bearingless motor at 100 000 r/min
EP3349339A1 (en) Rotary electric machine, rotary electric machine system, and machine
KR20090124687A (en) Magnetorheological fluid break control system
Fu et al. Investigation of efficiency enhancement of an ultra-high-speed bearingless motor at 100,000 r/min by high switching frequency using SiC-MOSFET
JPH0327788A (en) Dynamic brake for brushless synchronous motor
JP5063822B1 (en) Non-sinusoidal drive motor
MX2008007964A (en) Method for detecting a malfunction in an electromagnetic retarder.
Awari et al. Speed control and electrical braking of axial flux BLDC motor
WO2005051717A2 (en) Electromagnetic retarder system and method
JP2005080450A (en) Concentrated winding rotating electric machine system, and actuator and brake system using it
An et al. Loss measurement of a 30 kW high speed permanent magnet synchronous machine with active magnetic bearings
JPH0147110B2 (en)
JPH0717271Y2 (en) Eddy current type retarder
SU1561163A1 (en) Contactless asynchronized thyratron m-phase electric motor
SU1728959A1 (en) Electric machine assembly for production of constant frequency and voltage under variable rotary speed of primary engine
JPH10146088A (en) Driver of polisher
JPS58159647A (en) Generator
JPH03284149A (en) Electromagnetic rotating machine
JP3134168B2 (en) Phase rotation detection method of three-phase induction machine
JPH0474956B2 (en)