JPH03277854A - Continuously variable transmission - Google Patents

Continuously variable transmission

Info

Publication number
JPH03277854A
JPH03277854A JP2078286A JP7828690A JPH03277854A JP H03277854 A JPH03277854 A JP H03277854A JP 2078286 A JP2078286 A JP 2078286A JP 7828690 A JP7828690 A JP 7828690A JP H03277854 A JPH03277854 A JP H03277854A
Authority
JP
Japan
Prior art keywords
shaft
electric motor
output shaft
torque
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2078286A
Other languages
Japanese (ja)
Inventor
Shinji Nishimura
慎二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2078286A priority Critical patent/JPH03277854A/en
Publication of JPH03277854A publication Critical patent/JPH03277854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structure Of Transmissions (AREA)

Abstract

PURPOSE:To obtain the above continuously variable transmission having the superior transmission efficiency and high reliability by installing a power generator on the third shaft, installing an electric motor on an output shaft and electrically connecting the power generator with the electric motor. CONSTITUTION:The power supplied on an input shaft 1 is distributed to an input shaft 7 and the third shaft respectively by a differential gear mechanism 6, and since a power generator 8 is installed on the third shaft, and an electric motor 9 is installed on the output shaft 7, the power generator 8 acts as the load for the third shaft, and applies a reaction torque on the output shaft 7. Further, the electric motor 9 generates a torque because of the electric connection with the power generator 8. Accordingly, the added torque of the torque of the electric motor 9 and the reaction torque of the power generator 8 is generated on the output shaft 7, and speed change can be carried out automatically according to the magnitude of the load applied on the output shaft.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、差動歯車機構を用いた無段変速装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a continuously variable transmission using a differential gear mechanism.

[従来の技術] 従来、例えば特開昭63−266251号公報に記載さ
れているように、入力軸の回転を遊星歯車la構により
第2軸および第3軸の回転に分岐し、これら第2軸およ
び第3軸の相互間に回転方向の圧接力を加えてそれぞれ
のトルクを平均化させるとともに、第2軸および第3軸
に分岐させた回転を差動歯車機構で合流させて、これを
出力軸に取り出すようにした歯車式の無段変速装置が知
られている。このような無段変速装置によれば、出力軸
に加えられた負荷の大小に応じて任意の出力回転速度を
得ることができる。
[Prior Art] Conventionally, as described in, for example, Japanese Patent Application Laid-Open No. 63-266251, rotation of an input shaft is divided into rotation of a second shaft and a third shaft by a planetary gear la structure, and these second Pressure contact force in the rotational direction is applied between the shaft and the third shaft to average their respective torques, and the rotations branched to the second and third shafts are combined by a differential gear mechanism, and this is A gear-type continuously variable transmission device in which the output shaft is connected to the output shaft is known. According to such a continuously variable transmission, an arbitrary output rotational speed can be obtained depending on the magnitude of the load applied to the output shaft.

[発明が解決しようとする課題] ところが、上記従来の無段変速装置においては、第2軸
と第3軸相互間の圧接力を用いて出力軸の回転速度また
は威速比を変化させるよう構成されているため、この圧
接部にすべりが生じてしまうという問題があった。そし
て、このすべりによりトルク損失が生じ、これが入出力
軸間の伝達効率の低下を引き起こすという不具合があっ
た。また、このようなすべりにより装置が摩耗するため
、これが装置の耐久性を著しく低下させる原因となって
いた。
[Problem to be Solved by the Invention] However, the conventional continuously variable transmission described above is configured to change the rotational speed or the power speed ratio of the output shaft using the pressure contact force between the second shaft and the third shaft. As a result, there was a problem in that slippage occurred at this press-contact portion. This slippage causes torque loss, which causes a reduction in transmission efficiency between the input and output shafts. Furthermore, such slippage causes wear of the device, which causes a significant decrease in the durability of the device.

この発明は、上記のような問題点を解決するためになさ
れたものであって、伝達効率が良く、しかも、信頼性の
高い無段変速装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to obtain a continuously variable transmission device that has good transmission efficiency and high reliability.

[課題を解決するための手段] この発明にかかる無段変速装置は、入力軸および出力軸
の回転速度により回転速度が一義的に定まる第3軸を有
し、入力軸に加えられた動力を出力軸および第3軸にそ
れぞれ分岐させる差動歯車機構を備えた無段変速装置に
おいて、第3軸に発電機を設けるとともに出力軸に電動
機を設け、発電機と電動機とを電気的に接続したもので
ある。
[Means for Solving the Problems] The continuously variable transmission according to the present invention has a third shaft whose rotational speed is uniquely determined by the rotational speeds of the input shaft and the output shaft, and has a third shaft whose rotational speed is uniquely determined by the rotational speed of the input shaft and the output shaft. In a continuously variable transmission equipped with a differential gear mechanism that branches into an output shaft and a third shaft, a generator is provided on the third shaft, an electric motor is provided on the output shaft, and the generator and the electric motor are electrically connected. It is something.

[作用] この発明においては、入力軸に加えられた動力が差動歯
車機構によって出力軸および第3軸にそれぞれ分岐され
るとともに、この第3軸に発電機が、出力軸に電動機が
それぞれ設けられていることによって、この発電機が第
3軸の負荷となって出力軸に反作用トルクを与える。ま
た、発電機と電気的に接続されたことによって電動機が
トルクを発生する。したがって、出力軸には上記電動機
のトルクと発電機の反作用トルクとの加算トルクが生じ
、出力軸に加えられた負荷の大小に応じて自動的に変速
が可能となる。
[Function] In this invention, the power applied to the input shaft is branched to the output shaft and the third shaft by the differential gear mechanism, and the third shaft is provided with a generator, and the output shaft is provided with an electric motor. As a result, this generator acts as a load on the third shaft and provides a reaction torque to the output shaft. Further, the electric motor generates torque by being electrically connected to the generator. Therefore, an additional torque of the torque of the electric motor and the reaction torque of the generator is generated on the output shaft, and the speed can be automatically changed depending on the magnitude of the load applied to the output shaft.

[実施例] 実施例を示す断面図である。[Example] It is a sectional view showing an example.

この実施例において、図示しない機関に連結された入力
軸(1)の軸端にはサンギア(2)が固定され、このサ
ンギア(2)には、周囲に複数個のプラネタリギア(3
)が噛み合わせられている。
In this embodiment, a sun gear (2) is fixed to the shaft end of an input shaft (1) connected to an engine (not shown), and this sun gear (2) has a plurality of planetary gears (3
) are interlocked.

上記入力軸(1)には、プラネタリギア(3)の公転運
動を支持するキャリア(4)が回転自在に支持されてお
り、また、プラネタリギア(3)の外周には、該プラネ
タリギア(3)と噛み合うインターナルギア(5)が入
力軸(1)と同心に配設されている。そして、これらサ
ンギア(2)。
A carrier (4) that supports the revolving motion of a planetary gear (3) is rotatably supported on the input shaft (1), and a carrier (4) that supports the orbital movement of a planetary gear (3) is rotatably supported on the input shaft (1). ) is disposed concentrically with the input shaft (1). And these Sangiya (2).

プラネタリギア(3)、キャリア(4)およびインター
ナルギア(5)に上り差動歯車列(6)が構成されてい
る。また、上記インターナルギア(5)は、入力軸(1
)と同軸上の位置に配置された出力軸(7)に固定され
ていて、この出力軸(7)には負荷(図示せず。)が接
続されている。
The planetary gear (3), the carrier (4), and the internal gear (5) constitute an upward differential gear train (6). Further, the internal gear (5) is connected to the input shaft (1
), and a load (not shown) is connected to the output shaft (7).

キャリア(4)には発電機(8)が取り付けられ、一方
、出力軸(7)には電動機(9)が取り付けられ、これ
ら発電機(8)および電動機(9)間は接続線(10)
により電気的に接続されている。
A generator (8) is attached to the carrier (4), while an electric motor (9) is attached to the output shaft (7), and a connection line (10) is connected between the generator (8) and the electric motor (9).
electrically connected.

この実施例によれば、図示しない機関により入力軸(1
)が例えば反時計方向に回転駆動されると、この入力軸
(1)に固定されたサンギア(2)も同様に反時計方向
に回転する。このとき、出力軸(7)に負荷が接続され
ていると、インターナルギア(5)の回転が抑止される
ため、サンギア(2)に噛合しているプラネタリギア(
3)がサンギア(2)の周りを公転し、これによりキャ
リア(4)が反時計方向に回転する。このキャリア(4
)の回転によって、該キャリア(4)に取り付けられて
いる発電機(8)が発電を開始し、キャリア(4)に対
し反作用として時計方向のトルクが生じることとなる。
According to this embodiment, the input shaft (1
) is rotated counterclockwise, for example, the sun gear (2) fixed to this input shaft (1) also rotates counterclockwise. At this time, if a load is connected to the output shaft (7), the rotation of the internal gear (5) is inhibited, so the planetary gear (
3) revolves around the sun gear (2), which causes the carrier (4) to rotate counterclockwise. This carrier (4
), the generator (8) attached to the carrier (4) starts generating electricity, and a clockwise torque is generated as a reaction to the carrier (4).

そして、サンギア(2)の反時計方向のトルクとキャリ
ア(4)の時計方向のトルクにより、インターナルギア
(5)に時計方向のトルクが生じる。一方、上記発電機
(8)の発電出力は接続線(10)を経て電動機(9)
に供給され、電動機(9)も時計方向のトルクが発生ず
る。したがって、出力軸(7)には、時計方向に発電機
(8)の反作用トルクと電動機(9)のトルクとの加算
トルクが生じる。このとき、この加算トルクが、出力軸
(7)に接続された上記負荷のトルクより大きければ出
力軸(7)が時計方向に回転を始める。その結果、キャ
リア(4)の回転速度が減少して発電機(8)の出力が
低下し、これにより、電動機(9)の出力も低下し、出
力軸(7)に生じるトルクも減少することとなる。
Clockwise torque is generated in the internal gear (5) by the counterclockwise torque of the sun gear (2) and the clockwise torque of the carrier (4). On the other hand, the generated output of the generator (8) is transmitted to the electric motor (9) via the connection line (10).
The electric motor (9) also generates clockwise torque. Therefore, an additional torque of the reaction torque of the generator (8) and the torque of the electric motor (9) is generated in the output shaft (7) in a clockwise direction. At this time, if this additional torque is larger than the torque of the load connected to the output shaft (7), the output shaft (7) starts rotating clockwise. As a result, the rotational speed of the carrier (4) decreases and the output of the generator (8) decreases, which causes the output of the electric motor (9) to also decrease and the torque generated at the output shaft (7) to decrease. becomes.

この実施例において、入力軸(りと出力軸(7)間の動
力伝達に関しては次式が成り立つ。すなわち、いま、入
力軸(1)に回転速度N1.トルりT1の動力が加わっ
た場合、キャリア(4)の回転速度をN3.出力軸(7
)の回転速度をN!とすると、 N、−−N*(1/k) 十Ns((1+k)/k)但
し、k−(サンギアの歯数)/(インターナルギアの歯
数)である。
In this embodiment, the following equation holds regarding power transmission between the input shaft (1) and the output shaft (7). That is, if power of rotational speed N1 and torque T1 is now applied to the input shaft (1), The rotation speed of the carrier (4) is set to N3.
) rotation speed is N! Then, N, --N*(1/k) 10Ns ((1+k)/k) where k-(number of teeth of sun gear)/(number of teeth of internal gear).

また、キャリア(4)に加わるトルクT、は、発電機(
8)の発電出力をW1発電効率をη6とすると、 N s T 3ηc=W  または T 3−W / 
N 3η6で与えられる。T、とT、を用いればインタ
ーナルギア(5)に作用するトルクT t ’は、TI
+Tt’ −T3  または Tt −T3〜T1で与
えられる。
Moreover, the torque T applied to the carrier (4) is the generator (
8), when the power generation output is W1 and the power generation efficiency is η6, N s T 3ηc=W or T 3−W /
It is given by N 3η6. T, and T, the torque T t ' acting on the internal gear (5) is TI
It is given by +Tt' -T3 or Tt -T3~T1.

さらに、上記発電出力Wを電動機(9)へ入力したとき
、電動機(9)に発生するトルクT、4は、電動機効率
をη8として、 W−T、1NtrJHまたは T N = W / N
 2 y7 Nとなる。
Furthermore, when the above power generation output W is input to the electric motor (9), the torque T,4 generated in the electric motor (9) is expressed as W-T,1NtrJH or T N = W/N, where the electric motor efficiency is η8.
2 y7 N.

また、出力軸(7)に加わるトルクT、は、上記発電機
(8)の反作用によるインターナルギア(5)に作用す
るトルクT、′と上記電動機(9)の発生するトルクT
Nとの和、すなわち、’1’ ! = T !’ + 
T xで表わされる。
Furthermore, the torque T applied to the output shaft (7) is the torque T,' acting on the internal gear (5) due to the reaction of the generator (8), and the torque T generated by the electric motor (9).
The sum with N, that is, '1'! = T! '+
It is expressed as T x.

上記のような、差動歯車列(6)を用いることによって
、入力軸(1)の回転速度N、が一定であっても、キャ
リア(4)の回転速度N、を自由に選ぶことができ、無
段変速が可能となる。そして、その場合、キャリア(4
)の回転とトルクは、発電機(8)により電気エネルギ
ーに変換されて電動機(9)を駆動するため、動力伝達
効率の低下を抑えることができる。なお、動力伝達効率
ηは次式で表わされる。
By using the differential gear train (6) as described above, even if the rotation speed N of the input shaft (1) is constant, the rotation speed N of the carrier (4) can be freely selected. , continuously variable speed is possible. And in that case, carrier (4
) rotation and torque are converted into electrical energy by the generator (8) to drive the electric motor (9), so it is possible to suppress a decrease in power transmission efficiency. Note that the power transmission efficiency η is expressed by the following formula.

η−N 、T 、/N 、T 。η-N, T, /N, T.

−1N5Ts(1−ηcηN)/N+T+上記実施例に
おいては、差動歯車列(6)におけるサンギア(2)を
入力軸に、インターナルギア(5)を出力軸(電動機軸
)に、また、キャリア(4)を発電機軸にそれぞれ接続
するよう構成したが、これらの対応関係は、上記を含め
、以下の表に示すように種々の組み合わせを採用するこ
とが可能である。
-1N5Ts(1-ηcηN)/N+T+In the above embodiment, the sun gear (2) in the differential gear train (6) is used as the input shaft, the internal gear (5) is used as the output shaft (motor shaft), and the carrier ( 4) are respectively connected to the generator shaft, but various combinations of these correspondences including the above can be adopted as shown in the table below.

また、上記実施例においては、発電機を差動歯車列のキ
ャリアに直結し、また、電動機を出力軸に直結するよう
構成したが、これらは直結である必要はなく、キャリア
と発電機の間、また、出力軸と電動機の間に適当な減速
機や増速機を介してもよい。
Furthermore, in the above embodiment, the generator is directly connected to the carrier of the differential gear train, and the electric motor is directly connected to the output shaft. Furthermore, an appropriate speed reducer or speed increaser may be interposed between the output shaft and the electric motor.

また、上記発電機としては、同期発電機、直流発電機、
誘導発電機等を、一方、電動機としては、直流電動機、
誘導電動機、ブランレスDCモータ等を用い、これらを
適宜組み合わせることができる。
In addition, the above-mentioned generators include a synchronous generator, a DC generator,
Induction generators, etc., while electric motors include DC motors,
An induction motor, a branless DC motor, etc. can be used and these can be combined as appropriate.

また、発電機と電動機との接続線には、例えば、整流回
路やインバータ回路等発電機および電動機に必要な回路
や、あるいは、DC−DCコンバータのような、これら
の特性の改善に役立つ回路等の電力変換回路を介在させ
てもよい。
In addition, the connection line between the generator and the motor may include circuits necessary for the generator and motor, such as a rectifier circuit or an inverter circuit, or circuits that help improve these characteristics, such as a DC-DC converter. A power conversion circuit may also be provided.

さらに、発電機出力の一部もしくは全部を他の電気負荷
に供給するようにしてもよい。また、上記接続線に他の
電踪を接続することもできる。例えば、これにバッテリ
を接続すると、出力軸に接続された負荷が小さい時にバ
ッテリに電気エネルギを蓄え、負荷が大きくなった時に
発電機出力とバッテリ出力の合計出力で電動機を駆動す
ることができる。
Furthermore, part or all of the generator output may be supplied to other electrical loads. Further, other electric wires can be connected to the above connection line. For example, if a battery is connected to this, electrical energy can be stored in the battery when the load connected to the output shaft is small, and when the load becomes large, the motor can be driven with the total output of the generator output and battery output.

[発明の効果コ 以上のようにこの発明によれば、入力軸に加えられた動
力が差動歯車機構によって出力軸および第3軸にそれぞ
れ分岐されるとともに、第3軸に発電機が、出力軸に電
動機がそれぞれ設けられ、発電出力を電動機に供給する
よう構成したので、伝達効率の良い、信頼性の高い無段
変速機を得ることができる。
[Effects of the Invention] As described above, according to the present invention, the power applied to the input shaft is branched to the output shaft and the third shaft by the differential gear mechanism, and the generator is connected to the third shaft to generate the output. Since the shafts are each provided with an electric motor and the generated output is supplied to the electric motors, it is possible to obtain a highly reliable continuously variable transmission with good transmission efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

剰 − 図は−の発明による無段変速装置の一実施例を示す断面
図である。 図において、(1)は入力軸、(6)は差動歯車列、(
7)は出力軸、(8)は発電機、(9)は電動機、(l
O)は接続線である。
The figure is a sectional view showing an embodiment of a continuously variable transmission according to the invention of -. In the figure, (1) is the input shaft, (6) is the differential gear train, (
7) is the output shaft, (8) is the generator, (9) is the electric motor, (l
O) is a connecting line.

Claims (1)

【特許請求の範囲】[Claims] (1)入力軸および出力軸の回転速度により回転速度が
一義的に定まる第3軸を有し、前記入力軸に加えられた
動力を前記出力軸および前記第3軸にそれぞれ分岐させ
る差動歯車機構を備えた無段変速装置において、前記第
3軸に発電機を設けるとともに前記出力軸に電動機を設
け、前記発電機と前記電動機とを電気的に接続したこと
を特徴とする無段変速装置。
(1) A differential gear having a third shaft whose rotational speed is uniquely determined by the rotational speed of the input shaft and the output shaft, and which branches the power applied to the input shaft to the output shaft and the third shaft, respectively. A continuously variable transmission equipped with a mechanism, characterized in that a generator is provided on the third shaft, an electric motor is provided on the output shaft, and the generator and the electric motor are electrically connected. .
JP2078286A 1990-03-26 1990-03-26 Continuously variable transmission Pending JPH03277854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2078286A JPH03277854A (en) 1990-03-26 1990-03-26 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2078286A JPH03277854A (en) 1990-03-26 1990-03-26 Continuously variable transmission

Publications (1)

Publication Number Publication Date
JPH03277854A true JPH03277854A (en) 1991-12-09

Family

ID=13657711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2078286A Pending JPH03277854A (en) 1990-03-26 1990-03-26 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JPH03277854A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11170881A (en) * 1997-12-10 1999-06-29 Nissan Motor Co Ltd Running assist device for vehicle
US6537169B1 (en) 1999-10-04 2003-03-25 Masaru Morii Automatic transmission for vehicles
JP2010510452A (en) * 2006-11-20 2010-04-02 ヤナイ,ジョセフ Continuously variable transmission based planetary gear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11170881A (en) * 1997-12-10 1999-06-29 Nissan Motor Co Ltd Running assist device for vehicle
US6537169B1 (en) 1999-10-04 2003-03-25 Masaru Morii Automatic transmission for vehicles
JP2010510452A (en) * 2006-11-20 2010-04-02 ヤナイ,ジョセフ Continuously variable transmission based planetary gear

Similar Documents

Publication Publication Date Title
US7645205B2 (en) Electrically-variable transmission with two differential gear sets
JP3214368B2 (en) Power output device
JP3578451B2 (en) Drive
US7416501B2 (en) Single range electrically variable transmission with lockup clutch and method of operation
US7427252B2 (en) Electrically variable transmission with input split mode and compound split modes
US7892128B2 (en) Hybrid electric vehicle and powertrain
US7276005B2 (en) Wheel drive system for independently driving right and left wheels of vehicle
US7172525B2 (en) Electrically variable transmission having a mechanical reverse mode
JP4207908B2 (en) Hybrid drive device
EP2055518B1 (en) Electrically-variable transmission with compounded output gearing
CN107199874B (en) Drive assembly for hybrid vehicle
US20070049441A1 (en) Parallel hybrid transmission having a single motor/generator
EP1828640A2 (en) Mechanical system for power change between the input and output thereof
JP4333618B2 (en) Hybrid drive device
JP2003034153A (en) Drive unit
CN103063429A (en) A test rig and a method for testing gearboxes having different gear ratios
JP5327761B2 (en) Transmission system
JP2000094973A (en) Transmission and hybrid vehicle using it
CN103138480B (en) Wind power generation plant
KR20080033699A (en) Parallel type hybrid power train structure
JPH03277854A (en) Continuously variable transmission
CN114008315B (en) Device for driving a generator of an aircraft turbomachine and method for adjusting the speed of such a generator
TW201939859A (en) Damping system for power generation capable of alternately converting electric energy, magnetic energy and mechanical energy
GB2491400A (en) Electromechanical driveline
CN111186294A (en) Gear train and vehicle mounting the same