JPH0327774A - Discharge circuit - Google Patents

Discharge circuit

Info

Publication number
JPH0327774A
JPH0327774A JP16162089A JP16162089A JPH0327774A JP H0327774 A JPH0327774 A JP H0327774A JP 16162089 A JP16162089 A JP 16162089A JP 16162089 A JP16162089 A JP 16162089A JP H0327774 A JPH0327774 A JP H0327774A
Authority
JP
Japan
Prior art keywords
circuit
transistor
power
discharge
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16162089A
Other languages
Japanese (ja)
Inventor
Akiyoshi Fukada
深田 章義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP16162089A priority Critical patent/JPH0327774A/en
Publication of JPH0327774A publication Critical patent/JPH0327774A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the safety of an apparatus by discharging a capacitor charging through forming a discharge circuit only during a nonconducting period. CONSTITUTION:A power circuit is composed of an AC power supply 1, a power switch 2, a diode stack 3 constituting a full-wave rectifier circuit, and smoothing capacitors C1-C3 to control a relay 5 by a relay control circuit 4 to discharge a capacitor charge into a discharging resistor R1. The relay control circuit 4 is composed of a photocoupler 6, transistors 7-9, etc. Then, one side of the discharging resistor R1 is opened simultaneously with starting of the operation of the power circuit and closed simultaneously with stopping of the operation of the circuit to discharge the capacitor charge.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気回路の放電回路に係わり、さらに詳しくは
、放電回路の放電手段に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a discharge circuit of an electric circuit, and more particularly to a discharge means of a discharge circuit.

〔従来の技術] 電気回路の放電回路は、例えば、インバータ制御装置の
場合、第3図に示すように、交流電源lの一端に電源ス
イッチ2を介して取り込まれた交流電力はダイオードス
タック3で全波整流され、平滑コンデンサCI−C3に
よって平滑されたのち、後段のインバータ回路(図示せ
ず)に出力されるが、出力側の正負両極間には放電抵抗
R1が結合されており前記電源スイッチ2が開になると
、前記コンデンサ01〜C3に蓄積された電荷が前記放
電抵抗Rlを介して放電される仕組みになっている。
[Prior Art] In a discharge circuit of an electric circuit, for example, in the case of an inverter control device, as shown in FIG. After being full-wave rectified and smoothed by a smoothing capacitor CI-C3, it is output to a subsequent inverter circuit (not shown), but a discharge resistor R1 is connected between the positive and negative poles on the output side, and the power switch 2 is opened, the charges accumulated in the capacitors 01 to C3 are discharged via the discharge resistor Rl.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述のように電気回路の正負両極間に単
に結合された放電抵抗は、回路動作停止後のみならず、
回路動作時にも常に放電を行うので電力を無駄に消費す
ることになり、この無駄な消費電力を少なくするために
は放電抵抗の抵抗値を大きく設定しなければならない。
However, as mentioned above, a discharge resistor simply connected between the positive and negative poles of an electric circuit is not only used after the circuit stops operating.
Since discharge is always performed during circuit operation, power is wasted, and in order to reduce this wasted power consumption, the resistance value of the discharge resistor must be set large.

放電抵抗の抵抗値を大きくすると、回路動作停止後の放
電時間も数十秒乃至は1分間というように長時間を要し
、電源オフ直後にうっかり、サービス作業を開始すると
感電等の危険があり、サービス時の安全性にも問題があ
った。
If the resistance value of the discharge resistor is increased, the discharge time after the circuit stops operating will take a long time, from several tens of seconds to one minute, and there is a risk of electric shock if service work is inadvertently started immediately after the power is turned off. There were also safety issues during service.

したがって、本発明においては、これらの課題を解決し
、回路動作中の無駄な電力を省けると共に回路動作停止
後はコンデンサに蓄積された電荷を速やかに放電できる
放電回路を提供することを目的としている。
Therefore, it is an object of the present invention to solve these problems and provide a discharging circuit that can save unnecessary power during circuit operation, and can quickly discharge the charge accumulated in the capacitor after circuit operation is stopped. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の課題を解決するためになされたものであ
り、交流電力を直流電力に変換せしめ、同直流電力を平
滑コンデンサにより平滑せしめるようにした電源回路の
人力側に電源スイッチを設け、同電源回路の出力側に結
合される放電抵抗の一側にリレー接点を介在せしめると
共に、前記電源回路の入力側に、前記電源スイッチの投
入に伴って駆動されるホトカプラと、同ホトカプラの動
作に伴って送出される微分回路よりの信号を受けて作動
する第1のトランジスタと、同第1のトランジスタの動
作に伴って送出される積分回路よりの信号により制御さ
れる第2のトランジスタと、同第2のトランジスタの動
作に伴って出力される信号に基づいて作動し、前記リレ
ー接点を開放せしめることのできるリレーとから成るリ
レー制御回路を設けて構威した. 〔作用〕 上記構成であれば、電源回路の動作開始とともに放電抵
抗の一側を開路ならしめ、動作停止とともに閉路ならし
めてコンデンサに蓄積された電荷を放電せしめることが
できる。
The present invention has been made to solve the above problems, and includes a power switch provided on the human power side of a power supply circuit that converts AC power into DC power and smoothes the DC power using a smoothing capacitor. A relay contact is interposed on one side of the discharge resistor coupled to the output side of the power supply circuit, and a photocoupler is provided on the input side of the power supply circuit that is driven when the power switch is turned on, and a photocoupler that is driven when the power switch is turned on. a first transistor that operates in response to a signal from the differentiating circuit sent out from the differential circuit; a second transistor controlled by a signal from the integrating circuit sent out in conjunction with the operation of the first transistor; A relay control circuit consisting of a relay that operates based on a signal output in accordance with the operation of the transistor No. 2 and can open the relay contact is provided. [Function] With the above configuration, one side of the discharge resistor is opened when the power supply circuit starts operating, and is closed when the operation is stopped, thereby discharging the charge accumulated in the capacitor.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第2図に基づいて説
明する. 第1図において、1は交流電源、2は電源スイッチ、3
は複数個のダイオードにより全波整流回路を構成するダ
イオードスタック、C1〜C3は全波整流された電力を
平滑するための平滑コンデンサ、R1は平滑コンデンサ
C1〜C3に蓄積された電荷を放電させるための放電抵
抗、4は電源スイッチ2の開閉に伴い作動するリレー制
御回路、5はリレー接点5aを備えるリレーである。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In Figure 1, 1 is an AC power supply, 2 is a power switch, and 3
is a diode stack that constitutes a full-wave rectifier circuit with multiple diodes, C1 to C3 are smoothing capacitors for smoothing the full-wave rectified power, and R1 is for discharging the charges accumulated in the smoothing capacitors C1 to C3. 4 is a relay control circuit that operates in accordance with the opening and closing of the power switch 2, and 5 is a relay provided with a relay contact 5a.

リレー制御回路4は、半波整流された電力により作動す
るホトカプラ6と、同ホトカプラ6の動作に伴って出力
されるパルス信号を微分する微分回路(符号記載せず)
と、微分された信号を受けて作動するトランジスタ7と
、同トランジスタ7よりの出力信号を積分する積分回路
(符号記載せず)と、積分された信号を受けて作動する
トランジスタ8と、同トランジスタ8よりの出力信号に
より前記リレー5を駆動するトランジスタ9とにより構
威されている. リレー制御回路4について、さらに詳しく説明すると、
ホトカプラ6の端子aと交流電源1の一端との間には保
護抵抗R2と半波整流するためのダイオードDIとを直
列に結合し、端子bと電源スイッチ2との間はリード線
等により結合し、端子Cは抵抗R3を介して直流電源ラ
イン( V cc)に結合し、端子dは接地している. 前記端子Cとトランジスタ7のベース間には直列に結合
されたコンデンサC4と抵抗R4、および、ベースとア
ース回路間に結合された抵抗R5とから威る微分回路を
設けている。
The relay control circuit 4 includes a photocoupler 6 that operates using half-wave rectified power, and a differentiation circuit (not shown) that differentiates a pulse signal output in response to the operation of the photocoupler 6.
, a transistor 7 that operates in response to a differentiated signal, an integrating circuit (not shown) that integrates an output signal from the transistor 7, a transistor 8 that operates in response to an integrated signal, and a transistor 8 that operates in response to an integrated signal; A transistor 9 drives the relay 5 using an output signal from the transistor 8. A more detailed explanation of the relay control circuit 4 is as follows.
A protective resistor R2 and a diode DI for half-wave rectification are connected in series between terminal a of the photocoupler 6 and one end of the AC power source 1, and a lead wire or the like is connected between the terminal b and the power switch 2. Terminal C is coupled to the DC power supply line (Vcc) via resistor R3, and terminal d is grounded. A differential circuit is provided between the terminal C and the base of the transistor 7, which includes a capacitor C4 and a resistor R4 coupled in series, and a resistor R5 coupled between the base and the ground circuit.

トランジスタ7のコレクタは抵抗R6を介して直流電源
ラインと結合させ、工逅ツタは接地している。
The collector of the transistor 7 is connected to a DC power supply line via a resistor R6, and the collector is grounded.

同トランジスタ7のコレクタとトランジスタ8のベース
間には、両極間に結合した抵抗R7と、トランジスタ7
のコレクタとアース回路間に直列に結合されたコンデン
サC5および抵抗R8とから威る積分回路を設け、トラ
ンジスタ8のベースとアース回路間には抵抗R9を結合
している.トランジスタ8のコレクタは抵抗RIOを介
して直流電源ラインと結合させ、エミッタは接地してい
る. トランジスタ8のコレクタとトランジスタ9のベース間
は信号線で結び、同トランジスタ9のコレクタは抵抗R
llを介して直流電源ラインと結合させ、工E ツタは
接地している. リレー5の一端は前記トランジスタ9のコレクタと結び
、他端は抵抗RL2を介して直流電源ラインに結合させ
ている。
Between the collector of the transistor 7 and the base of the transistor 8, there is a resistor R7 connected between both poles, and a resistor R7 connected between the collector of the transistor 7 and the base of the transistor 8.
An integrating circuit consisting of a capacitor C5 and a resistor R8 coupled in series between the collector of the transistor 8 and the ground circuit is provided, and a resistor R9 is coupled between the base of the transistor 8 and the ground circuit. The collector of the transistor 8 is connected to the DC power supply line via a resistor RIO, and the emitter is grounded. The collector of transistor 8 and the base of transistor 9 are connected by a signal line, and the collector of transistor 9 is connected to resistor R.
It is connected to the DC power line through the ll, and the vine is grounded. One end of the relay 5 is connected to the collector of the transistor 9, and the other end is connected to the DC power supply line via a resistor RL2.

以上は放電回路の構或であるが、以下、動作について説
明する。
The structure of the discharge circuit has been described above, and the operation will be explained below.

電源スイッチ2がONされるとダイオードスタック3に
より整流され、整流後の電圧は平滑コンデンサ01〜C
3によって平滑されたのち、矢印で示す出力端より後段
の負荷@(図示せず)に出力される. それと同時にリレー制御回路4のダイオードD1も作動
し、半波整流された電力はホトカプラ6の端子aに印加
される. ホトカプラ6は半波整流された上記電力を受けることに
よりON・OFFの繰り返し動作を行うので端子C側の
A点には第2図Aに示すようなパルス信号が繰り返し現
れる. このパルス信号はC4, R4. R5から成る微分回
路により微分され、トランジスタ7のベースには第2図
Bに示すような信号が入力される。
When the power switch 2 is turned on, the voltage is rectified by the diode stack 3, and the voltage after rectification is passed through the smoothing capacitors 01 to C.
After being smoothed by 3, it is output to a subsequent load @ (not shown) from the output end indicated by the arrow. At the same time, the diode D1 of the relay control circuit 4 also operates, and the half-wave rectified power is applied to the terminal a of the photocoupler 6. Since the photocoupler 6 repeatedly turns ON and OFF by receiving the half-wave rectified power, a pulse signal as shown in FIG. 2A appears repeatedly at point A on the terminal C side. This pulse signal is C4, R4. The signal is differentiated by a differentiating circuit consisting of R5, and a signal as shown in FIG. 2B is input to the base of transistor 7.

この信号によりトランジスタ7はスイッチング駆動され
、積分回路を通過後のC点の電位はトランジスタ7がO
N状態のときはOV,+−ランジスタ7がOFF状態の
ときは( (R6+R8) XC5)で求まる時定数τ
にしたがって増加する。
This signal drives transistor 7 to switch, and the potential at point C after passing through the integration circuit is
OV when in N state, time constant τ found by ((R6+R8) XC5) when +- transistor 7 is in OFF state
increases accordingly.

しかし、C点の電位は第2図Cに示すように、トランジ
スタ8を駆動できる電圧まで増加しないように前記時定
数τを設定しているため、トランジスタ8はOFF状態
を維持している。
However, as shown in FIG. 2C, the time constant τ is set so that the potential at point C does not increase to a voltage that can drive the transistor 8, so the transistor 8 remains in the OFF state.

したがって、D点の電位は第2図Dに示すように抵抗R
IOによりプルアップされ、トランジスタ9はON状態
を維持する. トランジスタ9がONすると第1図E点の電位が低下す
るためリレー5は駆動され、このリレー5の動作に伴っ
てリレー接点5aは切り換えられ、抵抗R1を備えた放
電回路は開放される.一方、電源スイッチ2がOFFさ
れるとホトカプラ6はOFF状態になるのでA点の電位
は第2図Aの中央より右にかけて示すようにプルアップ
されたままとなる。
Therefore, the potential at point D is determined by the resistance R as shown in Figure 2D.
It is pulled up by IO, and transistor 9 maintains the ON state. When the transistor 9 is turned on, the potential at point E in FIG. 1 decreases, so the relay 5 is driven, and as the relay 5 operates, the relay contact 5a is switched and the discharge circuit provided with the resistor R1 is opened. On the other hand, when the power switch 2 is turned off, the photocoupler 6 is turned off, so the potential at point A remains pulled up as shown from the center to the right of FIG. 2A.

そのため、B点の電位は( (R3+R4+1?5) 
XC4)で求まる時定数τにしたがって減少し、0にな
る。
Therefore, the potential at point B is ((R3+R4+1?5)
It decreases to 0 according to the time constant τ determined by XC4).

このB点の電位がトランジスタ7のVbe電圧以下に低
下すると、トランジスタ7はOFF状態になる。
When the potential at point B drops below the Vbe voltage of transistor 7, transistor 7 is turned off.

この時点からC点の電位は第2図Cに示すように( (
R6+R8) XC5)で求まる時定数τにしたがって
増加する。
From this point on, the potential at point C changes as shown in Figure 2C ( (
R6+R8) increases according to the time constant τ determined by XC5).

このC点の電位がトランジスタ8のVbe電圧以上に増
加するとトランジスタ8はON状態になり、D点の電位
は第2図Dに示すようにQVになる。
When the potential at point C increases above the Vbe voltage of transistor 8, transistor 8 is turned on, and the potential at point D becomes QV as shown in FIG. 2D.

したがって、トランジスタ9はOFF状態となり、E点
の電位は第2図已に示すように上昇するためリレー5は
OFFされ、リレー接点5aは抵抗Rl側に切り換わり
、平滑コンデンサ01〜C3に蓄積されている電荷が放
電される。
Therefore, the transistor 9 is turned off, and the potential at point E rises as shown in Figure 2, so the relay 5 is turned off, the relay contact 5a is switched to the resistor Rl side, and the voltage is accumulated in the smoothing capacitors 01 to C3. The charge that is present is discharged.

なお、電源スイッチ2がONされる以前の各部(A点〜
E点)の電位は全て0■であるのでリレー5はOFFさ
れており、放電抵抗Rlの回路は閉の状熊になっている
In addition, each part before the power switch 2 is turned on (from point A to
Since the potentials at point E) are all 0■, the relay 5 is turned off, and the circuit of the discharge resistor Rl is in a closed state.

この状態のときに、電源スイッチ2がONされると、先
に説明したように各部の電位は第2図に示すように変化
して行くが、リレー5は第2図Eの左寄りに示すように
約20m−sec後にはONされ、放電抵抗R1の回路
は解放される.また、電源スイッチ2がOFFされると
、第2図已に示すように約30m−sec後にはリレー
5がOFFされ、放電抵抗R1の回路は閉じられる。
In this state, when the power switch 2 is turned on, the potential of each part changes as shown in FIG. After about 20 m-sec, it is turned on and the circuit of the discharge resistor R1 is released. Furthermore, when the power switch 2 is turned off, the relay 5 is turned off approximately 30 m-sec later as shown in FIG. 2, and the circuit of the discharge resistor R1 is closed.

〔発明の効果〕〔Effect of the invention〕

以上説明したような回路構戒によれば、無通電時だけ放
電回路を形威してコンデンサに蓄積された電荷を放電せ
しめることができるので、放電抵抗が常時接続されてい
た従来の放電回路に比して無駄に消費される電力が無く
なり、放電抵抗の値も小さく設定することが可能になり
、放電時間の大幅な短縮が得られ、サービス作業開始時
における感電等の危険性もなくなり、安全性が向上する
等の効果がある。
According to the circuit structure explained above, the discharge circuit can be activated only when no current is applied to discharge the charge accumulated in the capacitor, so it is possible to discharge the electric charge accumulated in the capacitor, which is different from the conventional discharge circuit in which a discharge resistor is always connected. Compared to this, there is no wasted power, and the value of the discharge resistance can be set to a small value, which greatly shortens the discharge time, eliminates the risk of electric shock, etc. at the beginning of service work, and improves safety. It has the effect of improving sexual performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図は同実
施例の動作説明用の波形図、第3図は従来例を示す回路
図である. 図中、l・一・一交流電源、2・・一電源スイッチ、3
−・・−ダイオードスタック、4−・・・リレー制御回
路、5−・−・リレー、5a・・−・・リレー接点、6
−・−ホトカプラ、7〜9・・・・トランジスタ、C1
〜C3・・一乎滑コンデンサ、C4〜C5・・・・−コ
ンデンサ、DI・−・ダイオード、R2〜R12抵抗.
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a waveform diagram for explaining the operation of the same embodiment, and FIG. 3 is a circuit diagram showing a conventional example. In the diagram, l..1.1 AC power supply, 2..1 power switch, 3.
--- Diode stack, 4--- Relay control circuit, 5--- Relay, 5a-- Relay contact, 6
-・-Photocoupler, 7-9...Transistor, C1
~C3...Sliding capacitor, C4~C5...-Capacitor, DI...Diode, R2~R12 Resistor.

Claims (1)

【特許請求の範囲】[Claims] 交流電力を直流電力に変換せしめ、同直流電力を平滑コ
ンデンサにより平滑せしめるようにした電源回路の入力
側に電源スイッチを設け、同電源回路の出力側に結合さ
れる放電抵抗の一側にリレー接点を介在せしめると共に
、前記電源回路の入力側に、前記電源スイッチの投入に
伴って駆動されるホトカプラと、同ホトカプラの動作に
伴って送出される微分回路よりの信号を受けて作動する
第1のトランジスタと、同第1のトランジスタの動作に
伴って送出される積分回路よりの信号により制御される
第2のトランジスタと、同第2のトランジスタの動作に
伴って出力される信号に基づいて作動し、前記リレー接
点を開放せしめることのできるリレーとから成るリレー
制御回路を設けたことを特徴とする放電回路。
A power switch is installed on the input side of a power supply circuit that converts AC power into DC power and smoothes the DC power using a smoothing capacitor, and a relay contact is installed on one side of a discharge resistor connected to the output side of the power supply circuit. and a photocoupler, which is driven when the power switch is turned on, and a first photocoupler, which is activated in response to a signal from a differential circuit sent out in conjunction with the operation of the photocoupler, on the input side of the power supply circuit. A transistor, a second transistor controlled by a signal from an integrating circuit sent out in accordance with the operation of the first transistor, and a second transistor operated based on a signal outputted in accordance with the operation of the second transistor. , a relay control circuit comprising a relay capable of opening the relay contact.
JP16162089A 1989-06-23 1989-06-23 Discharge circuit Pending JPH0327774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16162089A JPH0327774A (en) 1989-06-23 1989-06-23 Discharge circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16162089A JPH0327774A (en) 1989-06-23 1989-06-23 Discharge circuit

Publications (1)

Publication Number Publication Date
JPH0327774A true JPH0327774A (en) 1991-02-06

Family

ID=15738641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16162089A Pending JPH0327774A (en) 1989-06-23 1989-06-23 Discharge circuit

Country Status (1)

Country Link
JP (1) JPH0327774A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523793U (en) * 1991-08-30 1993-03-26 横河メデイカルシステム株式会社 Power supply
JP2007207496A (en) * 2006-01-31 2007-08-16 Nec Microwave Inc Power supply and high-frequency circuit system
US11116419B2 (en) 2016-06-01 2021-09-14 Becton, Dickinson And Company Invasive medical devices including magnetic region and systems and methods
US11382529B2 (en) 2016-05-13 2022-07-12 Becton, Dickinson And Company Electro-magnetic needle catheter insertion system
US11413429B2 (en) 2016-06-01 2022-08-16 Becton, Dickinson And Company Medical devices, systems and methods utilizing permanent magnet and magnetizable feature
US11826522B2 (en) 2016-06-01 2023-11-28 Becton, Dickinson And Company Medical devices, systems and methods utilizing permanent magnet and magnetizable feature
US11877839B2 (en) 2016-06-01 2024-01-23 Becton, Dickinson And Company Invasive medical devices including magnetic region and systems and methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523793U (en) * 1991-08-30 1993-03-26 横河メデイカルシステム株式会社 Power supply
JP2007207496A (en) * 2006-01-31 2007-08-16 Nec Microwave Inc Power supply and high-frequency circuit system
US11382529B2 (en) 2016-05-13 2022-07-12 Becton, Dickinson And Company Electro-magnetic needle catheter insertion system
US11116419B2 (en) 2016-06-01 2021-09-14 Becton, Dickinson And Company Invasive medical devices including magnetic region and systems and methods
US11413429B2 (en) 2016-06-01 2022-08-16 Becton, Dickinson And Company Medical devices, systems and methods utilizing permanent magnet and magnetizable feature
US11826522B2 (en) 2016-06-01 2023-11-28 Becton, Dickinson And Company Medical devices, systems and methods utilizing permanent magnet and magnetizable feature
US11877839B2 (en) 2016-06-01 2024-01-23 Becton, Dickinson And Company Invasive medical devices including magnetic region and systems and methods

Similar Documents

Publication Publication Date Title
JP4395881B2 (en) Synchronous rectifier circuit for switching power supply
US5712774A (en) Device for suppressing higher harmonic current of power source
JPH0327774A (en) Discharge circuit
KR960035197A (en) Responsiveness Improvement Circuit for Switching Mode Power Supplies
JP2000217161A (en) Standby power supply device for remote controller
JPH0127423Y2 (en)
JPS6022573B2 (en) Inrush current limit circuit
JPH0690578A (en) Motor driving device
JPS603675Y2 (en) power supply
JPH04229087A (en) Ac motor driving method and power supply circuit for driving ac motor
JPS605639Y2 (en) Trigger input circuit at power-on
JPH01110060A (en) Power supply equipment
JP3312145B2 (en) Timer device
JPS6015400Y2 (en) Electric circuit device with inrush current limiting circuit
JPS62244279A (en) Inverter device
JP2647089B2 (en) Vacuum cleaner controller
JPH0348328U (en)
JPH0488874A (en) Switching power unit
JPS61192309U (en)
JPH0327721A (en) Rush current limiting circuit
JPS62126893A (en) Control circuit for air conditioner
JPH051955Y2 (en)
JPS58183098U (en) Motor control device
JPH0242077Y2 (en)
JPS6120999B2 (en)