JPH03276687A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH03276687A
JPH03276687A JP7611690A JP7611690A JPH03276687A JP H03276687 A JPH03276687 A JP H03276687A JP 7611690 A JP7611690 A JP 7611690A JP 7611690 A JP7611690 A JP 7611690A JP H03276687 A JPH03276687 A JP H03276687A
Authority
JP
Japan
Prior art keywords
layer
type
group
gas
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7611690A
Other languages
Japanese (ja)
Inventor
Masayuki Shono
昌幸 庄野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7611690A priority Critical patent/JPH03276687A/en
Publication of JPH03276687A publication Critical patent/JPH03276687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To change-over gradually group V gas in a third layer and to suppress the generation of a crystal defect in each growth layer to be formed after the group V gas is changed-over by a method wherein the third layer, which is constituted of group V elements of As and P, is provided between a first layer, which is constituted of a group V element of As, and a second layer which is constituted of a group V element of P. CONSTITUTION:A first buffer layer 2 consisting of an N-type GaAs, a second buffer layer 3 consisting of an N-type Ga1-xInxAsyP1-y, a third buffer layer 4 consisting of an N-type Ga0.48In0.52P, an N-type clad layer 5 consisting of an N-type AlGaInP, an active layer 6 consisting of an undoped GaInP, a P-type clad layer 7 consisting of a P-type AlGaInP, a contact layer 8 consisting of a P-type GaInP and a cap layer 9 consisting of a P-type GaAs are epitaxially grown continuously and in that order on one main surface of a substrate 1. At this time, the layer 3 is changed its composition from the side of the layer 2 by changing gradually the amount of supply of each raw gas and is formed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、発振層がAlGaInP系の化合物半導体か
らなる半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a semiconductor laser whose oscillation layer is made of an AlGaInP-based compound semiconductor.

(ロ)従来の技術 AlGaInPは0.6μm帯の波長を有し、可視光半
導体レーザとして用いられている。
(b) Prior art AlGaInP has a wavelength in the 0.6 μm band and is used as a visible light semiconductor laser.

第5図は従来のAlGaInP系の半導体レーザを示し
、例えば特開昭62−200786号公報等に記載され
ている。
FIG. 5 shows a conventional AlGaInP semiconductor laser, which is described in, for example, Japanese Patent Laid-Open No. 62-200786.

同図において、(20)はn型GaAsからなる基板、
(21)はn型GaAsバッファ層、(22)はn型G
aInPバッファ層、(23)はn型AIGaInPか
らなるn型クラッド層、(24)はアンドープのGaI
nPからなる活性層、(25)はp型AlGa1nPか
らなるp型クラッド層である。これらの層は周知のMO
CVD法を用いて基板(20)の−主面上に順次エピタ
キシャル成長される。また、p型クラッド層(25)に
はエツチングにより、輻5μm程度のストライプ状のリ
ッジ(26)が形成されている。
In the figure, (20) is a substrate made of n-type GaAs;
(21) is an n-type GaAs buffer layer, (22) is an n-type G
aInP buffer layer, (23) is n-type cladding layer made of n-type AIGaInP, (24) is undoped GaI
The active layer (25) is made of nP and the p-type cladding layer is made of p-type AlGa1nP. These layers are the well-known MO
Epitaxial growth is sequentially performed on the -main surface of the substrate (20) using the CVD method. Furthermore, a striped ridge (26) with a diameter of about 5 μm is formed in the p-type cladding layer (25) by etching.

(27)はリッジ(26)頂部を除くp型クラッド層(
25)上に形成されたn型GaAsからなるブロック層
、(28)は露出したp型クラッド層(25)のリッジ
(26)頂部及びブロック層(27)上に形成されたn
型GaAsからなるキャップ層、(29)はキャップ層
(28)上に形成されたp側電極、(30)は基板(2
0)の他主面上に形成されたn側電極である。
(27) is the p-type cladding layer (excluding the top of the ridge (26)
25) A block layer made of n-type GaAs formed on the top, and (28) a block layer formed on the exposed top of the ridge (26) of the p-type cladding layer (25) and on the block layer (27).
A cap layer made of type GaAs, (29) is a p-side electrode formed on the cap layer (28), and (30) is a substrate (2).
0) is an n-side electrode formed on the other main surface.

(ハ)発明が解決しようとする課題 斯る従来装置においては、n型GaAsバッファ層上に
n型GaInPバッファ層をエビタキシャル成長する際
に、V族ガスの原料ガスをAsからPへ切り換えなけれ
ばならない。
(c) Problems to be Solved by the Invention In such a conventional apparatus, when epitaxially growing an n-type GaInP buffer layer on an n-type GaAs buffer layer, the raw material gas of group V gas must be switched from As to P. Must be.

然るに、V族ガスの切り換え詩にAs供給ガスとP供給
ガスを瞬時に入れ替えることは困難である。従って、切
り換え直後はAsも成長層中に取り込まれることとなり
、これによって通常GaAsと格子整合するGa1nP
の格子定数が変わるため、格子不整合が生じ、成長層に
結晶欠陥が発生しやすくなる。さらに、結晶欠陥の生じ
た成長層の上に形成される層においても、その結晶性が
悪化するため、作製される半導体レーザ自体も特性が悪
く、劣化し易いといった問題があった。
However, it is difficult to instantly replace the As supply gas and the P supply gas when switching between group V gases. Therefore, immediately after switching, As is also incorporated into the growth layer, which causes Ga1nP, which is normally lattice matched to GaAs, to be incorporated into the growth layer.
Since the lattice constant of the crystal changes, lattice mismatch occurs and crystal defects are more likely to occur in the grown layer. Furthermore, since the crystallinity of the layer formed on the grown layer with crystal defects deteriorates, there is a problem that the manufactured semiconductor laser itself has poor characteristics and is easily deteriorated.

また、GaAs基板上に直接GaInP層を形成する場
合でも、基板を成長温度まで昇温する際に、基板から蒸
気圧の高いAsが抜けるのを抑制するため、基板上にA
sを供給しなければならず、同様にV族ガスの切り換え
を行わなければならない。
Furthermore, even when forming a GaInP layer directly on a GaAs substrate, in order to suppress As having a high vapor pressure from escaping from the substrate when the substrate is heated to the growth temperature, it is necessary to
s must be supplied, and the group V gas must be switched as well.

従って、本発明は、V族ガスの切り換えを行っても、そ
の界面で結晶欠陥が生じにくく、ガス切り換え後の成長
層の結晶性のよいAlGa1nP糸の半導体レーザを提
供するものである。
Therefore, the present invention provides a semiconductor laser made of AlGa1nP yarn, in which crystal defects are less likely to occur at the interface even when the group V gas is switched, and the grown layer has good crystallinity after the gas is switched.

(ニ)課題を解決するための手段 本発明は、活性層を含む発振層が、AIGaInP系の
化合物半導体からなる半導体レーザであって、上記課題
を解決するため、層を構成する■族元素が、Asである
第1層とPである第2層との間に、層を構成するV族元
素がAsとPからなり、且つその組成比が上記第1層と
格子整合するように設定された第3層を備えることを特
徴とする。
(d) Means for Solving the Problems The present invention provides a semiconductor laser in which the oscillation layer including the active layer is made of an AIGaInP-based compound semiconductor, and in order to solve the above problems, the group , between the first layer made of As and the second layer made of P, the group V elements constituting the layer are composed of As and P, and the composition ratio is set so as to lattice match with the first layer. It is characterized by comprising a third layer.

(ホ)作用 本発明によれば、層を構成するV族元素が、Asである
第1層とPである第2層との間に、層を構成するV族元
素がAsとPがらなり、且つその組成比が上記第1層と
格子整合するように設定された第3層を設けることによ
って、各層界面での格子定数が一定に保たれる。
(E) Effect According to the present invention, between the first layer in which the group V elements constituting the layer are As and the second layer in which the group V elements constituting the layer are P, the group V elements constituting the layer are composed of As and P. By providing a third layer whose composition ratio is set to lattice match with the first layer, the lattice constant at each layer interface is kept constant.

(へ)実施例 第1図に本発明の一実施例を示す。図において、(1)
はn型GaAsからなる基板である。(2)は0.3μ
m厚さのn型GaAsからなる第1バッファ層、(3)
は1μm厚さのn型G a+ −* I nx A s
yP、□からなる第2バッファ層、(4)は0.3μm
厚さのn型G a(<s I n++1*Pからなる第
3バッフ7層、(5)は0.8μm厚さのn型AIGa
InPからなるn型クラッド層、(6)は0.1μm厚
さのアンドープGaInPからなる活性層、(7)は0
.8μm厚さのp型AIGaInPからなるp型りラッ
ド層、(8)は0.1μm厚さのp型Ga1nPからな
るコンタクト層、(9)は0.4μmJvさのp型Ga
Asからなるキャップ層で、これらの層は基板(1)の
−主面上に連続して順次エピタキシャル成長される。
(F) Embodiment FIG. 1 shows an embodiment of the present invention. In the figure, (1)
is a substrate made of n-type GaAs. (2) is 0.3μ
a first buffer layer made of n-type GaAs with a thickness of m, (3)
is a 1 μm thick n-type Ga+ −*I nx A s
yP, the second buffer layer consisting of □, (4) is 0.3 μm
The third buffer layer consists of n-type Ga (<s I n++1*P, (5) is 0.8 μm thick n-type AIGa
An n-type cladding layer made of InP, (6) an active layer made of undoped GaInP with a thickness of 0.1 μm, and (7) a 0.1 μm thick active layer made of undoped GaInP.
.. A p-type rad layer made of p-type AIGaInP with a thickness of 8 μm, (8) a contact layer made of p-type Ga1nP with a thickness of 0.1 μm, and (9) a p-type Ga with a thickness of 0.4 μm
The cap layer is made of As, and these layers are successively epitaxially grown on the -main surface of the substrate (1).

この時、第2バッファ層(3)は各原料ガスの供給量を
徐々に変えることによって、第1バッファ層(2)側か
らXをOから0.52まで、yを1がら0まで、第2図
に破線で示す如く、X+  Vの値を満足させながら、
組成を変化させて形成されている。
At this time, the second buffer layer (3) is gradually changed from the first buffer layer (2) side to X from O to 0.52, y from 1 to 0, and y from 1 to 0. As shown by the broken line in Figure 2, while satisfying the value of X + V,
It is formed by changing the composition.

ここで第2図の破線はGaAsとGap−、I nxA
s、Pl−7とが格子整合するXとyの条件を示してい
る。
Here, the broken line in Fig. 2 indicates GaAs, Gap-, InxA
s and Pl-7 are lattice matched.

また、p型りラッド層(7)、p型コンタクト層(8)
、キャップ層(9)は、キャップ層(9)表面から、p
型りラッド層(7)の厚さが0.2μmになるまで選択
的にエツチングされ、これによってp型りラッド層(7
)にはリッジ(10)が設けられている。
In addition, a p-type rad layer (7), a p-type contact layer (8)
, the cap layer (9) has p
The patterned rad layer (7) is selectively etched until the thickness becomes 0.2 μm, thereby forming the p-type rad layer (7).
) is provided with a ridge (10).

(11)は露出したp型りラッド層(7)上及びリッジ
(10)側面に被着されたSin、からなる絶縁層、(
12)は露出しなリッジ(10)頂部及び絶縁層(11
)上に形成されたn側電極、(13)は基板(1)の他
主面上に形成されたn側電極である。
(11) is an insulating layer made of Sin deposited on the exposed p-type rad layer (7) and on the side surfaces of the ridge (10);
12) includes the exposed top of the ridge (10) and the insulating layer (11).
), and (13) is an n-side electrode formed on the other main surface of the substrate (1).

斯る実施例の製造過程において、p型りラッド層(7)
をエピタキシャル成長した後、その表面状態を観察し、
ヒロックと呼ばれる結晶欠陥の数を測定したところ20
0個/ c m ’以下であった。
In the manufacturing process of this embodiment, the p-type rad layer (7)
After epitaxial growth, we observed the surface state,
The number of crystal defects called hillocks was measured at 20.
It was less than 0 pieces/cm'.

また、比較のため、第2バッファ層(3)を設けないこ
と以外は本実施例装置と同じように作製した比較装置の
p型りラッド層上の結晶欠陥の数を測定したところ、約
8000個/ c m ”であった。
For comparison, we measured the number of crystal defects on the p-type rad layer of a comparative device manufactured in the same manner as the device of this example except that the second buffer layer (3) was not provided, and found that it was approximately 8000. pieces/cm”.

さらに、斯る本実施例装置と比較装置とを夫々25個ず
つ作製し、その発振しきい値電流を測定した。本実施例
装置の測定結果を第3図(a)に、比較装置の測定結果
を第3図(b)に示す。
Further, 25 units each of the device of this embodiment and the comparative device were manufactured, and their oscillation threshold currents were measured. The measurement results of the device of this embodiment are shown in FIG. 3(a), and the measurement results of the comparative device are shown in FIG. 3(b).

測定結果から明らかなように、本実施例装置では発振し
きい値電流のバラツキが小さく、発振しきい値電流の小
さい半導体レーザが歩留まり良く作製できることが分か
る。
As is clear from the measurement results, it can be seen that the device of this embodiment has small variations in the oscillation threshold current, and that a semiconductor laser with a small oscillation threshold current can be manufactured with a high yield.

第4図は本発明の他の実施例を示し、第1図と同じもの
には同番号を付し、説明を省略する。
FIG. 4 shows another embodiment of the present invention, in which the same parts as in FIG. 1 are given the same numbers and their explanation will be omitted.

図において、(14)はn型AjGaAsからなる第1
バッファ層、(15)はn型(A ’G a)+−x 
I n、A S。
In the figure, (14) is the first layer made of n-type AjGaAs.
Buffer layer, (15) is n-type (A'Ga)+-x
I n, A S.

Pl−1からなる第2バッファ層で、基板(1)とn型
クラッド層(5)の間に設けられる。また、本実施例に
おいても、第2バッファ層(15)は各原料ガスの供給
量を徐々に変えることによって、第1バッファ層(14
)側からXを0から0.52まで、yを1から0まで、
第2図に破線で示す如く、x、yの値を満足させながら
、組成を変化させて形成されている。
A second buffer layer made of Pl-1 and provided between the substrate (1) and the n-type cladding layer (5). Further, in this embodiment as well, the second buffer layer (15) is formed by gradually changing the supply amount of each raw material gas.
) side, X from 0 to 0.52, y from 1 to 0,
As shown by the broken line in FIG. 2, the composition is changed while satisfying the x and y values.

斯る実施例においても、n型クラッド層(7)表面に現
れる結晶欠陥の数は第1図の構造と同様に約5ooo個
/ c m ”程度となり、発振しきい値電流の小さい
半導体レーザが歩留まり良く得られた。
In this embodiment as well, the number of crystal defects appearing on the surface of the n-type cladding layer (7) is approximately 500/cm'', similar to the structure shown in FIG. 1, and a semiconductor laser with a small oscillation threshold current is A good yield was obtained.

(ト)発明の効果 本発明によれば、層を構成するV族元素が、Asである
第1層とPである第2層との間に、層を構成するV族元
素がAsとPからなる第3層を設けることによって、該
第3層の■族ガスを徐々に切り換えることができるため
、第1層と格子整合を保ったまま当該第3層を形成する
ことができ、これによってV族ガスを切り換えた後に形
成される各成長層での結晶欠陥の発生が抑えられ、特性
第1図は本発明の一実施例を示す断面図、第2図はGa
AsとG al−++ I nmAsyP l−F、あ
るいはAtGaAsと(A jGa)+−,I nxA
s、P l−Fとが格子整合するx、yの値を示す図、
第3図(a)及び同図(b)は夫々本実施例装置と比較
装置の発振しきい値電流を示す特性図、第4図は本発明
の他の実施例を示す断面図、第5図は従来構造を示す断
面図である。
(G) Effects of the Invention According to the present invention, between the first layer in which the V group elements constituting the layers are As and the second layer in which the V group elements constituting the layers are P, the V group elements constituting the layers are As and P. By providing a third layer consisting of The occurrence of crystal defects in each growth layer formed after switching the V group gas is suppressed, and the characteristics are shown in FIG.
As and Gal-++ I nmAsyP l-F, or AtGaAs and (A jGa)+-, InxA
A diagram showing the values of x and y where s and P l-F are lattice matched,
3(a) and 3(b) are characteristic diagrams showing the oscillation threshold currents of the device of this embodiment and the comparative device, respectively, FIG. 4 is a sectional view showing another embodiment of the present invention, and FIG. The figure is a sectional view showing a conventional structure.

Claims (1)

【特許請求の範囲】[Claims] (1)活性層を含む発振層が、AlGaInP系の化合
物半導体からなる半導体レーザにおいて、層を構成する
V族元素が、Asである第1層とPである第2層との間
に、層を構成するV族元素がAsとPからなり、且つそ
の組成比が上記第1層と格子整合するように設定された
第3層を備えることを特徴とする半導体レーザ。
(1) In a semiconductor laser in which the oscillation layer including the active layer is made of an AlGaInP-based compound semiconductor, a layer is formed between the first layer in which the group V element constituting the layer is As and the second layer in which P is A semiconductor laser comprising a third layer in which group V elements constituting the layer are As and P, and the composition ratio thereof is set to be lattice matched with the first layer.
JP7611690A 1990-03-26 1990-03-26 Semiconductor laser Pending JPH03276687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7611690A JPH03276687A (en) 1990-03-26 1990-03-26 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7611690A JPH03276687A (en) 1990-03-26 1990-03-26 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH03276687A true JPH03276687A (en) 1991-12-06

Family

ID=13595938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7611690A Pending JPH03276687A (en) 1990-03-26 1990-03-26 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH03276687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259565A (en) * 1992-03-11 1993-10-08 Sumitomo Electric Ind Ltd Multi-beam semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259565A (en) * 1992-03-11 1993-10-08 Sumitomo Electric Ind Ltd Multi-beam semiconductor laser

Similar Documents

Publication Publication Date Title
KR100500331B1 (en) Light emitting element and its manufacturing method
JPH1075012A (en) Semiconductor laser device and its manufacture
JP3982985B2 (en) Manufacturing method of semiconductor laser device
JPH0529713A (en) Semiconductor laser element
JPS62200785A (en) Semiconductor laser device and manufacture thereof
JPH0983071A (en) Semiconductor laser
JPH03276687A (en) Semiconductor laser
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
JPH01286487A (en) Manufacture of semiconductor laser
JPH0214591A (en) Buried semiconductor laser element
JP3783244B2 (en) III-V compound semiconductor light emitting device manufacturing method
JP3005998B2 (en) Manufacturing method of semiconductor laser
JPH08125285A (en) Semiconductor light-emitting device
JPH08222808A (en) Manufacture of semiconductor light-emitting device
JPH07112092B2 (en) Semiconductor laser and manufacturing method thereof
JPH0821757B2 (en) Semiconductor light emitting device
JPH04275479A (en) Semiconductor laser
JPH09148672A (en) Manufacture of semiconductor laser device
JPH08340151A (en) Manufacture of semiconductor laser element
JP4560885B2 (en) Compound semiconductor device and manufacturing method thereof, and semiconductor light emitting device and manufacturing method thereof
JPS63152192A (en) Semiconductor laser device and manufacture thereof
JPH0449276B2 (en)
JP2005260277A (en) Semiconductor light-emitting device
JP2000114663A (en) Iii-group nitride laser diode and manufacturing method
JPH02213181A (en) Semiconductor laser and manufacture thereof