JPH03275904A - Starting method of steam turbine plant and condenser used therefor - Google Patents

Starting method of steam turbine plant and condenser used therefor

Info

Publication number
JPH03275904A
JPH03275904A JP7461590A JP7461590A JPH03275904A JP H03275904 A JPH03275904 A JP H03275904A JP 7461590 A JP7461590 A JP 7461590A JP 7461590 A JP7461590 A JP 7461590A JP H03275904 A JPH03275904 A JP H03275904A
Authority
JP
Japan
Prior art keywords
space
condenser
hot well
condensate
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7461590A
Other languages
Japanese (ja)
Inventor
Toshio Sato
佐藤 利男
Hiroki Yamagishi
山岸 弘樹
Katsuaki Tanaka
克明 田中
Ron Sakamoto
坂本 論
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7461590A priority Critical patent/JPH03275904A/en
Publication of JPH03275904A publication Critical patent/JPH03275904A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To carry out speedy starting-up by dividing a condenser into an upper space for condensing exhaust and a lower space for storing condensed water, feeding the deaerated pure water into the lower space on start and then increasing the degree of vacuum in the upper space. CONSTITUTION:The inside of a condenser 10 is divided into an upper space A for accommodating a pipe bundle 11 and a lower space B for accommodating a hot well 12 by a partitioning member 21. For instance, when a steam turbine plant is operated after the stop for a long period, the air in the lower space B is bled by an air bleeder 16, and the heating steam is introduced, and the pure water which is previously deaerated in a pure water processing device 27 is introduced into the upper part of the hot well 12 and stored. Then, the pure water is allowed to flow in a steam condenser 14, and the flow of air into the condenser 10 from steam turbines 8a-8c is shut off, and then an air bleed valve 26 in the upper space A is opened, and the degree of vacuum is increased, and a separating valve 23 is opened to realize the communication between the upper and lower spaces A and B. Accordingly, the dissolved oxygen concentration is reduced, speedily, and starting-up is accelerated.

Description

【発明の詳細な説明】 [発明の0的] (産業上の利用分野) 本発明は蒸気タービンプラントに係り、さらに詳しくは
プラントの起動操作において、復水器内に導入された復
水を短時間のうちに脱気し、てボイラに供給することの
できる起動方法およびその方法に用いる復水装置に関す
る。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to a steam turbine plant, and more specifically, to shortening condensate introduced into a condenser during a plant start-up operation. The present invention relates to a startup method that can degas and supply the degassed water to a boiler in a short period of time, and a condensing device used in the method.

(従来の技術) 近年、コンバインドサイクル発電プラントは卓越した負
荷追随性と、高い熱効率の猥得とを併せ実現し得る発電
方式との評価が定着し、これらの特性に一層のみがきを
かけるプラントの運用力法あるいは機器の改良に不断の
努力が傾けられている。運用方法の面で目立つ動きはベ
ースロードのための運用から毎日の起動停止操作を想定
する運用、つまりデイリースター鷹ストップのための運
用(以下DSS連用という)への動きであり、蒸気ター
ビン系の機器の改良もこの動きに沿ったものとなる。
(Conventional technology) In recent years, combined cycle power generation plants have gained recognition as a power generation method that can achieve both outstanding load followability and high thermal efficiency. Continuous efforts are being made to improve operational capabilities and equipment. The most noticeable movement in terms of operation methods is the shift from base load operation to operation that assumes daily start and stop operations, that is, operation for Daily Star Hawk Stop (hereinafter referred to as continuous use of DSS), which Improvements in equipment will also follow this trend.

第2図を参照し2て従来のコンバインドサイクル発電プ
ラントぬ一例を説明する乏、圧縮機1で加圧された空気
は燃焼器2に導かれ、ここで燃焼系統(図)j<せず)
から供給される燃料と混含されて高温の燃焼ガスとなる
。この燃焼ガスはガスタービン系の作動媒体としてガス
タービン3に導かれ、そこで膨張を遂げて仕事を4−J
な・)。燃焼ガスは膨張後も高み(約550℃)であり
、ガスタービン3から排熱回収ボイラ4に送られて蒸気
ターじン系の熱源媒体としての役割を果たし、その後排
気として大気111に放出される。
An example of a conventional combined cycle power generation plant will be explained with reference to FIG. 2. Air pressurized by the compressor 1 is guided to the combustor 2, where the combustion system
It mixes with the fuel supplied from the source and becomes high-temperature combustion gas. This combustion gas is led to the gas turbine 3 as the working medium of the gas turbine system, where it expands and performs 4-J of work.
Nah). The combustion gas remains at a high temperature (approximately 550°C) after expansion, and is sent from the gas turbine 3 to the exhaust heat recovery boiler 4, where it plays the role of a heat source medium for the steam turbine system, and is then released into the atmosphere 111 as exhaust gas. Ru.

−・方、蒸気タービン系に目を転じると、給水ポンプ5
a、5b、5eで昇圧された給水はそれぞれ異なる仕方
に保たれる蒸気ドラム6a、6b、6Cに図示しない節
炭器を経て供給される。蒸気ドラム6 a s 6 b
 s 6 cから抽出される給水はそれぞれ蒸発器7 
a s 7 b s 7 eに導かれ、排熱回収ボイラ
4内に流れているガスタービン3の排ガスによって加熱
されて蒸気となる。この蒸気はそれぞれ蒸気タービン8
a、8b、8eに導入され、そこで膨張を遂げて仕事を
行・なう。この蒸気タービン8a、8b、8eの仕事と
、先のガスタービン3の仕事とはこれらの原動機に直結
された発電機9において電気出力に変換される。
- On the other hand, if we turn our attention to the steam turbine system, the water supply pump 5
The feed water pressurized in a, 5b, and 5e is supplied to steam drums 6a, 6b, and 6C, which are maintained in different ways, respectively, via an energy saver (not shown). Steam drum 6a s 6b
The feed water extracted from s 6 c is respectively evaporator 7
a s 7 b s 7 e, and is heated by the exhaust gas of the gas turbine 3 flowing into the exhaust heat recovery boiler 4 to become steam. This steam is transferred to each steam turbine 8
a, 8b, and 8e, where it expands and performs work. The work of the steam turbines 8a, 8b, 8e and the work of the gas turbine 3 are converted into electrical output by a generator 9 directly connected to these prime movers.

蒸気タービン8a、8b、8cの排気は復水器10に導
かれ、そこで管束]1を構成する伝熱管内を通る冷却水
によって冷却され、凝縮して水に還る。この凝縮した水
は復水器]0のホットウェル12に落下して復水として
そこに溜められる。
The exhaust gas from the steam turbines 8a, 8b, and 8c is led to a condenser 10, where it is cooled by cooling water passing through the heat transfer tubes forming the tube bundle 1, condensed, and returned to water. This condensed water falls into the hot well 12 of the condenser [0] and is stored there as condensate.

この後、復水は復水ポンプ13によって抽出され、グラ
ンド蒸気復水器14を通して各給水ポンプ5a、5b、
5eまで送られる。
After this, the condensate is extracted by the condensate pump 13 and passed through the gland steam condenser 14 to each feed water pump 5a, 5b,
Sent up to 5e.

ちなみに、グランド蒸気復水器14は各蒸気タービン8
a、8b、8eのグランドから漏れて外に流れ出る蒸気
をグランド蒸気管15により集め、復水との熱交換によ
り凝縮させて熱回収を果たすように設けられる。また、
復水器10内で凝縮するときに放出される酸素などの不
凝縮性ガスを抽出する空気抽出機16が設けられ、プラ
ント運転中復水器10の真空が維持される。さらに、プ
ラント運転中、復水の溶存酸素濃度を下げるために復水
の一部が復水再環系統17を通(7て復水器10に戻さ
れ、蒸気タービン8Cの排気で加熱しつつ、脱気するこ
とが行なわれる。また、復水か減少し5たときに純水を
補給し、て不足分を補なう補給水管18が設けられる。
Incidentally, the grand steam condenser 14 is connected to each steam turbine 8.
Steam leaking from the glands a, 8b, and 8e and flowing out is collected by a gland steam pipe 15, and is condensed through heat exchange with condensed water, thereby achieving heat recovery. Also,
An air extractor 16 is provided to extract noncondensable gases, such as oxygen, released when condensing within the condenser 10 to maintain a vacuum in the condenser 10 during plant operation. Furthermore, during plant operation, a portion of the condensate is passed through the condensate recirculation system 17 (7) and returned to the condenser 10 in order to lower the dissolved oxygen concentration in the condensate, while being heated by the exhaust gas of the steam turbine 8C. In addition, a replenishment water pipe 18 is provided for replenishing pure water to make up for the shortage when the condensate has decreased.

なお、符号19は復水再循環弁、符号20はポンプ人口
弁をそれぞれ示している。
In addition, the code|symbol 19 has shown the condensate recirculation valve, and the code|symbol 20 has shown the pump artificial valve, respectively.

(発明が解決しようとする課題) ところで、プラントの停止中、復水器10のホットウェ
ル〕2には多量の復水が次の起動へ備えるために保管さ
れているか、このとき復水器]0の内部には大気が進入
し、復水と大気とか接触したまま、起動までの長い待機
時間か経過することになる。このため、多量の酸素が復
水中に溶解し、溶存酸素濃度がプラントの運転中に維持
される7ppbから非常に大きな値へと変化してしまう
(Problem to be Solved by the Invention) By the way, while the plant is stopped, is a large amount of condensate stored in the hot well 2 of the condenser 10 in preparation for the next startup? Atmosphere enters the inside of the 0, and the condensate remains in contact with the atmosphere for a long time until it starts up. As a result, a large amount of oxygen dissolves in the condensate, and the dissolved oxygen concentration changes from 7 ppb, which is maintained during plant operation, to a very large value.

この値が大きくなると、例えば排熱回収ボイラ4の蒸発
器7a、7b、7Cで仏熱管の腐食が激しくなるなどの
不都合が生じるため、溶存酸素濃度は起動時にgopp
b以内に抑えておかねばならない。
If this value becomes large, problems such as severe corrosion of the French heat tubes in the evaporators 7a, 7b, and 7C of the exhaust heat recovery boiler 4 will occur, so the dissolved oxygen concentration will be lower than the gopp level at startup.
Must be kept within b.

しかるに、上記のように復水器10の内部に大気が進入
して多量の酸素が溶解するのを阻むものがないとすれば
、その値は10000ppbという大きな値になってし
まう。仮に、この10000ppbまで上昇してしまっ
た溶存酸素濃度を復水再循環系統17を使用する脱気方
法で80ppbまで下げようとすれば、大量の復水を長
い時間掛けて復水再循環系統17を循環させて処理する
ことになり、DSS運用の都度脱気に費やす時間が長引
き、電力需要側の要求に素早く対応できない可能性があ
る。
However, if there is nothing to prevent the atmosphere from entering the condenser 10 and dissolving a large amount of oxygen as described above, the value would be as large as 10,000 ppb. If the dissolved oxygen concentration, which has increased to 10,000 ppb, is to be lowered to 80 ppb by a degassing method using the condensate recirculation system 17, a large amount of condensate must be pumped over a long period of time to reduce the dissolved oxygen concentration to 80 ppb. As a result, the amount of time spent on deaeration increases each time DSS is operated, and it may not be possible to quickly respond to the demands of the electricity demand side.

本発明の目的は復水器のホットウェルに溜められる復水
を脱気してプラントの起動時に要求される溶存酸素濃度
を保つときに所要時間を最小に短縮することのできる蒸
気タービンプラントの起動方法ならびにその方法に用い
る復水装置を提供することにある。
An object of the present invention is to start up a steam turbine plant that can minimize the time required to degas the condensate stored in the hot well of the condenser to maintain the dissolved oxygen concentration required at the start of the plant. An object of the present invention is to provide a method and a condensing device for use in the method.

[発明の構成] (課題を解決するための手段) 本発明に係る蒸気タービンプラントの起動方法は、復水
器の内部を蒸気タービンの排気を凝縮させる管束を収容
する上部空間と、凝縮した復水を受け入れて溜めておく
ホットウェルを収容する下部空間とに気密を保持して区
画し、上部空間と下部空間との間には開閉自在な隔離弁
を有する連絡管を接続して復水のための連絡通路として
構成すると共に、脱気装置を備えた純水処理装置とホッ
トウェルの上方にて連絡せしめ、さらに空気抽出装置を
上部および下部空間の双方と連絡可能に設け、プラント
の起動にあたり、隔離弁を閉じて上部空間と下部空間と
の連絡を遮断し、空気抽出装置により下部空間の真空を
維持しながら、純水処理装置から予め脱気された純水を
ホットウェルに供給し、さらに復水再循環系統を通して
循環せしめ、次に上部空間の真空を上昇させて下部空間
とほぼ同等に維持しつつ、隔離弁を開けて双方の空間を
連通させ、しかる後後水をホットウェルからボイラに供
給するようにしたことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) A method for starting a steam turbine plant according to the present invention includes an upper space for accommodating a tube bundle for condensing the exhaust gas of a steam turbine, and an upper space for accommodating a tube bundle for condensing the exhaust gas of a steam turbine. A lower space that accommodates a hot well that receives and stores water is airtightly divided, and a connecting pipe with an isolation valve that can be opened and closed is connected between the upper space and the lower space to collect water. It is configured as a communication passage for the hot well, and is connected above the hot well to a pure water treatment equipment equipped with a deaerator, and an air extractor is installed so that it can communicate with both the upper and lower spaces. , closing the isolation valve to cut off communication between the upper space and the lower space, supplying pre-degassed pure water from the pure water treatment device to the hot well while maintaining a vacuum in the lower space using the air extraction device; The water is then circulated through the condensate recirculation system, and then the vacuum in the headspace is increased to maintain approximately the same level as the bottom volume while the isolation valve is opened to communicate the two spaces, after which the water is removed from the hotwell. It is characterized in that it is supplied to a boiler.

また、他の発明の復水装置は復水器の内部を蒸気タービ
ンの排気を凝縮させる管束を収容する上部空間と、凝縮
した復水を受け入れて溜めておくホットウェルを収容す
る下部空間とに気密を保持して区画し、上部空間と下部
空間との間には開閉自在な隔離弁を有する連絡管を接続
して復水のための連絡通路として構成すると共に、脱気
装置を備えた純水処理装置とホットウェルの上方にて連
絡せしめ、さらに空気抽出装置を上部および下部空間の
双方と連絡可能に設けたことを特徴とするものである。
In addition, in a condensing device of another invention, the inside of the condenser is divided into an upper space that accommodates a tube bundle for condensing the exhaust gas of a steam turbine, and a lower space that accommodates a hot well that receives and stores condensed water. The upper space and the lower space are divided airtightly, and a communication pipe with an isolation valve that can be opened and closed is connected between the upper space and the lower space to form a communication passage for condensate. This hot well is characterized in that it is connected to the water treatment device above the hot well, and furthermore, the air extraction device is provided so as to be able to communicate with both the upper and lower spaces.

(作用) 本発明の起動手順によれば、初めに隔離弁が閉じられて
復水器の下部空間が大気環境から隔離される。このため
空気抽出装置により下部空間のみ真空を維持しながら、
純水処理装置から予め脱気はされた純水をホットウェル
に供給することができ、脱気された復水の溶存酸素濃度
は起動時の制限値であるgoppb以内にまで容易に下
げられる。
(Operation) According to the start-up procedure of the present invention, the isolation valve is first closed to isolate the lower space of the condenser from the atmospheric environment. For this reason, while maintaining a vacuum only in the lower space using the air extraction device,
Pure water that has been degassed in advance can be supplied to the hot well from the pure water treatment device, and the dissolved oxygen concentration of the degassed condensate can be easily lowered to within goppb, which is the limit value at startup.

これと同時に上部空間も空気抽出装置により真空度が上
昇させられ、短時間のうちに下部空間の真空レベルに合
わせられ、これにより長時間の停止後も短時間のうちに
起動立ち上げを終了させることかできる。
At the same time, the degree of vacuum in the upper space is increased by the air extraction device, and the vacuum level is matched to that of the lower space in a short period of time, allowing startup to be completed in a short period of time even after a long period of stoppage. I can do it.

(実施例) 以下、本発明に係る起動方法に使用する復水装置を示す
第1図を参照して本発明の一実施例を説明する。なお、
本図中、第2図に示される従来例と同一の部分には同一
の符号を付してその説明を省略する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 showing a condensing device used in the startup method according to the present invention. In addition,
In this figure, the same parts as those of the conventional example shown in FIG. 2 are given the same reference numerals, and the explanation thereof will be omitted.

第1図において、復水器10の内部は仕切部材21によ
り上部空間Aと下部空間Bとに気密を保持して区画され
ている。この上部空間Aと下部空間Bとの間には唯一の
復水のための連絡通路となる連絡管22が接続され、こ
の経路内には開閉自在な隔離弁23が設けられる。また
、区画された上部および下部空間ASBには管束11お
よびホットウェル12がそれぞれ収容される。さらに、
上部および下部空間ASBにそれぞれ吸込側を臨ませ、
−万態口側を空気抽出機16に各々結ぶように第1およ
び第2空気抽出管24.25が空気抽出弁26を介して
設けられる。
In FIG. 1, the inside of the condenser 10 is airtightly divided into an upper space A and a lower space B by a partition member 21. A communication pipe 22 serving as the only communication passage for condensate is connected between the upper space A and the lower space B, and an isolation valve 23 that can be opened and closed is provided in this passage. Further, the tube bundle 11 and the hot well 12 are accommodated in the divided upper and lower spaces ASB, respectively. moreover,
The suction side faces each of the upper and lower spaces ASB,
- First and second air extraction pipes 24 and 25 are provided via an air extraction valve 26 so as to connect the universal opening side to the air extraction machine 16, respectively.

また、復水器〕0の周辺装置とし゛C構成される脱気装
置を錫えた純水処理装置27が備えられる。
Further, as a peripheral device of the condenser]0, a pure water treatment device 27 including a deaerator configured as C is provided.

この純水処理装置27を供給源としてホットウェル〕2
に純水を供給する補給水管28と、復水器10から給水
ポンプ5a、5b、5cにかけての経路に純水を送る純
水注入管29とが補給水弁30および注入弁31を介し
てそれぞれ設けられる。
Using this pure water treatment device 27 as a supply source, a hot well] 2
A make-up water pipe 28 that supplies pure water to the water supply pipe 28 and a pure water injection pipe 29 that sends pure water to the path from the condenser 10 to the water supply pumps 5a, 5b, and 5c are connected to each other via the make-up water valve 30 and the injection valve 31, respectively. provided.

きらに、下部空間Bに導入される純水に対して加熱用蒸
気を供給する加熱蒸気管32が加熱蒸気弁33を介して
設けられる。
Additionally, a heating steam pipe 32 is provided via a heating steam valve 33 for supplying heating steam to the pure water introduced into the lower space B.

次に、上記#I威によるところの起動手順を説明する。Next, the startup procedure according to #I above will be explained.

起動に先立って行なわれる停止操作では、初めに、連絡
管22に備えられる隔離弁23が全閉され、これと同時
にポンプ人目弁20も閉じられる。この停止操作の前ま
で、止部空間Aに通じている第1空気抽出管24の空気
抽出弁26および下部空間Bに通じている第2空気抽出
管25の空気抽出弁26は何れも開かれて双方の空間A
In the stop operation performed prior to starting, first, the isolation valve 23 provided in the communication pipe 22 is fully closed, and at the same time, the pump valve 20 is also closed. Before this stop operation, both the air extraction valve 26 of the first air extraction pipe 24 communicating with the stop space A and the air extraction valve 26 of the second air extraction pipe 25 communicating with the lower space B are opened. Both spaces A
.

Bの真空度は同等に保たれている。次に、双方の空気抽
出弁26は閉じられ、空気抽出a!16の運転か停」j
−9され、上部空間Aの真空が破壊されて大気が上部空
間Aに流れ込んでくる。しかし2、下部空間Bは隔離弁
23εポンプ人口弁20との協働作用により外部環境と
の隔離が完全に果たされ、依然として真空状態に保たれ
る。したがって、ホットウェル12に溜められた復水に
酸素か溶は込む6J能性は殆どなく、停止時間が短い時
間であれば、運転中の溶存酸素濃度の制限値である7p
pbが引続き維持される。
The degree of vacuum in B is maintained at the same level. Then both air extraction valves 26 are closed and air extraction a! 16 drive or stop"j
-9, the vacuum in the upper space A is broken and the atmosphere flows into the upper space A. However, 2. The lower space B is completely isolated from the external environment due to the cooperation with the isolation valve 23ε pump artificial valve 20, and is still maintained in a vacuum state. Therefore, there is almost no possibility of 6J dissolving oxygen into the condensate stored in the hot well 12, and if the stoppage time is short, the limit value of dissolved oxygen concentration during operation is 7P.
pb will continue to be maintained.

この後、停止時間がDSS運用のときのように短かい場
合と、長時間にわたる停止を経てプラントの起動立上げ
を図る場合とで起動操作手動が異なってくる。
Thereafter, the manual start-up operation will differ depending on whether the stoppage time is short, such as during DSS operation, or when the plant is to be started up after a long stoppage.

I−停止時間が短かい場合 この起動操作は下部空間Bの真空が保たれ、かつホット
ウェル12に溶存酸素濃度の低い復水が保管されている
ことから第2空気抽出管25の空気抽出弁26を開けて
空気抽出機16を起動し、さらにポンプ人口弁20を開
きながら復水ポンプ13を起動してグランド蒸気復水器
14に復水を供給しながら、各蒸気タービン8a、8b
、8Cからのグランドシール蒸気をグランド蒸気管]5
を通して回収し、各蒸気タービン8a、8b、8Cのグ
ランド部から流入する空気の流れを断つことから始まる
。このとき、グランド蒸気復水器14に供給された復水
は復水再循環系統17を通して復水器10に回収される
が、溶存酸素濃度が低いために特に脱気する必要はない
。次に、上部空間Aに接続されている第1空気抽出管2
4の空気抽出弁26を開けて上部空間Aの真空度を上昇
させながら補給水弁30を開けて純水処理装置27から
ホットウェル12にかけて一定量の純水を導(。このと
き、ホットウェル12に導かれる純水は予め純水処理装
置27に付属する脱気装置で充分に脱気しておき、7p
pbで保たれる復水の溶存酸素濃度を大きく上昇させな
いようにする。ちなみに、このとき補給水として導かれ
る純水はプラントの停止時蒸気ドラム6 a 、6 b
、6C内の水位が色水温度の低下に伴って低下し、次の
起動において所定の水位が保てないことから、補給され
るものて、これによりホットウェル12の水位は一時的
に通常運転時の水位より高い水位となる。この後、上部
空間Aの空気か除かれ、下部空間Bと間しレヘルに真空
度が上昇したならば、隔離弁23を開けて双方の空間A
SBを連通させる。
I-If the stoppage time is short, this startup operation is performed because the vacuum in the lower space B is maintained and condensate with a low dissolved oxygen concentration is stored in the hot well 12, so the air extraction valve of the second air extraction pipe 25 is activated. 26 to start the air extractor 16, and further open the pump population valve 20 and start the condensate pump 13 to supply condensate to the grand steam condenser 14.
, the grand seal steam from 8C to the grand steam pipe] 5
The process begins by cutting off the flow of air that is collected through the steam turbines 8a, 8b, and 8C and flows in from the ground portion of each steam turbine 8a, 8b, and 8C. At this time, the condensate supplied to the grand steam condenser 14 is recovered to the condenser 10 through the condensate recirculation system 17, but there is no need to degas it because the dissolved oxygen concentration is low. Next, the first air extraction pipe 2 connected to the upper space A
4 to open the air extraction valve 26 to increase the degree of vacuum in the upper space A, open the make-up water valve 30 to introduce a certain amount of pure water from the deionized water treatment device 27 to the hot well 12 (at this time, the hot well The pure water led to 12 is sufficiently degassed in advance with the deaerator attached to the pure water treatment device 27, and then
Avoid significantly increasing the dissolved oxygen concentration in condensate that is maintained with PB. By the way, the pure water introduced as make-up water at this time is supplied to the steam drums 6a and 6b when the plant is stopped.
, the water level in 6C decreases with the drop in color water temperature, and the specified water level cannot be maintained at the next startup, so the water level in hot well 12 is temporarily restored to normal operation. The water level will be higher than the current water level. After that, when the air in the upper space A is removed and the degree of vacuum rises to a level between the upper space A and the lower space B, the isolation valve 23 is opened and both spaces A
Connect SB.

ところで、排熱回収ボイラ4への通水においては復水再
循環系統17よりもr流側の経路に予め純水を張ってお
く必要がある。そこで、純水処理装置27で脱気された
こ水を注入弁31を開けて導き、それから復水再循環系
統17の分岐部から蒸気ドラム6as 6b、6cにか
けて復水を流すようにする。かくして、プラントの起動
時の溶存酸素濃度は80ppb以内に保たれ、短時間の
うちにプラントの起動立ち上げを完了させることができ
る。
By the way, in passing water to the waste heat recovery boiler 4, it is necessary to fill the path on the r flow side with respect to the condensate recirculation system 17 in advance with pure water. Therefore, the water deaerated by the pure water treatment device 27 is introduced by opening the injection valve 31, and then the condensate is made to flow from the branch part of the condensate recirculation system 17 to the steam drums 6as 6b, 6c. In this way, the dissolved oxygen concentration at the time of plant start-up is maintained within 80 ppb, and the start-up of the plant can be completed in a short time.

■−停止時間が長い場合 一方、プラントが長期にわたり停止したときの起動手順
は、初めに、隔離弁23とポンプ人目弁20とを全閉し
、下部空間Bに滞留している空気を空気抽出機16によ
って抽出し、真空度のレベルが設定値に到達したところ
で加熱蒸気弁33を開けて加熱蒸気を下部空間Bに導入
する。次に、純水処理袋M27で予め脱気された純水を
補給水管28を通してホットウェル12の上方に導き、
加熱蒸気管32を通して導かれる加熱蒸気により脱気し
つつ、ホットウェル12内の水張りを完了させる。次に
、復水ポンプ13を起動してグランド蒸気復水器14に
純水(復水)を流しながら、各蒸気タービン8a18b
18cからのグランドシール蒸気を回収して各蒸気ター
ビン8a、8b。
■-When the stoppage time is long On the other hand, when the plant has been stopped for a long time, the startup procedure is to first fully close the isolation valve 23 and the pump valve 20, and extract the air stagnant in the lower space B. When the vacuum level reaches a set value, the heated steam valve 33 is opened to introduce heated steam into the lower space B. Next, the pure water that has been deaerated in advance in the pure water processing bag M27 is guided above the hot well 12 through the replenishment water pipe 28,
The hot well 12 is filled with water while being degassed by the heated steam guided through the heated steam pipe 32. Next, while starting the condensate pump 13 and flowing pure water (condensate) to the grand steam condenser 14, each steam turbine 8a18b
The gland seal steam from 18c is recovered to each steam turbine 8a, 8b.

8cのグランド部から復水器10に流入してくる空気の
流れを遮断する。次に、上部空間Aの真空を第1空気抽
出管24の空気抽出弁26を開けて上昇させながら、補
給水弁30を開けて純水処理装置27で予め脱気された
純水をホットウェル12に導く。この後、上部空間Aの
空気が排出され、下部空間Bと同じレベルに真空度が上
昇したところで隔離弁23を開けて双方の空間A、Bを
連通させる。そして、上記工程と共に進められる復水再
循環系統17から給水ポンプ5a、5b、5cを経て蒸
気ドラム6as 6b、 6cに至る経路に対する純水
処理装置27で脱気された純水を用いる水張りの完了を
待って、ホットウェル12から蒸気ドラム6a、6b、
6cにかけて復水(給水)を供給する。この復水はプラ
ント起動時の溶存酸素濃度の制限値80ppb以内を満
たすことが可能であり、長期間にわたりプラントが停止
した後も短時間のうちに起動立ち上げを終了させること
ができる。
The flow of air flowing into the condenser 10 from the ground section 8c is blocked. Next, while raising the vacuum in the upper space A by opening the air extraction valve 26 of the first air extraction pipe 24, the make-up water valve 30 is opened and pure water degassed in advance by the deionization device 27 is poured into the hot well. Lead to 12. Thereafter, the air in the upper space A is discharged, and when the degree of vacuum rises to the same level as that in the lower space B, the isolation valve 23 is opened to allow both spaces A and B to communicate with each other. Then, water filling using deaerated water in the deionized water treatment device 27 is completed for the route from the condensate recirculation system 17, which is proceeded with the above process, to the steam drums 6as 6b, 6c via the water supply pumps 5a, 5b, 5c. Waiting for this, the steam drums 6a, 6b,
Condensate water (water supply) is supplied over 6c. This condensate can satisfy the limit value of dissolved oxygen concentration of 80 ppb or less at the time of plant startup, and even after the plant has been stopped for a long period of time, startup can be completed in a short time.

なお、以上の説明はコンバインドサイクル発電プラント
についてのものであるが、本発明の適用はこれに限られ
ない。すなわち、蒸気を生成するボイラ、ボイラからの
蒸気・によって駆動される蒸気タービンおよび蒸気ター
ビンの排気を受け入れて凝縮する復水器、復水(給水)
を昇圧してボイラに送る給水ポンプを組合わせて構成さ
れる蒸気タービンプラントに適用するならば、同様の効
果を得ることが可能である。
In addition, although the above description is about a combined cycle power plant, the application of the present invention is not limited to this. Namely, a boiler that generates steam, a steam turbine driven by the steam from the boiler, a condenser that receives and condenses the exhaust of the steam turbine, and condensate (feed water).
Similar effects can be obtained if applied to a steam turbine plant configured by combining a feed water pump that boosts the pressure of water and sends it to a boiler.

[発明の効果コ 以上の説明から明らかなように本発明は復水器の内部を
管束を収容する上部空間と、ホットウェルを収容する下
部空間とに気密を保持して区画し、上部空間と下部空間
との間には開閉自在な隔離弁を有する連絡管を接続して
復水のための連絡通路として構成すると共に、脱気装置
を供えた純水処理装置をホットウェルの上方にて連絡せ
しめ、さらに空気抽出装置を上部および下部空間の双方
と連絡可能に設け、プラントの起動にあたり、隔離弁に
より上部空間と下部空間との連絡を遮断し、空気抽出装
置により下部空間の真空を維持しながら、純水処理装置
から予め脱気された純水をホットウェルに供給し、さら
に再循環系統を通して循環せしめ、空気抽出装置により
上部空間の真空を維持しながら、隔離弁を開けて双方の
空間を連通させるようにしているので、早期に復水の溶
存酸素濃度が起動時の制限時である80ppbまで下げ
られ、起動立上げに要する時間を短縮することができ、
電力需要側の要求に素早く対応して電力の供給が可能に
なるという優れた効果を奏する。
[Effects of the Invention] As is clear from the above description, the present invention airtightly partitions the inside of a condenser into an upper space for accommodating a tube bundle and a lower space for accommodating a hot well. A communication pipe with an isolation valve that can be opened and closed is connected to the lower space to form a communication passage for condensate, and a pure water treatment equipment equipped with a deaerator is connected above the hot well. In addition, an air extraction device is installed so that it can communicate with both the upper and lower spaces, and when starting the plant, an isolation valve is used to cut off communication between the upper and lower spaces, and the air extraction device is used to maintain a vacuum in the lower space. At the same time, pre-degassed pure water from the water treatment equipment is supplied to the hot well and then circulated through the recirculation system, and while the vacuum in the headspace is maintained by the air extractor, the isolation valves are opened to separate both spaces. This allows the dissolved oxygen concentration in the condensate to be lowered to the startup limit of 80 ppb at an early stage, reducing the time required for startup.
This has the excellent effect of being able to quickly respond to the demands of the power demand side and supply power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による蒸気タービンプラントの起動方法
に使用する復水装置の一実施例を示す系統図、第2図は
従来の起動方法に使用する復水装置の一例を示す系統図
である。 10・・・・・−・・・復水器 11・・・・・・・・・管束 12・・・・・・・・・ホットウェル 16・・・・・・・・・空気抽出機 17・・・・・・・・・復水再循環系統21・・・・・
・・・・仕切部材 22・・・・・・・・・連絡管 23・・・・・・・・・隔離弁 24.25・・・空気抽出管 27・・・・・・・・・純水処理装置 28・・・・・・・・・補給水管 29・・・・・・・・・純水注入管
FIG. 1 is a system diagram showing an example of a condensing device used in a method for starting a steam turbine plant according to the present invention, and FIG. 2 is a system diagram showing an example of a condensing device used in a conventional starting method. . 10...Condenser 11...Tube bundle 12...Hot well 16...Air extractor 17 ......Condensate recirculation system 21...
・・・・Partition member 22・・・Communication pipe 23・・・・Isolation valve 24.25・・Air extraction pipe 27・・・・Pure Water treatment device 28...Supplementary water pipe 29...Pure water injection pipe

Claims (2)

【特許請求の範囲】[Claims] (1)蒸気タービンの排気を凝縮させて復水として回収
する復水器を備えてなる蒸気タービンプラントの起動方
法において、前記復水器の内部を前記蒸気タービンの排
気を凝縮させる管束を収容する上部空間と、凝縮した復
水を受け入れて溜めておくホットウェルを収容する下部
空間とに気密を保持して区画し、前記上部空間と前記下
部空間との間には開閉自在な隔離弁を有する連絡管を接
続して復水のための連絡通路として構成すると共に、脱
気装置を備えた純水処理装置と前記ホットウェルの上方
にて連絡せしめ、さらに空気抽出装置を前記上部および
下部空間の双方と連絡可能に設け、プラントの起動にあ
たり、前記隔離弁を閉じて前記上部空間と前記下部空間
との連絡を遮断し、前記空気抽出装置により前記下部空
間の真空を維持しながら、前記純水処理装置から予め脱 気された純水を前記ホットウェルに供給し、さらに復水
再循環系統を通して循環せしめ、次に前記空気抽出装置
により前記上部空間の真空を上昇させて前記下部空間と
ほぼ同等に維持しつつ、前記隔離弁を開けて双方の空間
を連通させ、しかる後復水を前記ホットウェルからボイ
ラに供給するようにしたことを特徴とする蒸気タービン
プラントの起動方法。
(1) In a method for starting a steam turbine plant comprising a condenser that condenses exhaust gas of a steam turbine and recovers it as condensate, the inside of the condenser accommodates a tube bundle that condenses the exhaust gas of the steam turbine. The upper space is airtightly divided into an upper space and a lower space accommodating a hot well that receives and stores condensed water, and an isolation valve that can be opened and closed is provided between the upper space and the lower space. A communication pipe is connected to form a communication passage for condensate, and is connected to a pure water treatment device equipped with a deaeration device above the hot well, and an air extraction device is connected to the upper and lower spaces. When starting up the plant, the isolation valve is closed to cut off communication between the upper space and the lower space, and while maintaining the vacuum in the lower space by the air extractor, the purified water is Pre-degassed pure water from a treatment device is supplied to the hot well and further circulated through a condensate recirculation system, and then the air extraction device raises the vacuum in the head space to approximately equal to the bottom space. 1. A method for starting a steam turbine plant, comprising: opening the isolation valve to communicate between the two spaces while maintaining the hot well, and then supplying condensate from the hot well to the boiler.
(2)復水器の内部を蒸気タービンの排気を凝縮させる
管束を収容する上部空間と、凝縮した復水を受け入れて
溜めておくホットウェルを収容する下部空間とに気密を
保持して区画し、前記上部空間と前記下部空間との間に
は開閉自在な隔離弁を有する連絡管を接続して復水のた
めの連絡通路として構成すると共に、脱気装置を備えた
純水処理装置と前記ホットウェルの上方にて連絡せしめ
、さらに空気抽出装置を前記上部および下部空間の双方
と連絡可能に設けてなる復水装置。
(2) The inside of the condenser is airtightly divided into an upper space that accommodates a tube bundle that condenses steam turbine exhaust gas and a lower space that accommodates a hot well that receives and stores condensed water. , a communication pipe having an isolation valve that can be opened and closed is connected between the upper space and the lower space to form a communication passage for condensate, and a pure water treatment apparatus equipped with a deaerator; A condensing device connected above a hot well and further comprising an air extraction device so as to be able to communicate with both the upper and lower spaces.
JP7461590A 1990-03-23 1990-03-23 Starting method of steam turbine plant and condenser used therefor Pending JPH03275904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7461590A JPH03275904A (en) 1990-03-23 1990-03-23 Starting method of steam turbine plant and condenser used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7461590A JPH03275904A (en) 1990-03-23 1990-03-23 Starting method of steam turbine plant and condenser used therefor

Publications (1)

Publication Number Publication Date
JPH03275904A true JPH03275904A (en) 1991-12-06

Family

ID=13552256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7461590A Pending JPH03275904A (en) 1990-03-23 1990-03-23 Starting method of steam turbine plant and condenser used therefor

Country Status (1)

Country Link
JP (1) JPH03275904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293707A (en) * 2002-03-29 2003-10-15 Jfe Steel Kk Controlling method of water inside condenser
EP2829692A1 (en) * 2013-07-25 2015-01-28 Siemens Aktiengesellschaft Liquid/steam cycle and steam power plant with the liquid/steam cycle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293707A (en) * 2002-03-29 2003-10-15 Jfe Steel Kk Controlling method of water inside condenser
EP2829692A1 (en) * 2013-07-25 2015-01-28 Siemens Aktiengesellschaft Liquid/steam cycle and steam power plant with the liquid/steam cycle
WO2015010876A1 (en) * 2013-07-25 2015-01-29 Siemens Aktiengesellschaft Liquid vapour circuit, and steam power plant having the liquid vapour circuit

Similar Documents

Publication Publication Date Title
KR100341646B1 (en) Method of cooling thermally loaded components of a gas turbine group
JPH03275903A (en) Starting method of steam turbine plant and condenser used therefor
EP2607634B1 (en) Method for operating a combined cycle power plant
EP0605156A2 (en) Method of effecting start-up of a cold steam turbine system in a combined cycle plant
KR102101460B1 (en) Method for operating a power plant
KR20130025907A (en) Energy recovery and steam supply for power augmentation in a combined cycle power generation system
US4961311A (en) Deaerator heat exchanger for combined cycle power plant
US6519927B2 (en) Method for operating a combined cycle power plant, and combined cycle power plant
US7033420B2 (en) Process and apparatus for the thermal degassing of the working medium of a two-phase process
JP2011157855A (en) Power generation facility and operating method for power generation facility
JPH03275904A (en) Starting method of steam turbine plant and condenser used therefor
JPH0694379A (en) Condenser and driving method therefor
JPH03275905A (en) Operation of steam turbine plant
JP4926732B2 (en) Seal water recovery equipment
US6223536B1 (en) Starting up a steam system, and steam system for carrying out the method
JP2593577B2 (en) Operation control method and operation control device for combined cycle power plant
JPS6242131B2 (en)
JP3697291B2 (en) Fluidized bed boiler power plant
JPS6132563B2 (en)
JPS6189486A (en) Condenser in combined plant
JP2764825B2 (en) Power plant and start-up method thereof
JPH0447103A (en) Thermal power plant
EP3739176A1 (en) Power plant and water cleaning method for a once-through water/steam cycle of a power plant
JPH07102349B2 (en) Water supply deaerator
JPH02110291A (en) Method and device for retrieving and storing condensed water