JPH03277441A - Microdisplacement mechanism, support member and reduction projection exposure device thereof - Google Patents

Microdisplacement mechanism, support member and reduction projection exposure device thereof

Info

Publication number
JPH03277441A
JPH03277441A JP2073661A JP7366190A JPH03277441A JP H03277441 A JPH03277441 A JP H03277441A JP 2073661 A JP2073661 A JP 2073661A JP 7366190 A JP7366190 A JP 7366190A JP H03277441 A JPH03277441 A JP H03277441A
Authority
JP
Japan
Prior art keywords
support member
intermediate point
wafer
displacement
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2073661A
Other languages
Japanese (ja)
Inventor
Makoto Kurihara
誠 栗原
Tetsuya Mazaki
真崎 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2073661A priority Critical patent/JPH03277441A/en
Publication of JPH03277441A publication Critical patent/JPH03277441A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To make them in a simple structure, to enable the microdisplacement adjustment in a high accuracy and to realize the cost reduction and life extension, by supporting the body to be displaced with a flexible supporting member centering around an intermediate point and equipping a variable control means together with the bestowal of a necessory force for the flexible action at the support membere intermediate point. CONSTITUTION:The gap in the vertical direction of a reticle 6 and the wafer 4 located on a wafer holding base 3 is found by a detector and input to a controller 18 by an electric signal. The controller 18 then operates a corrected displacement quantity based on the deviation of the both, in the case of there being the difference more than allowance between the gap detection quantity between the reticle 6 and wafer 4 and a target gap quantity. A motor 19 is then rotated according to a command signal, when the displacement command signal necessary for correction is transmitted to the motor 19 of the screw driving mechanism 14 of each support member 12 and a necessary force F is imparted to the intermediate point of the support member 12 by the screw mechanism 14. So, the intermediate point of the support member 12 is primarily displaced and also the wafer holding base 3 is microdisplaced secondarily and the wafer 4 face is corrected so as to locate at the depth of focus uniformly for the reticle 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、直線的或いは角度的な位Fi調整を行う微小
変位機構、これに用いる支持部材、及び微小変位機構を
ウェハレベリング機構として利用する投影露光装置に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention utilizes a micro-displacement mechanism that performs linear or angular position Fi adjustment, a support member used therefor, and the micro-displacement mechanism as a wafer leveling mechanism. The present invention relates to a projection exposure apparatus.

〔従来の技術〕[Conventional technology]

例えば半導体製造過程の一つである縮小投影露光は、周
知のようにステージ(ウェハ保持台)上に載置されたウ
ェハに縮小レンズを介してレティクル原画面の焦点を合
わせて行われる。
For example, reduction projection exposure, which is one of the semiconductor manufacturing processes, is performed by focusing a reticle original screen on a wafer placed on a stage (wafer holder) via a reduction lens, as is well known.

この焦点合わせは、ウェハレベリング機構(微小変位機
構)を用いて、ウェハ自体のそり、厚さのむら、変形に
対応して1チツプ毎にレティクル原画面とウェハ面との
焦点を合わせるように、上下、傾きの変位を微調整する
This focusing uses a wafer leveling mechanism (fine displacement mechanism) to adjust the focus up and down to adjust the focus between the original reticle screen and the wafer surface for each chip in response to warpage, uneven thickness, and deformation of the wafer itself. , to fine-tune the tilt displacement.

このような、ウェハレベリング機構の従来例としては、
例えば、特公昭63−30781号公報等に開示される
ように、ピエゾ素子を用いてウェハ保持台を変位制御す
る方式が広く一般に使用されている。
As a conventional example of such a wafer leveling mechanism,
For example, as disclosed in Japanese Patent Publication No. 63-30781, a method of controlling the displacement of a wafer holder using a piezo element is widely used.

その他、この種変位制御の応用例としては、例えば特開
昭59−117118号公報に開示されるように、ホト
マスク等の観察装置等において、観察時のマスクのそり
の影響をなくすために、観察ステージをピエゾ素子や流
体圧力の変化などを利用して、微小変位調整する等の技
術が提案されている。
In addition, as an application example of this type of displacement control, for example, as disclosed in Japanese Patent Application Laid-Open No. 117118/1982, in an observation device such as a photomask, in order to eliminate the effect of warping of the mask during observation, Techniques have been proposed for adjusting minute displacements of the stage using piezo elements or changes in fluid pressure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、半導体製造装置は、高微細化、高スループッ
ト及び量産化が進む中、縮小投影露光装置も性能向上が
図られている。とりわけ、高微細化のため、縮小レンズ
の高NA化が進められている。この高NA化により焦点
深度が浅くなり、往来は許容されていたウェハ面の微小
なそり、厚さむら、傾きなどが焦点ずれに影響を及ぼし
ている。
Incidentally, as semiconductor manufacturing equipment becomes increasingly finer, has a higher throughput, and becomes more mass-produced, reduction projection exposure apparatuses are also being improved in performance. In particular, reduction lenses are being made to have a high NA in order to achieve finer resolution. Due to this high NA, the depth of focus becomes shallow, and minute warpage, thickness unevenness, tilt, etc. of the wafer surface, which is allowed to be moved back and forth, affect the defocus.

そのため、前記そり、厚さむら、傾き等に対応してウェ
ハの位置を非常に微小な変位調整(サブミクロンレベル
の変位量)により適正に変位修正する必要が生じている
Therefore, it is necessary to appropriately correct the position of the wafer by very minute displacement adjustment (displacement amount on the submicron level) in response to the warpage, thickness unevenness, inclination, and the like.

前述したピエゾ素子等を用いた変位調整機構は、このよ
うな用途に供されるが、ピエゾ素子は特性のばらつきが
あるため微小な変位調整が難しく、またピエゾ素子を印
加する電圧制御機器等高価な構成機器を必要とし、しか
も短寿命という傾向があった。
The displacement adjustment mechanism using piezo elements, etc., described above is used for such purposes, but piezo elements have variations in characteristics, making it difficult to make minute displacement adjustments, and the voltage control equipment that applies piezo elements is expensive. They required large number of components and tended to have short lifespans.

本発明は以上の点に鑑みてなされたもので、その目的と
するところは、簡単な構成にして高精度の微小変位調整
が可能で、しかも価格等のコストの面や寿命の点でも有
利な装置を提供することにある。
The present invention has been made in view of the above points, and its purpose is to enable highly accurate minute displacement adjustment with a simple configuration, and which is advantageous in terms of cost and service life. The goal is to provide equipment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記課題を解決する基本的な手段として次の
ようなものを提案する。
The present invention proposes the following basic means for solving the above problems.

すなわち、被変位体を角度的或いは直線的に変位させる
機構において。
That is, in a mechanism that displaces an object to be displaced angularly or linearly.

中間点を中心に屈伸動作が可能な支持部材により前記被
変位体を支持し、 且つ、前記支持部材の中間点に屈伸動作に必要な力を与
える手段と。
means for supporting the object to be displaced by a support member capable of bending and stretching operations around an intermediate point; and applying a force necessary for the bending and stretching operations to the intermediate point of the support member;

前記中間点に与える力を可変制御する手段とを備えてな
る。
and means for variably controlling the force applied to the intermediate point.

この基本的な課題解決手段において、被変位体を直線的
に変位させるとは、例えば、第1図の実施例の符号を引
用すれば、可動体(被変位体)3を上下或いは左右方向
に位置調整する機構において、可動体3の端部のうち2
箇所以上で周方向に等間隔となる位置を、屈伸性を有す
る支持部材12で支持する態様がある。
In this basic problem-solving means, linearly displacing the displaced body means, for example, to quote the reference numerals of the embodiment in FIG. In the position adjustment mechanism, two of the ends of the movable body 3
There is a mode in which positions at equal intervals in the circumferential direction are supported by support members 12 having flexibility.

また、被変位体を角度的に変位させる機構としては、例
えば第8図の実施例の符号を引用すれば、軸31を介し
て回転可能に取付けられた回転体30を角度変位させる
機構において、 回転体30の少なくとも一端を、中間点を中心に屈伸動
作が可能な支持部材12により支持するものがある。
Further, as a mechanism for angularly displacing the object to be displaced, for example, referring to the reference numeral of the embodiment shown in FIG. There is one in which at least one end of the rotating body 30 is supported by a support member 12 that can bend and extend around an intermediate point.

また、微小変位機構に用いる支持部材として次のような
ものを提案する。これを第7図の符号を引用すれば、中
間のリンク要素Aとその両側に位置するリンク要素B、
Cとを一体成形した弾性の棒状部材12で構成し、この
弾性棒状部材12のうちリンク要素A−B間及びリンク
要素A−C間に切り込み13aを設けると共に、棒状部
材の両端にも切り込13bを設けてなる。
Furthermore, we propose the following support member for use in the minute displacement mechanism. Referring to the reference numerals in FIG. 7, the link element A in the middle and the link elements B located on both sides thereof,
It is composed of an elastic rod-shaped member 12 that is integrally molded with C, and in this elastic rod-shaped member 12, notches 13a are provided between link elements A and B and between link elements A and C, and cuts are also provided at both ends of the rod-shaped member. 13b is provided.

さらに、微小変位機構を縮小投影露光装置に適用した例
として、高精度のウェハレベリング機構を実現するため
に1次のようなものを提案する。
Furthermore, as an example of applying a minute displacement mechanism to a reduction projection exposure apparatus, we propose a first-order mechanism to realize a highly accurate wafer leveling mechanism.

これを第1図の実施例の符号を引用すれば、ウェハ4を
載置するウェハ保持台3と、前記ウェハ保持台の上方に
配置されてレティクルの回路パターンを縮小投影させる
光学系とを備える投影露光装置において。
Referring to the reference numerals of the embodiment shown in FIG. 1, this includes a wafer holding table 3 on which a wafer 4 is placed, and an optical system disposed above the wafer holding table to reduce and project the circuit pattern of the reticle. In projection exposure equipment.

ウェハ保持台3を上下方向に移動させる機構として、ウ
ェハ保持台3の下面中央部に空間部3Aを形成して、こ
の空間部3Aを覆う状態でウェハ保持台3下面に取付け
た弾性板8と、上端が弾性板8と結合してウェハ保持台
3を支持する支柱10と、支柱10の周りに2以上配置
されてウエハ保持台3の端部を周方向に等間隔で支持す
る屈伸性を有する支持部材12等で構成し。
As a mechanism for moving the wafer holder 3 in the vertical direction, a space 3A is formed at the center of the lower surface of the wafer holder 3, and an elastic plate 8 is attached to the lower surface of the wafer holder 3 to cover this space 3A. , a strut 10 whose upper end is connected to an elastic plate 8 to support the wafer holding table 3; and two or more flexible columns arranged around the strut 10 to support the ends of the wafer holding table 3 at equal intervals in the circumferential direction. The support member 12 has a support member 12 and the like.

支持部材12は、中間のリンク要素Aとその両側に位置
するリンク要素B、Cとを一体成形した弾性の棒状部材
で、この弾性棒状部材のうち前記リンク要素A−B間及
びA−C間に切り込み13aを設けると共に、該棒状部
材の両端における他の部材3,2との接続部近くにも切
り込み13bを設けてなり、 且つ、支持部材12の中間点に屈伸動作に必要な力を与
える機構14と。
The support member 12 is an elastic rod-shaped member integrally formed with an intermediate link element A and link elements B and C located on both sides thereof. A notch 13a is provided in the support member 12, and a notch 13b is also provided at both ends of the rod-shaped member near the connection portion with the other members 3, 2, and the force necessary for bending and stretching is applied to the midpoint of the support member 12. Mechanism 14.

支持部材12の中間点に戻し力を付勢するばね機構15
と。
a spring mechanism 15 that applies a return force to the midpoint of the support member 12;
and.

レティクルとウェハ4との上下方向の間隔を検出する検
出器と、 レティクル・ウェハ間の間隔検出量と目標の間隔量との
偏差に基づき支持部材12の中間点に与える力を可変制
御する制御部18とを備えてなるものを提案する。
A detector that detects the vertical distance between the reticle and the wafer 4, and a control section that variably controls the force applied to the midpoint of the support member 12 based on the deviation between the detected distance between the reticle and the wafer and the target distance. 18 is proposed.

〔作用〕[Effect]

屈伸性を有する支持部材の中間点に力を与えると、中間
点が一次変位することで、その−次変位量に応じ支持部
材が屈伸動作を行う。その結果、被変位体に直線的或い
は角度的な変位(二次変位)が生じる。
When a force is applied to the intermediate point of a support member having flexibility and extensibility, the intermediate point undergoes a primary displacement, and the support member performs a bending and stretching operation in accordance with the amount of the -order displacement. As a result, a linear or angular displacement (secondary displacement) occurs in the displaced object.

この支持部材に与える屈伸に必要な力(−次変位量)は
可変制御されるので、二次変位量も任意に制御される。
Since the force required for bending and stretching the support member (-dimensional displacement amount) is variably controlled, the secondary displacement amount can also be arbitrarily controlled.

そして、本発明によれば、屈伸性を有する支持部材の一
次変位、二次変位を介して被変位体の変位量制御を行う
ため1次の原理により極微小変位制御を可能にする。
According to the present invention, the amount of displacement of the object to be displaced is controlled through the primary displacement and secondary displacement of the support member having flexibility, so that extremely small displacement control is possible based on the first-order principle.

第5図に本発明の動作原理を示す。FIG. 5 shows the operating principle of the present invention.

第5図において、aは屈伸性支持部材の中間点、b、c
がその両端を示す。なお、支持部材の両端す、cの一方
は通常ベース等に固定されるが、ここでは、説明の便宜
上、両端ともフリーとしておく。
In FIG. 5, a is the midpoint of the flexible support member, b, c
indicates both ends. Incidentally, one of both ends (a) and (c) of the support member is normally fixed to a base or the like, but here, for convenience of explanation, both ends are left free.

中間点aに作用した制御指示量Xにより、点aは点a′
に一次変位し、それに伴い支持部材のリンク要素(アー
ム)B、Cが屈伸動作を行い、而d、eにそれぞれ支持
された点す、cは、点b′C′の位置まで二次変位する
Due to the control instruction amount X acting on intermediate point a, point a becomes point a'
The link elements (arms) B and C of the support member perform a bending and stretching operation accordingly, and the points C and C supported by d and e respectively undergo a secondary displacement to the position of point b'C'. do.

このことにより、面d、eとの距離りは変位量△b、△
Cを差し引いたものとなり、面d、eは各々d’、e’
に変位し1位置調整が可能となる。
Due to this, the distance from surfaces d and e is the displacement △b, △
C is subtracted, and surfaces d and e are d' and e', respectively.
It is possible to adjust the position by one position.

以上の一次変位量、二次変位量を支持部材の半分側だけ
でとらえたものが第6図であり、直角三角形の各辺Q、
x、yには、fl”=x”+y2が成り立つ。ここで、
Qを一定とした場合において、−次変位量ΔXを辺Xに
与えると、他の辺yにはそれよりもはるかに小さい極微
小な変位Δyが発生する。
Figure 6 shows the above primary and secondary displacements captured only on the half side of the support member, and each side of the right triangle Q,
fl''=x''+y2 holds true for x and y. here,
When Q is constant, when a negative displacement amount ΔX is applied to side X, an extremely small displacement Δy, which is much smaller than that, occurs on the other side y.

これを式で表せば、 11”=x”+y’ y”=Q”−x” y=BTツ? Δy=Q−y=Q−fiτツ2 例えば、−辺のリンク要素Bの長さQ=30■、−次変
位量Δx=o、lamとした場合、二次変位量は八3.
=0.167μmとなる。
Expressing this as a formula, 11"=x"+y'y"=Q"-x" y=BTtsu? Δy=Q-y=Q-fiτtsu2 For example, the length Q of the link element B on the - side = 30■, -order displacement Δx = o, lam, then the secondary displacement is 83.
=0.167 μm.

また、Q=30nm、−次変位量Δx=0.01閣とし
た場合、二次変位量はΔy=0.042μmとなる。−
次変位を与える機構は、例えばマイクロメータに用いる
ものと同程度の高精度ねじ機構を使用することで、二次
変位量として0.01μm程度の微小変位を得ることが
可能である。
Further, when Q=30 nm and the negative-order displacement amount Δx=0.01, the secondary displacement amount becomes Δy=0.042 μm. −
For example, by using a high-precision screw mechanism similar to that used in a micrometer as the mechanism for providing the secondary displacement, it is possible to obtain a minute displacement of about 0.01 μm as the amount of secondary displacement.

なお、上記式は支持部材の半分側の変位量を式で表した
ものであり、トータルの二次変位量は2×Δyとなる。
Note that the above equation expresses the amount of displacement on the half side of the support member, and the total amount of secondary displacement is 2×Δy.

第1図に示すように、可動体3のうち2箇所以上の端部
を支持部材12により周方向に等間隔で支持した場合に
は、各支持部材12の屈伸量(二次変位量)Δyを同等
とすれば、可動体3が上下方向に平行移動し、また、各
支持部材12の二次変位量Δyを異ならせば、可動体3
は斜めに傾く動作がなされる。
As shown in FIG. 1, when two or more end portions of the movable body 3 are supported by support members 12 at equal intervals in the circumferential direction, the amount of bending and stretching (secondary displacement amount) Δy of each support member 12 If , the movable body 3 moves in parallel in the vertical direction, and if the secondary displacement amount Δy of each support member 12 is different, then the movable body 3 moves in parallel in the vertical direction.
is made to tilt diagonally.

また、第8図のように回転体30の少なくとも一端を支
持部材12により支持すれば、支持部材の屈伸量に対応
して回転体の微小な角度変位が可能となる。
Furthermore, if at least one end of the rotating body 30 is supported by the support member 12 as shown in FIG. 8, the rotating body can be moved in a minute angle in accordance with the amount of bending and stretching of the supporting member.

屈伸性を有する支持部材は、種々の態様のものが考えら
れる。例えば、別個に成形された2個のリンク要素同士
をピン等で結合することも考えられるが、この態様では
、ピンの結合部の隙間が二次変位の誤差となって表れや
すいので、サブミクロン単位の変位量制御を行う場合に
は、より高精度なものが要求される。これに応える支持
部材が、第7図のように弾性棒状部材12に切り込み1
3a、13bを入れたものである。
Various types of flexible support members are possible. For example, it is conceivable to connect two separately molded link elements with a pin, etc., but in this case, the gap between the pin connections tends to appear as a secondary displacement error, so submicron When performing unit displacement control, higher precision is required. A supporting member corresponding to this is provided with a cut 1 in the elastic rod-shaped member 12 as shown in FIG.
3a and 13b are included.

すなわち、中間のリンク要素Aとその両側のリンク要素
B、Cを一体成形した場合には、リンク要素同士のピン
結合を排除できるので、結合部に遊び(制御誤差)の原
因となる隙間が発生しない。
In other words, if the intermediate link element A and the link elements B and C on both sides are integrally molded, it is possible to eliminate pin connections between the link elements, which creates gaps that cause play (control errors) at the joints. do not.

また、リンク要素A、B間及びA、C間及び支持部材1
2の両端に切り込み13aを入れることで、支持部材は
一点鎖線12′のように変位することが可能となり、こ
れは第5図に示すように変位の態様が中間点a′と両端
b’、c’を結ぶ三角形に置き換えることができ、ばら
つきのない変位量が得られると共に、計算値としても一
次変位量と二次変位量との関係を求めやすい。
Also, between link elements A and B, between A and C, and between support member 1
By making cuts 13a at both ends of the support member 2, the supporting member can be displaced as shown by the dashed line 12', and as shown in FIG. It can be replaced by a triangle connecting c', and a consistent displacement amount can be obtained, and the relationship between the primary displacement amount and the secondary displacement amount can be easily obtained as a calculated value.

また、支持部材12の両端の切り込み13bの存在で、
その両端に接続される他の接続部材に無理な力をかける
ことなく支持部材がスムーズに屈伸動作を行う。
Furthermore, due to the presence of the notches 13b at both ends of the support member 12,
The support member smoothly bends and stretches without applying excessive force to other connecting members connected to both ends of the support member.

なお、前記課題解決手段で提案した縮小投影露光装置の
作用については、実施例の項で詳述しであるので、ここ
での説明を省略する。
It should be noted that the operation of the reduction projection exposure apparatus proposed in the problem solving means has been described in detail in the embodiment section, so a description thereof will be omitted here.

〔実施例〕〔Example〕

本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の微小変位機構を縮小投影露光装置の
ウェハレベリング機構として適用した例、第2図は、本
発明の適用対象となる縮小投影露光装置の全体構成図で
ある。
FIG. 1 is an example in which the minute displacement mechanism of the present invention is applied as a wafer leveling mechanism of a reduction projection exposure apparatus, and FIG. 2 is an overall configuration diagram of the reduction projection exposure apparatus to which the present invention is applied.

第2図に示すように、縮小投影露光装置は、ベース1上
にウェハステージ2が配置される。ウェハステージ2上
にはウェハ4を保持する保持台3が搭載される。
As shown in FIG. 2, in the reduction projection exposure apparatus, a wafer stage 2 is placed on a base 1. A holding table 3 for holding a wafer 4 is mounted on the wafer stage 2.

しかして、照明系5により照射されたレティクル原画6
のパターンは、縮小レンズ7により縮小され、保持台3
に載置されたウェハ4面に転写される。
Therefore, the reticle original image 6 illuminated by the illumination system 5
The pattern is reduced by the reduction lens 7, and the pattern is
The image is transferred onto the four surfaces of the wafer placed on the wafer.

この時のウェハ4面は、ウェハ自体のそり、厚さのむら
、異物混入等により、レティクル原画6面との距離は一
定ではないので修正を要する。
At this time, the distance between the wafer surface 4 and the reticle original image 6 surface is not constant due to warping of the wafer itself, uneven thickness, foreign matter, etc., and therefore correction is required.

ゆえにステージ2の1ステツプ毎の移動のたびにレティ
クル原画6のパターンがウェハ4面に転写されるので、
前記距離の修正はステージ2のステップの移動ごとに行
い、そのたびにウェハ4面を焦点深度内に均一に距離を
保つ制御をしなければならない。
Therefore, each time the stage 2 moves one step at a time, the pattern of the original reticle 6 is transferred to the wafer 4.
The distance correction must be performed every time the stage 2 moves, and each time the distance must be controlled to maintain a uniform distance within the depth of focus for the four wafer surfaces.

ここで、本実施例におけるレティクル原画6に対するウ
ェハ4のレベリングについて説明する。
Here, leveling of the wafer 4 with respect to the reticle original image 6 in this embodiment will be explained.

ウェハ保持台3の下面中央部には円形状の空間部3Aが
形成され、空間部3Aを覆う状態で弾性板8がねじ9に
より保持台3下面に取付けられる。
A circular space 3A is formed at the center of the lower surface of the wafer holder 3, and an elastic plate 8 is attached to the lower surface of the holder 3 with screws 9 so as to cover the space 3A.

弾性板8は例えば燐青銅などの材料で形成される。The elastic plate 8 is made of a material such as phosphor bronze.

ステージ2上に支柱10が垂設され、その上端がねじ1
1を介して弾性板8と結合され、このようにして、ウェ
ハ保持台3が支柱10に支持される。空間部3A及び弾
性板8の面積は、支柱10の上端面積よりも大きくしで
ある。
A support 10 is installed vertically on the stage 2, and its upper end is connected to a screw 1.
The wafer holder 3 is coupled to the elastic plate 8 via the support 1, and in this way, the wafer holder 3 is supported by the support 10. The areas of the space 3A and the elastic plate 8 are larger than the area of the upper end of the support column 10.

12はウェハ保持台3を支持するための支持部材で、中
間点を中心に屈伸動作を行う棒状の弾性部材で構成され
る。本実施例では、3個の支持部材12が支柱10の周
りに120°間隔で配置され、一端がウェハ保持台3の
下面端部と接続され。
Reference numeral 12 denotes a support member for supporting the wafer holding table 3, which is composed of a rod-shaped elastic member that performs bending and stretching operations around an intermediate point. In this embodiment, three supporting members 12 are arranged around the pillar 10 at intervals of 120 degrees, and one end is connected to the lower end of the wafer holding table 3.

他端がステージ2上面と接続される。The other end is connected to the top surface of the stage 2.

支持部材12は、第7図に示すように中間のリンク要素
Aとその両側に位置するリンク要素B。
As shown in FIG. 7, the support member 12 includes an intermediate link element A and link elements B located on both sides thereof.

Cとが一体成形され、リンク要素A−B間及びA・C間
に切り込み13aが設けてあり、例えば燐青銅のような
材料で成形される。また、支持部材12の両端にも切り
込み13bが形成される。
C is integrally molded, and cutouts 13a are provided between link elements A and B and between A and C, and are molded from a material such as phosphor bronze. Further, notches 13b are formed at both ends of the support member 12.

各支持部材12の中間点とクロスする位置には。At a position crossing the midpoint of each support member 12.

中間点を挾んでその一方の位置に支持部材12に対して
屈伸に必要な力を与える電動式のねじ機構14が配設さ
れ、他方の位置に支持部材12に戻し力を付勢するばね
機構ISが配置される。
An electric screw mechanism 14 is disposed at one position of the intermediate point to apply the force necessary for bending and stretching the support member 12, and a spring mechanism is placed at the other position to apply a return force to the support member 12. IS is placed.

ねじ機構14は、ボールベアリング16に支持されるス
クリューロッド17を水平方向にねじ送りする機能を有
し、その駆動精度はマイクロメータ程度の精度を有し、
制御器18がモータ19を回転制御して必要移動量が制
御される。ロッド17の先端は、支持部材12の中間点
に設けたボール12Aに点接触して、中間点を正確に押
圧力を与えるようにしである。
The screw mechanism 14 has a function of horizontally screwing a screw rod 17 supported by a ball bearing 16, and has a driving accuracy of about a micrometer.
The controller 18 controls the rotation of the motor 19 to control the required amount of movement. The tip of the rod 17 is in point contact with the ball 12A provided at the midpoint of the support member 12, so as to apply a pressing force accurately to the midpoint.

戻しばね機構15は、第4図(第4図は第1図のI−1
線矢視図である)に示すようにリング状の弾性部材で構
成され、はね保持具20に保持されつつ支持部材12と
ばね保持具20との間に介在する。支持部材12は、中
間点が原点位置oにある時には、その動作方向(中間点
とクロスする方向)に予圧を与えているために、第4図
のように多少楕円状に圧縮され、このようにしてばね力
が蓄積される。すなわち、予圧を与えることで、支持部
材12の中間点が原点Qの状態にある時にねじ機構14
のロッド17が後退(第4図の左方向)した場合であっ
ても、支持部材12に+Xの範囲で戻し力を与えること
が可能となる。
The return spring mechanism 15 is shown in FIG. 4 (FIG. 4 is I-1 in FIG.
As shown in FIG. 1), it is composed of a ring-shaped elastic member, and is interposed between the support member 12 and the spring holder 20 while being held by the spring holder 20. When the intermediate point is at the origin position o, the supporting member 12 is compressed into a somewhat elliptical shape as shown in FIG. spring force is accumulated. That is, by applying preload, the screw mechanism 14 can be moved when the intermediate point of the support member 12 is at the origin Q.
Even if the rod 17 moves backward (leftward in FIG. 4), it is possible to apply a returning force to the support member 12 in the +X range.

支持部材12は、ねじ機構14の往復動作と戻し機構1
5との力で、原点Oを中心に±Xの範囲(数I程度)で
中間点が一次変位するように設定しである。
The support member 12 supports the reciprocating movement of the screw mechanism 14 and the return mechanism 1.
5, the intermediate point is set to undergo a primary displacement within a range of ±X (approximately several I) around the origin O.

以上の構成において、ウェハ保持台3の2軸方向の移動
量制御は、各支持部材12の屈伸量を制御することで行
われる。X軸、Y軸方向の移動量制御は、ステージ2の
移動により行われる。
In the above configuration, the amount of movement of the wafer holding table 3 in the biaxial directions is controlled by controlling the amount of bending and stretching of each support member 12. Movement amount control in the X-axis and Y-axis directions is performed by moving the stage 2.

第3図(a)は、各支持部材12の料量を同等に今まで
よりも大きくした場合で、この場合には、弾性板8が空
間部3Aの存在で支柱の周りで均等に下側に撓み、その
結果ウェハ保持台3全体がΔ2(第6図のΔyの2倍に
相当)だけ下方向に平行移動する。この平行移動は、ウ
ェハ4全体をレティクル6に対し上下方向に位置合わせ
する場合に行われる。
FIG. 3(a) shows a case where the amount of each support member 12 is equally larger than before, and in this case, the elastic plate 8 is evenly lowered around the support column due to the existence of the space 3A. As a result, the entire wafer holding table 3 is translated downward by Δ2 (corresponding to twice Δy in FIG. 6). This parallel movement is performed when aligning the entire wafer 4 with respect to the reticle 6 in the vertical direction.

第3図(b)は、各支持部材12のうち例えば一つだけ
の料量を他の支持部材12よりも大きくした場合で、こ
の場合には、弾性板8の一部における下方向の撓み量が
増大してウェハ保持台3はθだけ傾き変位する。この傾
き変位の制御は、ウェハ4にそり、厚さのむら、異物混
入などの要因でレティクル6に対するウェハ4の距離が
均一でない場合にその修正として用いられる。
FIG. 3(b) shows a case where, for example, the amount of only one of the supporting members 12 is made larger than the other supporting members 12, and in this case, the downward deflection of a part of the elastic plate 8 As the amount increases, the wafer holding table 3 is tilted and displaced by θ. This tilt displacement control is used to correct when the distance of the wafer 4 to the reticle 6 is not uniform due to factors such as warping of the wafer 4, uneven thickness, or contamination of foreign matter.

変位制御系の動作は次のようにして行われる。The displacement control system operates as follows.

縮小投影露光に際してレティクル6に対するウェハ4の
位置調整を行う場合には、まずレティクル6とウェハ保
持台3上のウェハ4の上下方向の間隔を検出器(図示省
略)を用いて求める。
When adjusting the position of the wafer 4 with respect to the reticle 6 during reduction projection exposure, first the vertical distance between the reticle 6 and the wafer 4 on the wafer holder 3 is determined using a detector (not shown).

検出器で求められたレティクル・ウェハ間測定値は、電
気信号により制御器18に入力される。
The reticle-to-wafer measurement value determined by the detector is input to the controller 18 as an electrical signal.

制御器18は、レティクル・ウェハ間の間隔検出量と目
標の間隔量との間に許容以上の差がある場合には、両者
の偏差に基づきこれを修正すべく変位量を演算して、修
正に必要な変位指令信号を各支持部材12のねじ駆動機
構14のモータ19に送る。モータ19は、指令信号に
対応して回転駆動し、ねじ機構14により支持部材12
の中間点に必要な力Fが与えられる。
If there is a difference greater than permissible between the detected distance between the reticle and the wafer and the target distance, the controller 18 calculates a displacement amount to correct the difference based on the deviation between the two, and corrects it. A necessary displacement command signal is sent to the motor 19 of the screw drive mechanism 14 of each support member 12. The motor 19 is driven to rotate in response to a command signal, and the screw mechanism 14 rotates the support member 12.
The required force F is given at the midpoint of .

これにより、支持部材12の中間点が一次変位すると共
に、第3図で説明した動作メカニズムによりウェハ保持
台3が二次変位(微小変位)して、レティクル6に対し
ウェハ4面が均一に焦点深度に位置するように修正され
る。
As a result, the intermediate point of the support member 12 is firstly displaced, and the wafer holding table 3 is secondarily displaced (minor displacement) by the operating mechanism explained in FIG. Fixed to be located at depth.

本実施例によれば1次のような効果を奏する。According to this embodiment, the following effects are achieved.

■位置調整に用いる支持部材12は1発明の作用の項で
説明したように、屈伸性を有する支持部材を使用し、か
つ高精度のねじ機構14を用いることで、サブミクロン
程度の微小変位を得ることができた。また、リンク要素
A、B、Cを一体結合し、かつこれらに安定した屈伸を
可能にする切り込み13を入れ、しかも支柱10とウェ
ハ保持台3との結合も弾性板8を介して行うので、これ
らの結合部にピン結合のような遊びが発生せず、上記サ
ブミクロン単位の微小変位制御の精度の低下を防止する
ことができる。
■The support member 12 used for position adjustment is a flexible support member as explained in the section 1. Function of the invention, and by using a high-precision screw mechanism 14, minute displacement of submicron order can be achieved. I was able to get it. In addition, the link elements A, B, and C are integrally connected, and notches 13 are made in them to enable stable bending and stretching, and the support column 10 and the wafer holding table 3 are also connected via the elastic plate 8. There is no play in these joints, unlike in pin joints, and it is possible to prevent a decrease in the accuracy of the minute displacement control in submicron units.

第10図は本実施例における微小変位量の実測例で、0
.04μmまでの微小変位量が確認できた。また、微小
変位機構の実測値は変位計算値とほとんど変わらない。
Figure 10 shows an example of actual measurement of minute displacement in this example, with 0
.. A minute displacement amount of up to 0.4 μm was confirmed. Furthermore, the actual measured value of the minute displacement mechanism is almost the same as the calculated displacement value.

ここでの誤差分は、マイクロメータのアナログ読みの誤
差と考えられる。なお、この実測例は、本発明者が使用
可能な測定設備を用いて微小変位を測定したもので、よ
り高精度の測定設備を使用すれば0.01μm程度の微
小変位量の確認も可能である。
The error here is considered to be an error in the analog reading of the micrometer. Note that in this actual measurement example, minute displacements were measured using measurement equipment available to the inventor, and it is possible to confirm minute displacements of about 0.01 μm using more accurate measurement equipment. be.

しかも、ウェハ保持台3を弾性板8の撓み作用で上下方
向に変位させるが、弾性板8は支柱10とウェハ保持台
3の双方に固着されているために、横方向は強制固持さ
れ、上下方向(縦方向)の変位を専ら行い横方向の変位
は行わない。
Moreover, although the wafer holding table 3 is displaced in the vertical direction by the bending action of the elastic plate 8, since the elastic plate 8 is fixed to both the support column 10 and the wafer holding table 3, it is forcibly held in the horizontal direction and is Displacement is performed exclusively in the direction (vertical direction) and not in the lateral direction.

従って、以上の相乗効果により縮小投影のウェハレベリ
ング調整の精度を高めることができる。
Therefore, the synergistic effect described above makes it possible to improve the precision of wafer leveling adjustment for reduction projection.

■また、■で述べたように弾性板8だけで専ら上下方向
の変位を行゛うことか可能なので、横方向の変位を防止
するためのガイド機構を不要とし。
(2) Furthermore, as mentioned in (2), since it is possible to perform vertical displacement only with the elastic plate 8, there is no need for a guide mechanism to prevent lateral displacement.

機構の簡略化を図り得る。The mechanism can be simplified.

なお、弾性板8に代えて支柱10自体を昇降可能にして
もよいが、この場合には、支柱10の昇降ロッドとこれ
を収容する筒体との間に生じるギャップががたとなって
、横方向の微小変位の原因となりやすい。そのため、支
柱10そのものを昇降させる方式を採用してウェハレベ
リング機構のように高精度微小変位を行う場合には、被
変位体3の外周に横方向の移動を規制するガイド等を配
置する必要がある。
Note that instead of the elastic plate 8, the support 10 itself may be made to be able to rise and fall; however, in this case, the gap created between the lifting rod of the support 10 and the cylindrical body that accommodates it will become loose, causing the horizontal This tends to cause minute displacements in the direction. Therefore, if a method of raising and lowering the support column 10 itself is used to perform high-precision minute displacement as in a wafer leveling mechanism, it is necessary to arrange a guide or the like around the outer circumference of the displaced object 3 to restrict lateral movement. be.

■さらに、効率の点では、機械的な作動のため制御指示
量に対し出力変位がリアルに発生し、しかも支持部材1
2の中間点に戻し力を付勢するばね機構15として、予
圧を与えたリング状のばねを使用するが、このばね機構
は微小な変位に対しても充分な戻し力を蓄積するので、
スプリング等に較べ応答性が良い。従って、高応答性の
微小変位制御を可能にする。
■Furthermore, in terms of efficiency, due to the mechanical operation, output displacement occurs realistically with respect to the control instruction amount, and furthermore, the support member 1
A preloaded ring-shaped spring is used as the spring mechanism 15 that applies a return force to the intermediate point of 2, but since this spring mechanism accumulates sufficient return force even for minute displacements,
Good response compared to springs etc. Therefore, highly responsive minute displacement control is possible.

■本実施例のウェハレベリング機構は、前述したように
ウェハ保持台3の横方向の移動を規制するガイド機構を
不要とし、かつピエゾ素子のような電圧印加制御回路を
不要とし、部品点数の削減と装置のコストの低減を図る
ことができる。
■As mentioned above, the wafer leveling mechanism of this embodiment eliminates the need for a guide mechanism that restricts the lateral movement of the wafer holding table 3, and also eliminates the need for a voltage application control circuit such as a piezo element, reducing the number of parts. This makes it possible to reduce the cost of the device.

そして、以上の種々の効果により、縮小投影露光装置に
おける縮小レンズの高NA化に伴う焦点深度の浸度化に
充分対応可能なウェハレベリング機能を得て、16Mレ
ベルの高集積度化、高スループツト、高信頼性、ウェハ
の高効率量産化を可能にする。
As a result of the above-mentioned various effects, a wafer leveling function that can sufficiently cope with the deepening of the depth of focus accompanying the increase in the NA of the reduction lens in reduction projection exposure equipment has been obtained, and high integration and high throughput of the 16M level have been achieved. , high reliability, and enable highly efficient mass production of wafers.

第8図に、本発明の他の例(第2実施例)を示す。本実
施例は1回転角を変位させる角度変位機構で、第1実施
例同様の屈伸性を有する支持部材12を使用する。支持
部材12の一端は固定ベース32に結合され、他端は軸
31を中心に回転する回転体30の作用点と結合される
FIG. 8 shows another example (second embodiment) of the present invention. This embodiment is an angular displacement mechanism for displacing one rotation angle, and uses a support member 12 having flexibility similar to the first embodiment. One end of the support member 12 is coupled to a fixed base 32, and the other end is coupled to a point of action of a rotating body 30 rotating around a shaft 31.

なお1本実施例では図示省略されているが、支持部材1
2の中心点には、第1実施例同様のねし機構等で屈伸に
必要な力Fが与えられ、他端にはばね機構により戻し力
が付勢される。
Although not shown in this embodiment, the support member 1
A force F necessary for bending and stretching is applied to the center point of the body 2 by a tensioning mechanism similar to the first embodiment, and a returning force is applied to the other end by a spring mechanism.

このような構成によれば、中間点に与える力Fの可変制
御により、回転体30の角度変位を調整することができ
る。
According to such a configuration, the angular displacement of the rotating body 30 can be adjusted by variable control of the force F applied to the intermediate point.

第9図は、第8図の変形例(第3実施例)で、回転体3
3の外周に周方向に等間隔で回転体の被支持部34を2
箇所以上設定しく本実施例では、3箇所の作用点を12
0度間縞間隔置する)、屈伸性を有する支持部材12も
作用点34の数だけ備えて、これらの作用点を各支持部
材12により支持してなる。
FIG. 9 shows a modification (third embodiment) of FIG. 8, in which the rotating body 3
The supported parts 34 of the rotating body are arranged at equal intervals in the circumferential direction on the outer periphery of the rotating body 3.
In this example, the three points of action are set to 12 points.
The support members 12 having flexibility and extensibility are also provided in the same number as the points of action 34 (spaced apart by stripes of 0 degrees), and these points of action are supported by each support member 12.

本実施例でも、支持部材12の中心点にねじ機構等で屈
伸に必要な力Fが与えられ、他端にばばね機構により戻
し力が付勢される。各支持部材12に与えられる力Fは
すべて均等な力であり、これにより回転体33が角度変
位する。
In this embodiment as well, the force F necessary for bending and stretching is applied to the center point of the support member 12 by a screw mechanism or the like, and the return force is applied to the other end by a spring mechanism. The forces F applied to each support member 12 are all uniform, and the rotating body 33 is thereby angularly displaced.

そして1本実施例によれば1回転体33の被支持部34
を回転体外周に等間隔で複数設定し、これらを複数の支
持部材12で支持することで、軸31に対する回転体3
3の調芯作用がなされ、回転体33が軸に対して偏心し
て回転することを防止し、より高精度な角度変位制御を
行い得る。
According to this embodiment, the supported portion 34 of the rotating body 33
By setting a plurality of at equal intervals on the outer circumference of the rotating body and supporting these with a plurality of supporting members 12, the rotating body 3 relative to the shaft 31 can be
3 is performed, the rotating body 33 is prevented from rotating eccentrically with respect to the axis, and more accurate angular displacement control can be performed.

なお、上記各実施例では、屈伸性を有する支持部材12
を弾性棒状部材でリンク要素A、B、Cを一体結合する
が、これに限定するものではなく。
In addition, in each of the above embodiments, the support member 12 having flexibility and extensibility is
The link elements A, B, and C are integrally connected using an elastic rod-like member, but the present invention is not limited to this.

前述の如く中間点が一次変位を行い、その少なくとも一
端が二次変位を行うような部材であればよい。例えば、
二つのリンク要素同士をピン結合するようなものでも、
さほどの高精度を必要とされない微小変位機構であれば
適用可能である。
As described above, any member may be used as long as the intermediate point undergoes primary displacement and at least one end thereof undergoes secondary displacement. for example,
Even something like connecting two link elements with a pin,
Any minute displacement mechanism that does not require very high precision can be applied.

また、上記実施例では、微小変位機構の応用システムと
して、縮小投影露光装置を例示したが、これに限定され
ず、そのほか、例えば光学干渉計の光軸調整、テレスコ
ープ像のゆがみ補正システム、顕微鏡用ステージ、VT
Rヘッドとトラックのずれ修正システム、サブミクロン
変位計、油圧機構の変位拡大等に適用可能であり、その
用途を限定するものではない。
In addition, in the above embodiment, a reduction projection exposure apparatus was illustrated as an application system of the minute displacement mechanism, but the system is not limited to this, and other applications include, for example, optical axis adjustment of an optical interferometer, a distortion correction system for a telescope image, a microscope stage, VT
It can be applied to a system for correcting misalignment between an R head and a track, a submicron displacement meter, increasing the displacement of a hydraulic mechanism, etc., and is not limited to its uses.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の微小変位機構によれば、機械的な
屈伸機構により一次変位及び二次変位を生じさせること
で、ピエゾ素子のような特性のばらつきをなくしてサブ
ミクロンレベルの超微小変位を可能にし、部品点数も少
なくして、製作コストの低減を図り得る。
As described above, according to the micro-displacement mechanism of the present invention, by generating primary displacement and secondary displacement using a mechanical bending/stretching mechanism, it is possible to eliminate variations in characteristics like piezo elements and achieve ultra-fine displacement at the sub-micron level. This enables displacement, reduces the number of parts, and reduces manufacturing costs.

また、支持部材として、リンク要素A、B、Cを一体結
合し、これらに切り込みを入れたものを用いれば、微小
変位の精度アップと誤差を極力なくし信頼性を高めるこ
とができる。ちなみに、性能の点は、ピエゾ素子の平均
的最少変位量が0゜1μmレベルであるのに対し、本発
明では、0001μmの超微小変位も可能である。
Further, by using a support member in which the link elements A, B, and C are integrally connected and notches are made therein, it is possible to improve the accuracy of minute displacement and eliminate errors as much as possible, thereby increasing reliability. Incidentally, in terms of performance, while the average minimum displacement of a piezo element is at the level of 0.1 μm, the present invention allows ultra-fine displacement of 0.001 μm.

さらに、前記の微小変位機構を応用した本発明における
縮/J)投影露光装置によれば、ウェハ保持台を支柱に
弾性板を介して取付けたり、前記支持部材構造を採用す
ることで、誤差の少ない、しかも応答性に優れた高精度
のウェハレベリング制御の実現を可能にする。
Furthermore, according to the projection exposure apparatus of the present invention which applies the above-mentioned minute displacement mechanism, by attaching the wafer holding table to the column via an elastic plate and by adopting the above-mentioned support member structure, it is possible to reduce errors. This makes it possible to achieve high-precision wafer leveling control with a small number of steps and excellent responsiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の第1実施例で微小変位機構を縮小投
影露光のウェハレベリング機構に適用した説明図、第2
図は、第1実施例の適用対象となる縮小投影露光装置の
全体構成図、第3図は、第1実施例のウェハ保持台の変
位制御例を示す説明図、第4図は、第1図の1−1線矢
視図、第5図及び第6図は、本発明の動作原理を示す説
明図。 第7図は、第1実施例に用いる支持部材の正面目第8図
は1本発明の第2実施例を示す構成概略し第9図は、本
発明の第3実施例を示す構成概略し第10図は、第1実
施例に用いた微ホ変位機構グー次変位量と二次変位量の
実測値と計算値とを貝較して示す線図である。 2・・・支持台、3・・・ウェハ保持台(被変位体)、
3A・・・空間部、4・・・ウェハ、6・・・レティク
ル、7・・・縮小投影露光光学系、8・・・弾性板、1
0・・・支材12 ・=支持部材、12 A−・・ボー
ル、13a、13b・・・切り込み、14・・・ねじ機
構、15 戻し機構(リング状ばね)、18・・・制御
器、19・・・モータ30・・・回転体、31・・・軸
1 is an explanatory diagram in which a minute displacement mechanism is applied to a wafer leveling mechanism for reduction projection exposure in a first embodiment of the present invention, and FIG.
The figure is an overall configuration diagram of a reduction projection exposure apparatus to which the first embodiment is applied, FIG. 3 is an explanatory diagram showing an example of displacement control of the wafer holding table of the first embodiment, and FIG. The 1-1 line arrow view, FIGS. 5 and 6 are explanatory diagrams showing the operating principle of the present invention. FIG. 7 is a front view of the support member used in the first embodiment. FIG. 8 is a schematic diagram showing a second embodiment of the present invention, and FIG. 9 is a schematic diagram showing a third embodiment of the present invention. FIG. 10 is a diagram showing a comparison between actually measured values and calculated values of the goo-order displacement amount and the secondary displacement amount of the fine-hole displacement mechanism used in the first embodiment. 2... Support stand, 3... Wafer holding stand (displaced object),
3A... Space part, 4... Wafer, 6... Reticle, 7... Reduction projection exposure optical system, 8... Elastic plate, 1
0... Strut 12 = Support member, 12 A-... Ball, 13a, 13b... Notch, 14... Screw mechanism, 15 Return mechanism (ring-shaped spring), 18... Controller, 19...Motor 30...Rotating body, 31...Axis.

Claims (1)

【特許請求の範囲】 1、被変位体を角度的或いは直線的に変位させる機構に
おいて、 中間点を中心に屈伸動作が可能な支持部材により前記被
変位体を支持し、 且つ、前記支持部材の中間点に屈伸動作に必要な力を与
える手段と、 前記中間点に与える力を可変制御する手段とを備えてな
ることを特徴とする微小変位機構。 2、可動体を上下或いは左右方向に位置調整する機構に
おいて、 前記可動体の端部のうち2箇所以上で周方向に等間隔と
なる位置を、中間点を中心に屈伸動作が可能な支持部材
により支持し、 且つ、前記支持部材の中間点に屈伸動作に必要な力を与
える手段と、 前記中間点に与える力を可変制御する手段とを備えてな
ることを特徴とする微小変位機構。 3、第2請求項において、前記可動体は、その裏面中央
部に空間部が形成されて、この空間部を覆う状態で可動
体裏面に弾性板が取付けられ、この弾性板をベース上に
設置した支柱の一端と結合して、前記可動体を前記ベー
ス上に支持してなる微小変位機構。 4、軸を介して回転可能に取付けられた回転体を角度変
位させる機構において、 中間点を中心に屈伸動作が可能な支持部材により前記回
転体の少なくとも一端を支持し、且つ、前記支持部材の
中間点に屈伸動作に必要な力を与える手段と、 前記中間点に与える力を可変制御する手段とを備えてな
ることを特徴とする微小変位機構。 5、第4請求項において、前記回転体の支持すべき箇所
(被支持部)を回転体外周に周方向に等間隔で2箇所以
上設定し、これに合わせて支持部材を複数備えて、これ
らの被支持部を前記各支持部材により支持してなる微小
変位機構。 6、第1請求項ないし第5請求項のいずれか1項におい
て、前記屈伸性を有する支持部材は、中間のリンク要素
Aとその両側に位置するリンク要素B、Cとを一体成形
した弾性の棒状部材で、この弾性棒状部材のうち前記リ
ンク要素A・B間及び前記リンク要素A・C間に切り込
みを設けると共に、該棒状部材の両端における他の部材
との接続部近くにも切り込みを設けてなる微小変位機構
。 7、第1請求項ないし第6請求項のいずれか1項におい
て、前記支持部材の中間点に屈伸に必要な力を与える手
段は、前記中間点に接しつつ往復動作が可能なねじ機構
よりなる微小変位機構。 8、第1請求項ないし第7請求項のいずれか1項におい
て、前記支持部材の中間点とクロスする位置には、該中
間点を挾む一方の位置に前記屈伸に必要な力を与える手
段を配置し、他方の位置に前記支持部材に戻し力を付勢
するばね機構を配置し、 且つ前記ばね機構は、外周一端が前記中間点に接するリ
ング状の弾性部材で、該リング状弾性部材には、前記中
間点が原点位置にある時に該リング状弾性部材の動作方
向(中間点とクロスする方向)に予圧を与えてばね力を
蓄積させてなる微小変位機構。 9、被変位体を支持する部材を、中間のリンク要素Aと
その両側に位置するリンク要素B、Cとを一体成形した
弾性の棒状部材で構成し、この弾性棒状部材のうち前記
リンク要素A・B間及び前記リンク要素A・C間に切り
込みを設けると共に、該棒状部材の両端にも切り込みを
設けてなることを特徴とする支持部材。 10、ウェハを載置するウェハ保持台と、前記ウェハ保
持台の上方に配置されてレティクルの回路パターンを縮
小投影させる光学系とを備える投影露光装置において、 前記ウェハ保持台を上下方向に移動させる機構として、
該ウェハ保持台の下面中央部に空間部を形成して、この
空間部を覆う状態でウェハ保持台下面に取付けた弾性板
と、上端が前記弾性板と結合して前記ウェハ保持台を支
持する支柱と、前記支柱の周りに2以上配置されて前記
ウェハ保持台の端部を周方向に等間隔で支持する屈伸性
を有する支持部材等で構成し、 前記支持部材は、中間のリンク要素Aとその両側に位置
するリンク要素B、Cとを一体成形した弾性の棒状部材
で、この弾性棒状部材のうち前記リンク要素A・B間及
び前記リンク要素A・C間に切り込みを設けると共に、
該棒状部材の両端における他の部材との接続部近くにも
切り込みを設けてなり、 且つ、前記支持部材の中間点に屈伸動作に必要な力を与
える機構と、 前記支持部材の中間点に戻し力を付勢するばね機構と、 前記レティクルと前記ウェハとの上下方向の間隔を検出
する検出器と、 前記レティクル・ウェハ間の間隔検出量と目標の間隔量
との偏差に基づき前記中間点に与える力を可変制御する
制御部とを備えてなる縮小投影露光装置。
[Scope of Claims] 1. In a mechanism for angularly or linearly displacing a displaced body, the displaced body is supported by a supporting member capable of bending and stretching around an intermediate point, and the supporting member is A micro-displacement mechanism comprising: means for applying a force necessary for bending and stretching at an intermediate point; and means for variably controlling the force applied to the intermediate point. 2. In a mechanism for adjusting the position of a movable body in the vertical or horizontal direction, a support member capable of bending and extending positions at equal intervals in the circumferential direction at two or more of the ends of the movable body, centering on a midpoint. A micro-displacement mechanism, comprising: means for applying a force necessary for bending and stretching operations to an intermediate point of the support member; and means for variably controlling the force applied to the intermediate point. 3. In the second aspect, the movable body has a space formed in the center of its back surface, and an elastic plate is attached to the back surface of the movable body to cover this space, and this elastic plate is installed on the base. A micro-displacement mechanism, which is connected to one end of a support column and supports the movable body on the base. 4. In a mechanism for angularly displacing a rotating body rotatably attached via a shaft, at least one end of the rotating body is supported by a support member capable of bending and extending around an intermediate point, and A micro-displacement mechanism comprising: means for applying a force necessary for bending and stretching at an intermediate point; and means for variably controlling the force applied to the intermediate point. 5. In the fourth aspect, two or more locations to be supported (supported portions) of the rotating body are set at equal intervals in the circumferential direction on the outer periphery of the rotating body, and a plurality of supporting members are provided correspondingly, and these A micro-displacement mechanism in which a supported portion is supported by each of the supporting members. 6. In any one of claims 1 to 5, the flexible support member is an elastic support member integrally formed with an intermediate link element A and link elements B and C located on both sides thereof. A rod-shaped member, in which cuts are provided between the link elements A and B and between the link elements A and C of the elastic rod-shaped member, and cuts are also provided near the connection portions with other members at both ends of the rod-shaped member. Micro displacement mechanism. 7. In any one of claims 1 to 6, the means for applying the force necessary for bending and stretching the intermediate point of the support member comprises a screw mechanism that is capable of reciprocating motion while contacting the intermediate point. Micro displacement mechanism. 8. In any one of claims 1 to 7, at a position crossing the intermediate point of the support member, means for applying a force necessary for the bending and stretching to one position sandwiching the intermediate point. and a spring mechanism for applying a return force to the support member is disposed at the other position, and the spring mechanism is a ring-shaped elastic member with one outer peripheral end touching the intermediate point, and the ring-shaped elastic member The minute displacement mechanism is configured to apply a preload to the ring-shaped elastic member in the operating direction (direction crossing the intermediate point) when the intermediate point is at the origin position, thereby accumulating a spring force. 9. The member supporting the displaced object is constituted by an elastic rod-shaped member integrally formed with an intermediate link element A and link elements B and C located on both sides thereof, and among this elastic rod-shaped member, the link element A - A support member characterized in that a notch is provided between B and between the link elements A and C, and also notches are provided at both ends of the rod-shaped member. 10. In a projection exposure apparatus comprising a wafer holder on which a wafer is placed, and an optical system disposed above the wafer holder to reduce and project a circuit pattern on a reticle, the wafer holder is moved in the vertical direction. As a mechanism,
A space is formed in the center of the lower surface of the wafer holder, and an elastic plate is attached to the lower surface of the wafer holder so as to cover the space, and the upper end is joined to the elastic plate to support the wafer holder. It is composed of a support column and two or more flexible support members arranged around the column and supporting the end portions of the wafer holding table at equal intervals in the circumferential direction, and the support member is an intermediate link element A. and link elements B and C located on both sides thereof are integrally molded, and cuts are provided between the link elements A and B and between the link elements A and C in this elastic rod member, and
A notch is also provided at both ends of the rod-shaped member near the connection with another member, and a mechanism for applying the force necessary for bending and stretching to the midpoint of the support member; a spring mechanism that applies a force; a detector that detects a vertical distance between the reticle and the wafer; A reduction projection exposure apparatus comprising a control section that variably controls applied force.
JP2073661A 1990-03-23 1990-03-23 Microdisplacement mechanism, support member and reduction projection exposure device thereof Pending JPH03277441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2073661A JPH03277441A (en) 1990-03-23 1990-03-23 Microdisplacement mechanism, support member and reduction projection exposure device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2073661A JPH03277441A (en) 1990-03-23 1990-03-23 Microdisplacement mechanism, support member and reduction projection exposure device thereof

Publications (1)

Publication Number Publication Date
JPH03277441A true JPH03277441A (en) 1991-12-09

Family

ID=13524678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2073661A Pending JPH03277441A (en) 1990-03-23 1990-03-23 Microdisplacement mechanism, support member and reduction projection exposure device thereof

Country Status (1)

Country Link
JP (1) JPH03277441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075572A (en) * 2001-09-07 2003-03-12 Senjo Seiki Kk Fine adjustment device for displacement and fine adjustment method of displacement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075572A (en) * 2001-09-07 2003-03-12 Senjo Seiki Kk Fine adjustment device for displacement and fine adjustment method of displacement

Similar Documents

Publication Publication Date Title
KR100233614B1 (en) Support device with a tiltable object table, and optical lithographic device provided with such a support device
US4999669A (en) Levelling device in an exposure apparatus
US5858587A (en) Positioning system and method and apparatus for device manufacture
US6172373B1 (en) Stage apparatus with improved positioning capability
JP2598408B2 (en) Optolithographic apparatus and method for controlling imaging characteristics of a lens system of the apparatus
TWI424186B (en) Objective, in particular projection objective for semiconductor lithography
JP5881377B2 (en) Sample positioning device, sample stage, charged particle beam device
US6836093B1 (en) Exposure method and apparatus
KR19980018216A (en) Projection exposure apparatus
JPH10206714A (en) Lens moving device
KR20010096591A (en) Stage apparatus and exposure apparatus
WO2008122313A1 (en) Optical element module with imaging error and position correction
JPH0786377A (en) Positioning equipment
JPH10335204A (en) Support structure for mask hold frame
JPH03277441A (en) Microdisplacement mechanism, support member and reduction projection exposure device thereof
US20090002670A1 (en) Apparatus for the manipulation and/or adjustment of an optical element
JP5955964B2 (en) Guidance for target processing tools
JPH11251409A (en) Positioner and aligner
JP2006170957A (en) Tilted stage
CN102169219B (en) Radial adjustment device for optical system
JP3086006B2 (en) Positioning stage device
JP2005308145A (en) Vibration-isolating device and exposure device
JP3086005B2 (en) Positioning stage device
US20230060389A1 (en) Driving apparatus, exposure apparatus, and article manufacturing method
JP2539124B2 (en) Precision drive device for wafers using solid-state actuator