JP4926732B2 - Seal water recovery equipment - Google Patents

Seal water recovery equipment Download PDF

Info

Publication number
JP4926732B2
JP4926732B2 JP2007014648A JP2007014648A JP4926732B2 JP 4926732 B2 JP4926732 B2 JP 4926732B2 JP 2007014648 A JP2007014648 A JP 2007014648A JP 2007014648 A JP2007014648 A JP 2007014648A JP 4926732 B2 JP4926732 B2 JP 4926732B2
Authority
JP
Japan
Prior art keywords
water
condensate
sealed
water supply
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007014648A
Other languages
Japanese (ja)
Other versions
JP2008180159A (en
Inventor
雅勝 松若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007014648A priority Critical patent/JP4926732B2/en
Publication of JP2008180159A publication Critical patent/JP2008180159A/en
Application granted granted Critical
Publication of JP4926732B2 publication Critical patent/JP4926732B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、排気蒸気を復水する復水器を備えた発電設備における機器シール用の封水を回収する封水回収設備に関する。 The present invention relates seal water recovery set to recover water seal for instrument seal in the power generating plant equipped with a condenser for condensing the exhaust steam Bei.

ボイラで作られた蒸気により駆動される蒸気タービンで発電を行う発電設備では、蒸気タービンで仕事を終えた排気蒸気を復水器で凝縮して復水とし、復水をボイラに給水する系統が備えられている。また、発電設備では、蒸気により駆動される給水ポンプ等の回転部等の各種シールを行うために封水が用いられ、シールに用いられた封水は封水回収タンクに回収されている。更に、発電設備では、蒸気タービンの駆動を行う蒸気の他に機器の駆動用等に蒸気が使用され、これらの蒸気を確保するために排熱を回収する等して蒸気を発生させる蒸気発生装置が備えられている。一般に、蒸気発生装置へは、系内に設けられてボイラへの給水の一部を貯留する給水タンクから給水が行われている。   In a power generation facility that generates electricity with a steam turbine driven by steam produced by a boiler, there is a system that condenses exhaust steam that has finished work in the steam turbine into a condensate by condensing it, and supplies the condensate to the boiler. Is provided. Further, in the power generation facility, sealed water is used to perform various seals such as a rotating part such as a feed pump driven by steam, and the sealed water used for the seal is collected in a sealed water recovery tank. Furthermore, in power generation facilities, steam is used to drive equipment in addition to steam for driving a steam turbine, and steam is generated by recovering exhaust heat to secure these steam. Is provided. In general, water is supplied to the steam generator from a water supply tank that is provided in the system and stores a part of the water supplied to the boiler.

発電設備では、封水回収タンクに回収された封水は、運転中は真空状態にある復水器に圧力差により回収され、回収用の動力を用いることなく封水回収タンクの封水を復水器に循環させるようになっている。火力発電設備に限らず原子力発電設備等においても、シール用の封水は封水回収タンクに回収された後復水器に循環させるようになっている(例えば、特許文献1参照)。   In the power generation facility, the sealed water collected in the sealed water collection tank is collected by a pressure difference in a vacuum condenser during operation, and the sealed water in the sealed water collection tank is restored without using power for collection. It is designed to circulate in a water container. Not only thermal power generation equipment but also nuclear power generation equipment and the like, sealing water for sealing is circulated to a condenser after being collected in a sealing water recovery tank (see, for example, Patent Document 1).

一般に、シール等に用いられた封水の温度は比較的高いが(例えば、40℃〜60℃)、真空状態の復水器に回収しているので熱エネルギーを回収しないまま温度を低下させている状態となっているのが現状である。また、機器の駆動用等に用いられる蒸気を発生させる蒸気発生設備への給水を給水タンクから行っているが、給水タンクへはボイラへの給水の一部が送られている。このため、ボイラへの給水がその分減少し、発電設備全体の効率を向上させる要因の妨げとなっているのが現状である。   Generally, the temperature of the sealing water used for sealing is relatively high (for example, 40 ° C. to 60 ° C.), but since it is recovered in a vacuum condenser, the temperature is lowered without recovering thermal energy. The current situation is that In addition, water is supplied from a water supply tank to a steam generation facility that generates steam used for driving devices, and a part of the water supplied to the boiler is sent to the water supply tank. For this reason, the water supply to the boiler is reduced by that amount, which hinders the factor of improving the efficiency of the entire power generation facility.

特開平7−128487号公報JP-A-7-128487

本発明は上記状況に鑑みてなされたもので、封水回収タンクに回収された封水の熱エネルギーを有効に回収して発電設備の効率を向上させることができる封水回収設備を提供することを目的とする。   The present invention has been made in view of the above situation, and provides a sealed water recovery facility that can effectively recover the thermal energy of the sealed water recovered in the sealed water recovery tank and improve the efficiency of the power generation facility. With the goal.

上記目的を達成するための請求項1に係る本発明の封水回収設備は、ボイラからの蒸気により駆動される蒸気タービンと、蒸気タービンで仕事を終えた排気蒸気を凝縮する復水器と、復水器の復水を給水系に圧送する復水供給手段と、給水系の給水をボイラに圧送する給水手段と、給水手段を含む機器の封止機構に復水供給手段からの復水の一部を封止水として供給する封止系と、封止系の戻りの水を貯留する封水回収タンクと、復水供給手段からの復水の一部を蒸気発生手段の給水として貯留する給水タンクとを備えた発電設備において、封水回収タンクの貯留水を給水タンクに圧送する封水供給系と、復水供給手段の出口側の給水の温度よりも封水回収タンクに貯留された水の温度が高くなった際に封水供給系に水が流通することを許容する流通規制弁とを備えたことを特徴とする。   In order to achieve the above object, the sealed water recovery facility of the present invention according to claim 1 is a steam turbine driven by steam from a boiler, a condenser for condensing exhaust steam that has finished work in the steam turbine, Condensate supply means for pressure-feeding the condensate of the condenser to the water supply system, water supply means for pressure-feeding water from the water supply system to the boiler, and condensate from the condensate supply means to the sealing mechanism of the equipment including the water supply means A sealing system that supplies a part of the water as sealing water, a sealed water recovery tank that stores the return water of the sealing system, and a part of the condensate from the condensate supply means are stored as the water supply for the steam generation means. In a power generation facility equipped with a water supply tank, the water stored in the seal water recovery tank is more than the temperature of the water supply on the outlet side of the condensate supply means and the water supply system for pumping the water stored in the water recovery tank to the water supply tank. Allow water to flow through the sealed water supply system when the water temperature rises Characterized by comprising a that flow control valve.

請求項1に係る本発明では、流通規制弁により比較的温度の高い封水回収タンクに貯留された水を給水タンクに圧送することができ、封水の熱エネルギーを有効に回収することができる。   In the present invention according to claim 1, the water stored in the sealed water recovery tank having a relatively high temperature can be pumped to the water supply tank by the flow regulating valve, and the thermal energy of the sealed water can be effectively recovered. .

そして、請求項2に係る本発明の封水回収設備は、請求項1に記載の封水回収設備において、封水供給系から分岐して設けられ封水回収タンクの貯留水を復水器に給水する戻り経路と、起動時に戻り経路に水が流通することを許容する復水流通規制弁と、流通規制弁及び復水流通規制弁の操作を連動して制御する制御手段とを備えたことを特徴とする。 And the sealing water collection | recovery equipment of this invention which concerns on Claim 2 is a sealing water collection | recovery equipment of Claim 1, and is branched from the sealing water supply system, is provided, and the stored water of a sealing water collection tank is used as a condenser. Provided a return path for supplying water, a condensate flow restriction valve that allows water to flow through the return path at the time of startup, and a control means that controls the operation of the flow restriction valve and the condensate flow restriction valve in conjunction with each other. It is characterized by.

請求項2に係る本発明では、起動時には制御手段により復水流通規制弁を開いて封水回収タンクの貯留水を戻り経路から復水器に給水することができる。   In the present invention according to claim 2, at the time of start-up, the condensate flow regulation valve is opened by the control means, and the water stored in the sealed water recovery tank can be supplied to the condenser from the return path.

上記目的を達成するための請求項3に係る本発明の封水回収設備は、ボイラからの蒸気により駆動される蒸気タービンと、蒸気タービンで仕事を終えた排気蒸気を凝縮する復水器と、復水器の復水を熱交換手段に圧送する復水ポンプと、熱交換手段で熱交換された復水を昇圧して脱気器に圧送する復水昇圧ポンプと、脱気器で脱気された復水をボイラに給水する給水ポンプと、給水ポンプを含む機器に復水昇圧ポンプからの復水の一部を封止水として供給する封止ラインと、給水ポンプを含む機器からの封止水の戻り水を貯留する封水回収タンクと復水昇圧ポンプで昇圧された復水の一部を蒸気発生手段の給水として貯留する給水タンクとを備えた発電設備において、封水回収ポンプを介して封水回収タンクの貯留水を給水タンクに圧送する封水経路と、復水昇圧ポンプの出口側の給水の温度よりも封水回収タンクに貯留された水の温度が高くなった際に封水経路に貯留水が流通することを許容する流通規制弁とを備えたことを特徴とする。   In order to achieve the above object, a sealed water recovery facility of the present invention according to claim 3 is a steam turbine driven by steam from a boiler, a condenser for condensing exhaust steam that has finished work in the steam turbine, A condensate pump that pumps the condensate of the condenser to the heat exchanging means, a condensate booster pump that pressurizes the condensate heat exchanged by the heat exchanging means and pumps it to the deaerator, and deaerates by the deaerator Water supply pump for supplying the condensed condensate to the boiler, a sealing line for supplying a part of the condensate from the condensate booster pump to the equipment including the water supply pump as sealing water, and sealing from the equipment including the water supply pump. In a power generation facility comprising a sealed water recovery tank for storing the return water of the still water and a water supply tank for storing a part of the condensate pressurized by the condensate booster pump as feed water for the steam generating means, the sealed water recovery pump is provided. The water stored in the sealed water recovery tank is pumped to the water supply tank Flow control valve that allows the stored water to flow through the sealed water path when the temperature of the water stored in the sealed water recovery tank becomes higher than the temperature of the water path and the feed water at the outlet side of the condensate booster pump It is characterized by comprising.

請求項3に係る本発明では、復水昇圧ポンプの出口側の給水の温度よりも封水回収タンクに貯留された水の温度が高い時に、流通規制弁により封水回収ポンプを介して封水回収タンクに貯留された水を給水タンクに圧送することができ、封水の熱エネルギーを有効に回収することができる。   In this invention which concerns on Claim 3, when the temperature of the water stored in the sealing water collection | recovery tank is higher than the temperature of the feed water of the exit side of a condensate pressure | voltage rise pump, it is sealed water via a sealing water collection | recovery pump by a distribution control valve. The water stored in the recovery tank can be pumped to the water supply tank, and the thermal energy of the sealed water can be recovered effectively.

そして、請求項4に係る本発明の封水回収設備は、請求項3に記載の封水回収設備において、封水回収ポンプの下流側で封水経路から分岐して設けられ貯留水を復水器に給水する戻り経路と、起動時に戻り経路に水が流通することを許容する復水流通規制弁と、流通規制弁及び復水流通規制弁の操作を連動して制御する制御手段とを備えたことを特徴とする。 A sealed water recovery facility according to a fourth aspect of the present invention is the sealed water recovery facility according to the third aspect, wherein the stored water is branched from the sealed water path downstream of the sealed water recovery pump and condensates the stored water. A return path for supplying water to the vessel, a condensate flow restriction valve that allows water to flow through the return path at start-up, and a control means that controls the operation of the flow restriction valve and the condensate flow restriction valve in conjunction with each other. It is characterized by that.

請求項4に係る本発明では、起動時には制御手段により復水流通規制弁を開いて封水回収タンクの貯留水を戻り経路から復水器に給水することができる。   In the present invention according to claim 4, at the time of start-up, the condensate flow restriction valve is opened by the control means, and the water stored in the sealed water recovery tank can be supplied to the condenser from the return path.

本発明の封止水回収装置による封水回収方法は、ボイラで作られた蒸気により駆動される蒸気タービンで発電を行い、蒸気タービンで仕事を終えた排気蒸気を復水器で凝縮して復水とし、復水をボイラに給水する発電設備において、機器のシールを行った封水の戻りを蒸気発生のための給水とする。 The sealing water recovery method using the sealing water recovery apparatus of the present invention generates power with a steam turbine driven by steam generated by a boiler, and condenses exhaust steam that has finished work with the steam turbine by a condenser. and water, the power generating plant for supplying water condensate to the boiler, return the seal water subjected to sealing of the device and the water supply for steam generation.

これにより、機器のシールを行った比較的高温の封水の戻りを蒸気発生のための給水とするので、封水の熱エネルギーを有効に回収することができる。 Thereby, since the return of the relatively high-temperature sealed water that has sealed the device is used as water supply for generating steam, the thermal energy of the sealed water can be effectively recovered.

本発明の封水回収装置は、封水回収タンクに回収された封水の熱エネルギーを有効に回収して発電設備の効率を向上させることができる。 Sealing water recovery equipment of the present invention can improve the efficiency of effectively recovered to power generation equipment thermal energy of seal water collected in the sealing water recovery tank.

図1には本発明の一実施形態例に係る封水回収設備を備えた発電設備の概略系統を示してある。   FIG. 1 shows a schematic system of a power generation facility provided with a sealed water recovery facility according to an embodiment of the present invention.

図に示すように、燃料が高温で燃焼されることにより高温・高圧の蒸気がボイラ1で生成され、ボイラ1で生成された蒸気は蒸気タービン2に送られて蒸気タービン2を高速で回転させて(駆動させて)発電機3で発電が行われる。蒸気タービン2で仕事を終えた排気蒸気は復水器4で凝縮されて復水とされる。復水器4の復水は冷却媒体として復水ポンプ5により熱交換手段6に送られて熱交換された後、復水脱塩装置14で不純物が除去されて復水昇圧ポンプ7で昇圧されて脱気器8に圧送される。   As shown in the figure, high-temperature and high-pressure steam is generated in the boiler 1 by burning the fuel at a high temperature, and the steam generated in the boiler 1 is sent to the steam turbine 2 to rotate the steam turbine 2 at high speed. Then, the generator 3 generates power. The exhaust steam that has finished work in the steam turbine 2 is condensed in the condenser 4 to be condensed water. Condensate in the condenser 4 is sent as a cooling medium to the heat exchanging means 6 by the condensate pump 5 and subjected to heat exchange, and then impurities are removed by the condensate demineralizer 14 and the pressure is increased by the condensate booster pump 7. And pumped to the deaerator 8.

熱交換手段6は、図示例では、熱交換器11、グランドコンデンサ12、空気抽出器13、復水脱塩装置14からなっている。熱交換器11は、系内の流体を復水により冷却するための機器である。グランドコンデンサ12は、蒸気タービン2のラビリンスパッキン環内で大気圧よりも僅かに低い圧力を得るための機器で、蒸気が漏洩して潤滑油への蒸気の混入やタービン排気室への空気の漏入を防止するものであり、空気と蒸気の混合器を復水により冷却する構造とされている。空気抽出器13は、復水器4(蒸気配管系統)の空気を抽出して復水器4を真空に保持する機器で、空気を復水により冷却して大気に放出する構造とされている。   In the illustrated example, the heat exchange means 6 includes a heat exchanger 11, a ground condenser 12, an air extractor 13, and a condensate demineralizer 14. The heat exchanger 11 is a device for cooling the fluid in the system by condensate. The ground condenser 12 is a device for obtaining a pressure slightly lower than the atmospheric pressure in the labyrinth packing ring of the steam turbine 2, and the steam leaks and the steam leaks into the lubricating oil and the air leaks into the turbine exhaust chamber. It is configured to cool the air / steam mixer with condensate. The air extractor 13 is a device that extracts the air from the condenser 4 (steam piping system) and holds the condenser 4 in a vacuum, and has a structure that cools the air by the condensate and releases it to the atmosphere. .

熱交換された復水は復水脱塩装置14に送られ、例えば、イオン交換樹脂により淡水中に含まれる溶解塩類が除去されてボイラ1の補給水としての必要な高純度の水が得られる。復水脱塩装置14で得られた高純度の水は復水昇圧ポンプ7で脱気器8に圧送される。脱気器8では、タービン抽気により給水を直接加熱し、給水中の酸素、炭素、炭酸ガス等の不凝縮ガスが除去される。脱気器8で不凝縮ガスが除去された給水はボイラ給水ポンプ18によりボイラ1に圧送される。   The heat-exchanged condensate is sent to the condensate demineralizer 14, and for example, the dissolved salts contained in the fresh water are removed by the ion exchange resin, and the high-purity water required as the makeup water for the boiler 1 is obtained. . High-purity water obtained by the condensate demineralizer 14 is pumped to the deaerator 8 by the condensate booster pump 7. In the deaerator 8, the feed water is directly heated by turbine extraction, and non-condensable gases such as oxygen, carbon, and carbon dioxide in the feed water are removed. The feed water from which the non-condensable gas has been removed by the deaerator 8 is pumped to the boiler 1 by the boiler feed pump 18.

ボイラ給水ポンプ18は、蒸気により駆動される構造とされ、回転支持部等のシールのために封水が供給される。封水は復水昇圧ポンプ7の後流で分岐された封止ライン21から供給され、戻りライン22から封水回収タンク23に回収される。封水回収タンク23にはボイラ給水ポンプ18以外の系内の機器の封水も回収される。   The boiler feed pump 18 is configured to be driven by steam, and sealed water is supplied for sealing a rotation support portion and the like. Sealed water is supplied from a sealing line 21 branched in the downstream of the condensate booster pump 7, and recovered from the return line 22 to the sealed water recovery tank 23. Sealed water of equipment in the system other than the boiler feed pump 18 is also collected in the sealed water recovery tank 23.

一方、発電設備には系内で機器の駆動等に使用する蒸気を生成する蒸気発生手段(図示省略)が備えられ、蒸気発生手段には給水タンク24に貯留された水が給水される。給水タンク24には、復水昇圧ポンプ7で昇圧された復水の一部が給水ライン25から給水が行われる。   On the other hand, the power generation facility is provided with steam generating means (not shown) for generating steam used for driving devices in the system, and water stored in the water supply tank 24 is supplied to the steam generating means. A part of the condensate whose pressure has been increased by the condensate booster pump 7 is supplied to the water supply tank 24 from the water supply line 25.

上述した発電設備において、機器のシールを行った封水の戻りが封水回収タンク23に貯留され、封水回収タンク23の貯留水を給水タンク24に圧送して蒸気発生の給水とするための封水回収設備が備えられている。   In the power generation facility described above, the return of the sealed water that has sealed the device is stored in the sealed water recovery tank 23, and the stored water in the sealed water recovery tank 23 is pumped to the water supply tank 24 to generate steam generated water. Seal water recovery equipment is provided.

即ち、封水回収タンク23が封水経路31により給水タンク24に接続され、封水経路31には封水回収ポンプ32が備えられている。封水回収ポンプ32の下流の封水経路31には流通規制弁33が設けられ、流通規制弁33が開かれた状態で封水回収ポンプ32が駆動することで封水回収タンク23に貯留された封水の戻り水が給水タンク24に圧送される。   That is, the sealed water recovery tank 23 is connected to the water supply tank 24 by the sealed water path 31, and the sealed water path 31 is provided with the sealed water recovery pump 32. A flow restriction valve 33 is provided in the sealed water path 31 downstream of the seal water recovery pump 32, and is stored in the seal water recovery tank 23 when the seal water recovery pump 32 is driven in a state where the flow restriction valve 33 is opened. The return water of the sealed water is pumped to the water supply tank 24.

また、封水回収ポンプ32の下流側で封水経路31から分岐して戻り経路34が設けられ、戻り経路34は復水器4に接続されている。戻り経路34には復水流通規制弁35が設けられ、流通規制弁33が閉じられた状態で復水流通規制弁35が開かれることで、封水回収タンク23に貯留された封水の戻り水が負圧力によって復水器4に送られる。流通規制弁33及び復水流通規制弁35の操作は制御手段36の指令により連動して制御される。   A return path 34 is provided by branching from the sealed water path 31 downstream of the sealed water recovery pump 32, and the return path 34 is connected to the condenser 4. The return path 34 is provided with a condensate flow restriction valve 35, and the condensate flow restriction valve 35 is opened in a state where the flow restriction valve 33 is closed, so that the sealed water stored in the seal water recovery tank 23 is returned. Water is sent to the condenser 4 by negative pressure. The operations of the flow restriction valve 33 and the condensate flow restriction valve 35 are controlled in conjunction with a command from the control means 36.

更に、封水回収タンク23には貯留された封水の戻り水の温度を検出する第1温度検出手段41が備えられ、復水昇圧ポンプ7の下流側(出口側)には昇圧された復水の温度を検出する第2温度検出手段42が備えられている。第1温度検出手段41及び第2温度検出手段42の検出情報は制御手段36に入力される。   Further, the seal water recovery tank 23 is provided with first temperature detecting means 41 for detecting the temperature of the return water of the stored seal water. Second temperature detecting means 42 for detecting the temperature of the water is provided. Detection information of the first temperature detection means 41 and the second temperature detection means 42 is input to the control means 36.

第2温度検出手段42で検出された温度よりも第1温度検出手段41で検出された温度が高くなった際に(例えば、5℃以上高くなった際に)、流通規制弁33が開状態にされると共に復水流通規制弁35が閉状態にされるように制御手段36で動作が制御される。これにより、比較的温度が高い封水の貯留水が給水タンク24に送られて封水の熱エネルギーを回収することができる。   When the temperature detected by the first temperature detecting means 41 is higher than the temperature detected by the second temperature detecting means 42 (for example, when the temperature is increased by 5 ° C. or more), the flow restriction valve 33 is opened. The control means 36 controls the operation so that the condensate flow restriction valve 35 is closed. Thereby, the stored water of the sealing water with comparatively high temperature is sent to the water supply tank 24, and the thermal energy of sealing water can be collect | recovered.

起動時等は、第2温度検出手段42で検出される温度よりも第1温度検出手段41で検出される温度が低いため、流通規制弁33が閉状態にされると共に復水流通規制弁35が開状態にされ、貯留水は復水器4に送られて系内の給水量が確保される。封水回収ポンプ32は常時自動運転とされ、起動時の復水器4の真空がない状態では封水回収ポンプ32が起動し、復水器4の真空がある状態(通常運転時)は真空引きされ、封水回収タンク23のレベルが制御される。   At the time of start-up or the like, the temperature detected by the first temperature detecting means 41 is lower than the temperature detected by the second temperature detecting means 42, so that the flow restriction valve 33 is closed and the condensate flow restriction valve 35. Is opened, and the stored water is sent to the condenser 4 to secure the water supply amount in the system. The sealed water recovery pump 32 is always automatically operated, the sealed water recovery pump 32 is activated when the condenser 4 is not vacuumed at the time of startup, and the vacuum is maintained when the condenser 4 is in a vacuum (during normal operation). The level of the sealed water recovery tank 23 is controlled.

尚、第1温度検出手段41、第2温度検出手段42、戻り経路34、復水流通規制弁35を省略して、封水回収タンク23の貯留水の全量を給水タンク24に供給することも可能である。   The first temperature detection means 41, the second temperature detection means 42, the return path 34, and the condensate flow restriction valve 35 may be omitted, and the entire amount of water stored in the seal water recovery tank 23 may be supplied to the water supply tank 24. Is possible.

上述した発電設備では、ボイラ1で作られた蒸気により蒸気タービン2が駆動されて発電機3で発電が行われる。蒸気タービン2で仕事を終えた排気蒸気は復水器4で復水され、復水は復水ポンプ5により熱交換器11、グランドコンデンサ12、空気抽出器13、復水脱塩装置14に送られて熱交換され、復水昇圧ポンプ7により脱気器8に圧送される。脱気器8で脱気された給水はボイラ給水ポンプ18によりボイラ1に給水される。   In the power generation facility described above, the steam turbine 2 is driven by the steam produced by the boiler 1 and power is generated by the generator 3. The exhaust steam that has finished work in the steam turbine 2 is condensed in the condenser 4, and the condensed water is sent to the heat exchanger 11, the ground condenser 12, the air extractor 13, and the condensate demineralizer 14 by the condensate pump 5. Then, the heat is exchanged, and the pressure is pumped to the deaerator 8 by the condensate booster pump 7. The water supply deaerated by the deaerator 8 is supplied to the boiler 1 by a boiler water supply pump 18.

発電設備の運転中に、給水タンク24及びその他の機器のシールを行った封水の戻りが封水回収タンク23に貯留され、封水回収タンク23の貯留水が給水タンク24に圧送される。即ち、復水昇圧ポンプ7の後流で分岐された封止ライン21から給水タンク24に封水が供給され、封水は戻りライン22から封水回収タンク23に回収される。また、給水タンク24には復水昇圧ポンプ7で昇圧された給水が給水ライン25から給水される。   During the operation of the power generation facility, the return of the sealed water that has sealed the water supply tank 24 and other devices is stored in the sealed water recovery tank 23, and the stored water in the sealed water recovery tank 23 is pumped to the water supply tank 24. That is, the sealed water is supplied from the sealing line 21 branched in the downstream of the condensate booster pump 7 to the water supply tank 24, and the sealed water is recovered from the return line 22 to the sealed water recovery tank 23. The water supply tank 24 is supplied with water supplied by the condensate booster pump 7 through a water supply line 25.

制御手段36には第1温度検出手段41及び第2温度検出手段42の温度情報が入力され、第2温度検出手段42で検出された温度よりも第1温度検出手段41で検出された温度が高い時、即ち、復水昇圧ポンプ7で昇圧された給水の温度よりも封水回収タンク23に回収された封水の温度が高い時、流通規制弁33が開状態にされると共に復水流通規制弁35が閉状態にされて封水回収タンク23に回収された封水の戻りの水が給水タンク24に供給される。   Temperature information of the first temperature detection means 41 and the second temperature detection means 42 is input to the control means 36, and the temperature detected by the first temperature detection means 41 is higher than the temperature detected by the second temperature detection means 42. When the temperature is high, that is, when the temperature of the seal water recovered in the seal water recovery tank 23 is higher than the temperature of the feed water boosted by the condensate booster pump 7, the flow restriction valve 33 is opened and the condensate flow is performed. The return water of the sealing water recovered in the sealing water recovery tank 23 with the regulating valve 35 closed is supplied to the water supply tank 24.

通常運転中は、封水回収タンク23の貯留水の温度が50℃から60℃程度であり、復水昇圧ポンプ7で昇圧された給水の温度が30℃から35℃程度であり、給水タンク24の給水の温度が80℃程度とされている。   During normal operation, the temperature of the water stored in the sealed water recovery tank 23 is about 50 ° C. to 60 ° C., the temperature of the water supplied by the condensate booster pump 7 is about 30 ° C. to 35 ° C., and the water supply tank 24 The temperature of the water supply is about 80 ° C.

このため、比較的温度の高い封水回収タンク23に貯留された水を給水タンク24に圧送することができ、封水の熱エネルギーを有効に回収することができる。また、封水回収タンク23に貯留された水が給水タンク24に給水される分、復水昇圧ポンプ7で昇圧された給水の給水タンク24への給水量を少なくすることができる。この結果、発電設備の効率を向上させることができる。   For this reason, the water stored in the sealing water recovery tank 23 having a relatively high temperature can be pumped to the water supply tank 24, and the thermal energy of the sealing water can be effectively recovered. Further, the amount of water supplied to the water supply tank 24 that has been pressurized by the condensate booster pump 7 can be reduced by the amount of water stored in the sealed water recovery tank 23 being supplied to the water supply tank 24. As a result, the efficiency of the power generation facility can be improved.

起動時等で、第2温度検出手段42で検出された温度よりも第1温度検出手段41で検出された温度が低い時、即ち、復水昇圧ポンプ7で昇圧された給水の温度よりも封水回収タンク23に回収された封水の温度が低い時、流通規制弁33が閉状態にされると共に復水流通規制弁35が開状態にされ、貯留水は復水器4に送られて系内の給水量が確保される。   When the temperature detected by the first temperature detecting means 41 is lower than the temperature detected by the second temperature detecting means 42 at the time of start-up or the like, that is, the temperature of the feed water boosted by the condensate booster pump 7 is sealed. When the temperature of the sealed water recovered in the water recovery tank 23 is low, the flow restriction valve 33 is closed and the condensate flow restriction valve 35 is opened, and the stored water is sent to the condenser 4. The amount of water supply in the system is secured.

本発明は、排気蒸気を復水する復水器を備えた発電設備における機器シール用の封水を回収する封水回収設備の産業分野で利用することができる。 The present invention can be utilized in the industrial fields of seal water recovery equipment for recovering the water seal for instrument seal in a power plant equipped with condenser for condensing the exhaust steam.

本発明の一実施形態例に係る封水回収設備を備えた発電設備の概略系統図である。It is a schematic system diagram of the power generation equipment provided with the seal water recovery equipment according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 ボイラ
2 蒸気タービン
3 発電機
4 復水器
5 復水ポンプ
6 熱交換手段
7 復水昇圧ポンプ
8 脱気器
11 熱交換器
12 グランドコンデンサ
13 空気抽出器
14 復水脱塩装置
18 ボイラ給水ポンプ
21 封止ライン
22 戻りライン
23 封水回収タンク
24 給水タンク
25 給水ライン
31 封水経路
32 封水回収ポンプ
33 流通規制弁
34 戻り経路
35 復水流通規制弁
36 制御手段
DESCRIPTION OF SYMBOLS 1 Boiler 2 Steam turbine 3 Generator 4 Condenser 5 Condensate pump 6 Heat exchange means 7 Condensate booster pump 8 Deaerator 11 Heat exchanger 12 Ground condenser 13 Air extractor 14 Condensate demineralizer 18 Boiler feed pump 21 Sealing Line 22 Return Line 23 Sealed Water Recovery Tank 24 Water Supply Tank 25 Water Supply Line 31 Sealed Water Path 32 Sealed Water Recovery Pump 33 Flow Restriction Valve 34 Return Path 35 Condensate Flow Restriction Valve 36 Control Unit

Claims (4)

ボイラからの蒸気により駆動される蒸気タービンと、
蒸気タービンで仕事を終えた排気蒸気を凝縮する復水器と、
復水器の復水を給水系に圧送する復水供給手段と、
給水系の給水をボイラに圧送する給水手段と、
給水手段を含む機器の封止機構に復水供給手段からの復水の一部を封止水として供給する封止系と、
封止系の戻りの水を貯留する封水回収タンクと、
復水供給手段からの復水の一部を蒸気発生手段の給水として貯留する給水タンクと
を備えた発電設備において、
封水回収タンクの貯留水を給水タンクに圧送する封水供給系と、
復水供給手段の出口側の給水の温度よりも封水回収タンクに貯留された水の温度が高くなった際に封水供給系に水が流通することを許容する流通規制弁と
を備えたことを特徴とする封水回収設備。
A steam turbine driven by steam from the boiler;
A condenser that condenses the exhaust steam that has finished work in a steam turbine;
Condensate supply means for pumping the condensate of the condenser to the water supply system;
Water supply means for pumping the water supply system water to the boiler;
A sealing system for supplying a part of the condensate from the condensate supply means to the sealing mechanism of the equipment including the water supply means as sealing water;
A sealed water recovery tank for storing the return water of the sealing system;
In a power generation facility equipped with a water supply tank for storing a part of the condensate from the condensate supply means as water supply for the steam generation means,
A sealed water supply system for pumping the water stored in the sealed water recovery tank to the water supply tank;
A flow regulating valve that allows water to flow to the sealed water supply system when the temperature of the water stored in the sealed water recovery tank becomes higher than the temperature of the feed water on the outlet side of the condensate supply means. Sealed water collection facility characterized by that.
請求項1に記載の封水回収設備において、
封水供給系から分岐して設けられ封水回収タンクの貯留水を復水器に給水する戻り経路と、
起動時に戻り経路に水が流通することを許容する復水流通規制弁と、
流通規制弁及び復水流通規制弁の操作を連動して制御する制御手段と
を備えたことを特徴とする封水回収設備。
In the sealed water recovery facility according to claim 1,
A return path that branches off from the sealed water supply system and feeds the water stored in the sealed water recovery tank to the condenser;
A condensate flow restriction valve that allows water to flow through the return path at startup, and
And a control means for controlling the operation of the flow restriction valve and the condensate flow restriction valve in conjunction with each other.
ボイラからの蒸気により駆動される蒸気タービンと、
蒸気タービンで仕事を終えた排気蒸気を凝縮する復水器と、
復水器の復水を熱交換手段に圧送する復水ポンプと、
熱交換手段で熱交換された復水を昇圧して脱気器に圧送する復水昇圧ポンプと、
脱気器で脱気された復水をボイラに給水する給水ポンプと、
給水ポンプを含む機器に復水昇圧ポンプからの復水の一部を封止水として供給する封止ラインと、
給水ポンプを含む機器からの封止水の戻り水を貯留する封水回収タンクと復水昇圧ポンプで昇圧された復水の一部を蒸気発生手段の給水として貯留する給水タンクと
を備えた発電設備において、
封水回収ポンプを介して封水回収タンクの貯留水を給水タンクに圧送する封水経路と、
復水昇圧ポンプの出口側の給水の温度よりも封水回収タンクに貯留された水の温度が高くなった際に封水経路に貯留水が流通することを許容する流通規制弁と
を備えたことを特徴とする封水回収設備。
A steam turbine driven by steam from the boiler;
A condenser that condenses the exhaust steam that has finished work in a steam turbine;
A condensate pump that pumps the condensate from the condenser to the heat exchange means;
A condensate booster pump that boosts the condensate heat-exchanged by the heat exchange means and pumps it to the deaerator;
A water supply pump for supplying the boiler with the condensate deaerated by the deaerator,
A sealing line for supplying a part of the condensate from the condensate booster pump to the equipment including the feed water pump as sealing water;
Power generation comprising: a sealed water recovery tank for storing return water of sealing water from a device including a water supply pump; and a water supply tank for storing a part of the condensate pressurized by a condensate booster pump as water supply for steam generation means In equipment,
A sealed water path for pumping the water stored in the sealed water recovery tank to the water supply tank via the sealed water recovery pump;
A flow regulating valve that allows the stored water to flow through the sealed water path when the temperature of the water stored in the sealed water recovery tank becomes higher than the temperature of the feed water at the outlet side of the condensate booster pump. Sealed water collection facility characterized by that.
請求項3に記載の封水回収設備において、
封水回収ポンプの下流側で封水経路から分岐して設けられ貯留水を復水器に給水する戻り経路と、
起動時に戻り経路に水が流通することを許容する復水流通規制弁と、
流通規制弁及び復水流通規制弁の操作を連動して制御する制御手段と
を備えたことを特徴とする封水回収設備。
In the sealed water recovery facility according to claim 3,
A return path that branches off from the sealed water path downstream of the sealed water recovery pump and feeds the stored water to the condenser;
A condensate flow restriction valve that allows water to flow through the return path at startup, and
And a control means for controlling the operation of the flow restriction valve and the condensate flow restriction valve in conjunction with each other.
JP2007014648A 2007-01-25 2007-01-25 Seal water recovery equipment Expired - Fee Related JP4926732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014648A JP4926732B2 (en) 2007-01-25 2007-01-25 Seal water recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014648A JP4926732B2 (en) 2007-01-25 2007-01-25 Seal water recovery equipment

Publications (2)

Publication Number Publication Date
JP2008180159A JP2008180159A (en) 2008-08-07
JP4926732B2 true JP4926732B2 (en) 2012-05-09

Family

ID=39724242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014648A Expired - Fee Related JP4926732B2 (en) 2007-01-25 2007-01-25 Seal water recovery equipment

Country Status (1)

Country Link
JP (1) JP4926732B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442474B2 (en) * 2010-01-29 2014-03-12 中国電力株式会社 Power generation facility and operation method of power generation facility
CN102900662A (en) * 2012-10-31 2013-01-30 忻州广宇煤电有限公司 Water-feeding pump seal water return water recovery device
CN107165854B (en) * 2017-05-08 2023-11-14 华电电力科学研究院有限公司 Automatic control and recovery device for sealing water of water supply pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338804A (en) * 1986-07-31 1988-02-19 株式会社日立製作所 Condensate device
JP3547458B2 (en) * 1993-03-03 2004-07-28 株式会社東芝 High pressure drain pump shaft sealing equipment

Also Published As

Publication number Publication date
JP2008180159A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
KR101290289B1 (en) Apparatus for ship's orc power generating system
JP5320423B2 (en) Thermal power plant, steam turbine equipment, and control method thereof
CN104204426B (en) Method for operating power-equipment
JP6587460B2 (en) Hydrogen production facility and hydrogen production method
JP2011020090A (en) Carbon dioxide recovery system and method
JP6161358B2 (en) Organic Rankine cycle system
JP2007064050A (en) Waste heat utilizing facility for steam turbine plant
US9879885B2 (en) Cooling water supply system and binary cycle power plant including same
JP4926732B2 (en) Seal water recovery equipment
JP4990008B2 (en) Steam treatment equipment
JP5442474B2 (en) Power generation facility and operation method of power generation facility
JP2004036535A (en) Power plant main machine exhaust heat recovery system
JP4452328B2 (en) Combined power plant
JP4889552B2 (en) Operation method of power generation facilities
JP6161357B2 (en) Power generation system
JP5142817B2 (en) Operation method of condensate system in steam power plant
JP2012102980A (en) Blow tank and method of using the same
KR102216364B1 (en) Preservation method
JP2012057520A (en) Cooling device for lubricating oil
JP4599139B2 (en) Steam turbine plant
KR20120060255A (en) Apparatus of heat recovery from CO2 capture apparatus using dry regenerable sorbents for power plant
RU2723283C1 (en) Lubrication system and method of lubricating bearings of a plant for generating heat and mechanical energy
JP6406639B2 (en) Waste heat power generator
JP4759545B2 (en) Heavy oil-fired gas turbine power generation system
JPH0447103A (en) Thermal power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4926732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees