JPH03276561A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH03276561A
JPH03276561A JP2077355A JP7735590A JPH03276561A JP H03276561 A JPH03276561 A JP H03276561A JP 2077355 A JP2077355 A JP 2077355A JP 7735590 A JP7735590 A JP 7735590A JP H03276561 A JPH03276561 A JP H03276561A
Authority
JP
Japan
Prior art keywords
positive electrode
antimony
active material
added
discharge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2077355A
Other languages
Japanese (ja)
Other versions
JP2913485B2 (en
Inventor
Masaaki Shiomi
塩見 正昭
Katsuto Takahashi
克仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2077355A priority Critical patent/JP2913485B2/en
Publication of JPH03276561A publication Critical patent/JPH03276561A/en
Application granted granted Critical
Publication of JP2913485B2 publication Critical patent/JP2913485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the discharge capacity and cycle life performance by using a positive electrode lattice made of a lead alloy containing no antimony, and adding the powder of minium (Pb3O4) and antimony or antimony compound to a positive electrode active material. CONSTITUTION:A positive electrode lattice made of a lead alloy practically containing no antimony is used, and the powder of minium (Pb3O4) 15wt.% or above and antimony or antimony compound 0.05-1.0wt.% is added to a positive electrode active material. When much Pb3O4 is added to the positive electrode active material, the discharge capacity is increased, however the life performance is reduced. When antimony powder is added to the active material, the binding force among positive electrode active material grains is increased, and the deterioration of a positive electrode plate can be delayed. When phosphoric acid is contained in an electrolyte, a hard active material called alphaPbO2 is generated, and the deterioration of the positive electrode plate can be prevented. The discharge capacity and cycle life performance can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の改良に関するもので、特に放
電容量およびサイクル寿命性能の優れた密閉式鉛蓄電池
を提供することを目的とするものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to improvements in sealed lead-acid batteries, and particularly aims to provide a sealed lead-acid battery with excellent discharge capacity and cycle life performance. .

従来の技術とその課題 現在、密閉式鉛蓄電池としては、格子合金にh−〇系合
金を用い、電解液は(1)微細ガラス繊維セパレータに
電解液を含浸させたリテーナ式と、(2)電解液にコロ
イダルシリカを添加してゲル状にしたゲル式の二種類が
あるが、従来の開放形液式電池に比べると前者は電解液
量が少ないため、また後者はH1−SO,の拡散が著し
く遅いために、放電容量が20〜30%も少なく、しか
もいずれも充放電中の極板内部の電解液比重の変化が著
しく大きいため、充放電サイクルが進むにつれ活物質の
劣化、特に活物質粒子の結合力の低下による正極板性能
の低下が生じている。
Conventional technology and its issues Currently, sealed lead-acid batteries use h-0 series alloy as the lattice alloy and use the electrolyte as (1) a retainer type in which a fine glass fiber separator is impregnated with the electrolyte; (2) There are two types of gel-type batteries in which colloidal silica is added to the electrolyte to make it gel-like. Compared to conventional open-type batteries, the former uses a smaller amount of electrolyte, and the latter requires less diffusion of H1-SO. Because of this extremely slow discharge capacity, the discharge capacity is 20 to 30% lower, and in both cases, the change in the specific gravity of the electrolyte inside the electrode plates during charging and discharging is extremely large, so as the charge/discharge cycle progresses, the active material deteriorates, especially the active material. The performance of the positive electrode plate is decreasing due to a decrease in the bonding force of material particles.

正極活物質原料には主としてPbOが、そして5%程度
のpb、 o、が使用されている。従来からpb、 o
、は添加量を増大させるにつれて、化成効率が向上し、
放電容量を増加させることができることはよく知られて
いる。しかし添加量を多くすると、原因はよくわからな
いが、上記正極活物質の劣化が起こり、寿命性能が悪く
なる。
PbO is mainly used as the raw material for the positive electrode active material, and about 5% of PB, O, is used. Traditionally pb, o
, the chemical conversion efficiency improves as the amount added increases,
It is well known that discharge capacity can be increased. However, if the amount added is increased, the above-mentioned positive electrode active material deteriorates, although the cause is not well understood, and the life performance deteriorates.

また、正極活物質の劣化を防ぐために正極格子にpb−
sb金合金用いる方法が提案されている(特公平1−9
3058号)が、格子合金中のアンチモン量を多くする
と、充放電サイクル中に正極格子から溶出したアンチモ
ンが負極板に析出して、負極板の性能を低下させるため
に、実際には上記方法を使用することは出来なかった。
In addition, in order to prevent deterioration of the positive electrode active material, pb-
A method using sb gold alloy has been proposed (Japanese Patent Publication No. 1-9
No. 3058), when the amount of antimony in the lattice alloy is increased, the antimony eluted from the positive electrode lattice during charge/discharge cycles will precipitate on the negative electrode plate, degrading the performance of the negative electrode plate. It was not possible to use it.

課題を解決するための手段 本発明は密閉式鉛蓄電池において放電容量およびサイク
ル寿命性能を向上させることを目的とするもので、その
要旨は実質的にアンチモンを含まない鉛合金からなる正
極格子を使用し、正極活物質中に15%以上の鉛丹(P
b、 O,)および0.05〜1.0wt%のアンチモ
ンあるいはアンチモン化合物の粉末を添加することに特
徴があり、さらに電解液に正極活物質1g当り1〜50
■9のリン酸を添加することが好ましい。
Means for Solving the Problems The present invention aims to improve the discharge capacity and cycle life performance of sealed lead-acid batteries, the gist of which is to use a positive electrode grid made of a lead alloy substantially free of antimony. However, the positive electrode active material contains 15% or more of lead red (P).
b, O,) and 0.05 to 1.0 wt% of antimony or antimony compound powder, and further contains 1 to 50 wt% of antimony or antimony compound powder per 1 g of positive electrode active material to the electrolyte.
(2) It is preferable to add phosphoric acid in step 9.

作用 正極活物質中にpb s Oaを多く添加すると放電容
量は増加するが、寿命性能は低下する。しかし、活物質
中にアンチモン粉末を添加すれば正極活物質粒子間の結
合力が増加して正極板の劣化を遅らせることができる。
When a large amount of PB s Oa is added to the working cathode active material, the discharge capacity increases, but the lifetime performance decreases. However, if antimony powder is added to the active material, the bonding force between the particles of the positive electrode active material increases, and the deterioration of the positive electrode plate can be delayed.

さらに電解液にリン酸を入れると活物質にαpbo2と
呼ばれる硬い活物質が生成して正極板の劣化を防ぐこと
ができる。
Furthermore, when phosphoric acid is added to the electrolytic solution, a hard active material called αpbo2 is generated in the active material, which can prevent deterioration of the positive electrode plate.

実施例 以下、本発明による密閉式鉛蓄電池を図面を用いて説明
する。
EXAMPLES Below, a sealed lead-acid battery according to the present invention will be explained with reference to the drawings.

(実施例1) まず、Pb−Ca合金からなるクラッド式正極格子を準
備した。正極板はPb s O4がそれぞれ5,15゜
40、70.100%で、残部PbOからなる、Pb 
s 04量の興なる5種類(I〜V)の正極活物質原料
に、アンチモン粉末をそれぞれ 0.01.0.05.
0.1G、5,1.5%(B〜G)添加、混合した後、
上記正極格子に充填することにより製作した。なお、比
較のためにアンチモンを全く入れていない正極板Aも製
作した。これらの正極板1枚と、ペースト六員極板2枚
およびパルプセパレータ2枚とで構成する電池を製作し
、これに希硫酸とゲル化剤とを混合した電解液を注液し
た後、所定量の充電を行ない、充電後の比重が1.30
(20℃)になるようにした、充電後は常法に従って安
全弁などを装着して約10^h(5hR)容量のゲル式
電池を製作した。
(Example 1) First, a clad positive electrode grid made of a Pb-Ca alloy was prepared. The positive electrode plate consists of Pb s O4 of 5, 15° 40, and 70.100%, respectively, and the balance is PbO.
Antimony powder was added to each of the five types (I to V) of positive electrode active material raw materials in an amount of 0.01.0.05.
After adding and mixing 0.1G, 5,1.5% (B to G),
It was manufactured by filling the above positive electrode grid. For comparison, a positive electrode plate A containing no antimony was also produced. A battery consisting of one of these positive electrode plates, two six-membered paste electrode plates, and two pulp separators was manufactured, and after pouring an electrolytic solution containing dilute sulfuric acid and a gelling agent into it, After a certain amount of charging, the specific gravity after charging is 1.30.
(20°C), and after charging, a safety valve etc. was attached according to the usual method, and a gel type battery with a capacity of about 10^h (5hR) was manufactured.

まず、これらの電池の放電容量(1〜目2A放電持続時
間)を調べた。その結果を第1表に示す。
First, the discharge capacity (1st to 2A discharge duration) of these batteries was investigated. The results are shown in Table 1.

放電容量は正極活物質中のPb、 o、量に比例して増
加していることがわかる。また、活物質中のアンチモン
量の多少による影響はなかった。
It can be seen that the discharge capacity increases in proportion to the amount of Pb and O in the positive electrode active material. Further, there was no effect depending on the amount of antimony in the active material.

第1表 これらの電池を2.OA電流で2.5時間放電し、その
110%を充電する充放電サイクルを繰り返し行ない、
500〜経過した時点で電池を解体調査した。
Table 1 These batteries 2. Repeated charge/discharge cycles of discharging with OA current for 2.5 hours and charging 110% of the time,
The battery was disassembled and investigated after 500 min.

第1図に500〜時点での放電容量(2A放電持続時間
)を示す0図から明らかなように、正極活物質中のF’
DsO4量が5%あるいは活物質中のアンチモン量が5
%では従来電池以下の放電容量になっていたが、a、0
.量が15%以上でかつアンチモン量が0.01〜1%
の電池では逆に従来電池以上の放電容量を維持していた
。この原因を明らかにするため解体後の正極板に針を突
き刺すことにより極板硬さを調べるとともに負極板に析
出しているアンチモン量の分析を行ない、第2表に結果
の一部を示す、なお、極板硬さは電池JAを100とし
て示した。
As is clear from Figure 1, which shows the discharge capacity (2A discharge duration) from 500 to 500, F' in the positive electrode active material
The amount of DsO4 is 5% or the amount of antimony in the active material is 5%.
%, the discharge capacity was lower than that of conventional batteries, but a, 0
.. The amount of antimony is 15% or more and the amount of antimony is 0.01 to 1%.
On the contrary, this battery maintained a discharge capacity higher than that of conventional batteries. In order to clarify the cause of this, we investigated the hardness of the positive electrode plate by piercing it with a needle after disassembly, and also analyzed the amount of antimony precipitated on the negative electrode plate. Some of the results are shown in Table 2. Note that the hardness of the electrode plate is shown with battery JA as 100.

第2表 表かられかるように、pb、 o、量の多い正極板でア
ンチモンを添加していないものは、著しく軟らかくなる
。一般に劣化した正極板は著′シ<軟らかくなり活物質
は泥状化することが知られている。
As can be seen from Table 2, positive electrode plates with a large amount of PB and o, to which antimony is not added, become significantly softer. It is generally known that a deteriorated positive electrode plate becomes extremely soft and the active material becomes muddy.

このことから考えて、この電池で容量が低下したのは正
極板性能が低下したためと思われる。
Considering this, it seems that the reason for the decrease in capacity of this battery was due to a decrease in the performance of the positive electrode plate.

また、アンチモン添加量が5.0%と多い電池では、正
極板は硬く、良好であるが、負極板へのアンチモンの析
出量が極端に多い、この電池で容量が著しく低かったの
はアンチモンの析出による負極板性能の低下によるもの
と考えられる。
In addition, in a battery with a high antimony content of 5.0%, the positive electrode plate is hard and in good condition, but the amount of antimony deposited on the negative electrode plate is extremely large.The reason why the capacity of this battery was extremely low was due to antimony. This is thought to be due to a decrease in negative electrode plate performance due to precipitation.

正極活物質へのP’bsOa添加量が15%以上でかつ
アンチモンの添加量が0.05〜1.0%という本発明
による電池が従来電池よりも寿命性能が良かったのは正
極活物質の劣化が少なく、かつ負極板へのアンチモンの
析出量が少なかったことによるものと考えられる。
The reason why the battery according to the present invention, in which the amount of P'bsOa added to the positive electrode active material is 15% or more and the amount of antimony added is 0.05 to 1.0%, had better life performance than the conventional battery is because of the positive electrode active material. This is thought to be due to the fact that there was little deterioration and the amount of antimony precipitated on the negative electrode plate was small.

(実施例2) 正極活物質原料をPb、 0.100%とし、これにア
ンチモン粉末を0 、0.01.0.05.0.1 、
0.5 。
(Example 2) The positive electrode active material raw material was Pb, 0.100%, and antimony powder was added to it at 0%, 0.01.0.05.0.1%,
0.5.

1.0wt%添加した正極板を多数製作し、実施例1と
同じ構成で電池を製作した。
A large number of positive electrode plates to which 1.0 wt% was added were manufactured, and a battery was manufactured with the same configuration as in Example 1.

注液時にリン酸を正極活物質エリ当り0,1゜10、5
0.200−g (α〜ε)添加した。
When injecting phosphoric acid per positive electrode active material area 0.1°10.5
0.200-g (α~ε) was added.

実施例1と同一の試験を行ない、1000〜経過した時
点で電池を解体した。
The same test as in Example 1 was conducted, and the battery was disassembled after 1000 min.

第2図に1000〜後の放電容量(2A放電持続時間)
を示す0図から明らかなように、リン酸の添加量が2G
O+H/eaと多すぎる場合には放電容量は従来電池と
大差なかったが、50mg/ e IJ以下の添加量の
場合は従来電池以上の放電容量を維持していた。
Figure 2 shows the discharge capacity after 1000~ (2A discharge duration)
As is clear from Figure 0, the amount of phosphoric acid added is 2G.
When the amount was too high (O+H/ea), the discharge capacity was not much different from the conventional battery, but when the amount added was less than 50 mg/e IJ, the discharge capacity was maintained higher than that of the conventional battery.

この理由を明らかにするため、解体後の正極板に針を突
き刺して硬さを調べた。第3表にその結果の一部を示す
To find out the reason for this, we pierced the positive electrode plate with a needle and examined its hardness after disassembly. Table 3 shows some of the results.

表から明らかなように、リン酸添加量を多くすると、正
極板は硬くなる。しかし、添加量が200*a/eoと
多すぎる場合には極板が著しく硬化している。この電池
の容量が低かったのは過剰に′硬化したためと思われる
。また、第2図から、リン酸添加による効果はアンチモ
ン量が0.5%以上の場合にはあまり大きくなかったが
、これはサイクル数の増加に伴い、アンチモン量の多い
電池では負極板へのアンチモンの折忠が増加して、負極
板の性能が低下するためと思われる。
As is clear from the table, when the amount of phosphoric acid added is increased, the positive electrode plate becomes harder. However, when the amount added is too large (200*a/eo), the electrode plate is significantly hardened. The low capacity of this battery is thought to be due to excessive 'curing'. Also, from Figure 2, the effect of adding phosphoric acid was not so great when the amount of antimony was 0.5% or more, but this was because as the number of cycles increased, in batteries with a large amount of antimony, the effect on the negative electrode plate was This seems to be because the amount of antimony increases and the performance of the negative electrode plate deteriorates.

第3表 また、アンチモンを正極活物質中に添加しないでも電解
液にリン酸を添加しておけば従来電池と同等以上の寿命
性能は得られたが、両者の作用は基本的には興なってお
り、両者を同時に添加するのが好ましいと思われる。
Table 3 Also, if antimony was not added to the positive electrode active material but phosphoric acid was added to the electrolyte, a life performance equivalent to or higher than that of conventional batteries could be obtained, but the effects of the two are basically unaffected. Therefore, it seems preferable to add both at the same time.

なお、本実施例ではアンチモンの粉末を添加したが、ア
ンチモンの酸化物、硫化物などアンチモン化合物を添加
してもその効果は同じであった。
Although antimony powder was added in this example, the effect was the same even if antimony compounds such as antimony oxides and sulfides were added.

以上の結果から、正極活物質中にpb、 o、を15%
以上用いる電池において、正極活物質中にアンチモン粉
末を0.05〜i、o wt%添加し、好ましくはさら
に電解液にリン酸を正極活物質1g当り50ng以下の
割合で添加すれば放電容量および寿命性能は著しく改善
されることがわかった。
From the above results, 15% of PB, O, in the positive electrode active material
In the battery used above, the discharge capacity and the It was found that the life performance was significantly improved.

発明の効果 以上述べたように本発明による密閉式鉛蓄電池は従来の
密閉式鉛蓄電池に比べて放電容量およびサイクル寿命性
能が著しく優れており、その工業的価値は極めて大きい
Effects of the Invention As described above, the sealed lead-acid battery according to the present invention has significantly superior discharge capacity and cycle life performance compared to conventional sealed lead-acid batteries, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は500〜後および1000〜後の
放電容量を示す特性図である。
FIG. 1 and FIG. 2 are characteristic diagrams showing the discharge capacity after 500 hours and after 1000 hours.

Claims (1)

【特許請求の範囲】[Claims] 1、実質的にアンチモンを含まない鉛合金からなる正極
格子を使用し、正極活物質中に15%以上の鉛丹(Pb
_3O_4)および0.05〜1.0wt%のアンチモ
ンあるいはアンチモン化合物の粉末を添加したことを特
徴とする密閉式鉛蓄電池。
1. A positive electrode grid made of a lead alloy that does not substantially contain antimony is used, and the positive electrode active material contains 15% or more of lead (Pb).
_3O_4) and 0.05 to 1.0 wt% of antimony or antimony compound powder.
JP2077355A 1990-03-27 1990-03-27 Sealed lead-acid battery Expired - Fee Related JP2913485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2077355A JP2913485B2 (en) 1990-03-27 1990-03-27 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2077355A JP2913485B2 (en) 1990-03-27 1990-03-27 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH03276561A true JPH03276561A (en) 1991-12-06
JP2913485B2 JP2913485B2 (en) 1999-06-28

Family

ID=13631605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2077355A Expired - Fee Related JP2913485B2 (en) 1990-03-27 1990-03-27 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2913485B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284411B1 (en) 1996-10-02 2001-09-04 Japan Storage Battery Co., Ltd. Valve regulated type battery and producing method thereof
WO2004047201A1 (en) * 2002-11-15 2004-06-03 Gs Yuasa Corporation Positive plate for lead storage battery and lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284411B1 (en) 1996-10-02 2001-09-04 Japan Storage Battery Co., Ltd. Valve regulated type battery and producing method thereof
WO2004047201A1 (en) * 2002-11-15 2004-06-03 Gs Yuasa Corporation Positive plate for lead storage battery and lead storage battery

Also Published As

Publication number Publication date
JP2913485B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
JPH09283137A (en) Lead-acid battery
JPH03276561A (en) Sealed lead-acid battery
JPH10188963A (en) Sealed lead-acid battery
JP2952680B2 (en) Sealed lead-acid battery
JP2000200598A (en) Sealed lead-acid battery
JPH11126604A (en) Sealed lead-acid battery and manufacture thereof
US3749605A (en) Battery having zinc electrode containing tio2
JP3094423B2 (en) Lead storage battery
JP3216450B2 (en) Electrolyte for lead-acid batteries
JPS58123658A (en) Sealed lead storage battery
KR100217786B1 (en) Manufacturing method of lead storage battery
JPH07147160A (en) Lead-acid battery
JPH042053A (en) Manufacture of positive electrode plate of lead acid battery
JPS588558B2 (en) Positive electrode grid for lead-acid batteries
JPH01176661A (en) Lead-acid battery
JPS6322428B2 (en)
JPH08298133A (en) Sealed lead acid battery
JPS62126551A (en) Manufacture of cathode plate for lead-acid battery
JP2548227B2 (en) Manufacturing method of electrode plate for lead-acid battery
JP2000182615A (en) Lead-acid battery
JPH11162455A (en) Lead-acid battery
JPH11135111A (en) Lead-acid battery
JPH0432164A (en) Enclosed lead battery
JPS6316554A (en) Non-sintered type cadmium anode for alkaline storage battery
JPH10188964A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees