JPH03275637A - Production of biscyclohexanol - Google Patents

Production of biscyclohexanol

Info

Publication number
JPH03275637A
JPH03275637A JP2074500A JP7450090A JPH03275637A JP H03275637 A JPH03275637 A JP H03275637A JP 2074500 A JP2074500 A JP 2074500A JP 7450090 A JP7450090 A JP 7450090A JP H03275637 A JPH03275637 A JP H03275637A
Authority
JP
Japan
Prior art keywords
solvent
raw material
compound expressed
reaction
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2074500A
Other languages
Japanese (ja)
Other versions
JP2520759B2 (en
Inventor
Noboru Yamashita
昇 山下
Shizuo Nishiyama
西山 静夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP2074500A priority Critical patent/JP2520759B2/en
Publication of JPH03275637A publication Critical patent/JPH03275637A/en
Application granted granted Critical
Publication of JP2520759B2 publication Critical patent/JP2520759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the subject substance useful as a raw material or resins and raw material or intermediate for plasticizers, antistatic agents, medicines, liquid crystals, etc., by hydrogenating bisphenol using a glycol monoether as a solvent. CONSTITUTION:A compound expressed by formula I is hydrogenated to provide a compound expressed by formula II. In the process, a compound expressed by formula III (R is 1-5C alkyl; R' is 2-4C alkylene; the total number of carbon atoms in R and R' is <=7) is used as a solvent. Since the compound expressed by formula III has a low vapor pressure, the solvent can be repeatedly used with hardy any loss in distilling away of the solvent without requiring high level of pressure resistance in a reactor. Since the boiling point difference from the objective substance is large, separation and purification by distillation, etc., are readily carried out. The aforementioned solvent can be sufficiently used in an amount of 100-300ml based on 50g raw material at ordinary tempera ture to 80 deg.C. Since the vapor pressure is low at the hydrogenation temperature of about 170 deg.C, partial pressure of H2 gas can be increased to shorten the reac tion time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐熱性及び耐水性に優りたアルキッド樹脂、
エポキシ樹脂、ポリエステル樹脂、ポリカーボネート樹
脂、ポリウレタン樹脂等の樹脂原料、可塑剤、滑剤、帯
電防止剤等の各種高分子材料の添加剤、医薬、液晶、界
面活性剤、工業薬品等の原料や中間体として有用な、ビ
スシクロヘキサノールの製造法に関する6 [従来技術] ビフェノールの水素化反応は溶媒下、又は無溶媒下に行
うことかでさる。しかし原料の融点が、ビフェニル−2
,2゛−ジオールは109℃、ビフェニル−3,3°−
ジオールは126℃、ビフェニル−4,4°−ジオール
は160℃と高く、無S媒下に水素化反応を行う場合、
原料が固化しないようにするために、原料移送パイプ及
び原料仕込みポンプの加熱が必要となる。従って移送パ
イプ、仕込みポンプ等の耐熱性が問題となる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an alkyd resin with excellent heat resistance and water resistance,
Resin raw materials such as epoxy resins, polyester resins, polycarbonate resins, and polyurethane resins; additives for various polymeric materials such as plasticizers, lubricants, and antistatic agents; raw materials and intermediates for pharmaceuticals, liquid crystals, surfactants, industrial chemicals, etc. [Prior Art] The hydrogenation reaction of biphenol can be carried out in a solvent or without a solvent. However, the melting point of the raw material is biphenyl-2
,2゛-diol at 109°C, biphenyl-3,3°-
Diol has a high temperature of 126°C, and biphenyl-4,4°-diol has a high temperature of 160°C, so when the hydrogenation reaction is carried out in an S-free medium,
In order to prevent the raw material from solidifying, it is necessary to heat the raw material transfer pipe and the raw material charging pump. Therefore, the heat resistance of transfer pipes, charging pumps, etc. becomes a problem.

また水素化により生成するビスシクロヘキサノールの融
点も高く、ビシクロへキシル−4,4ジオールの融点は
トランス−トランス体で216℃、シス−シス体で19
7℃、シス−トランス体で179℃〜181℃、ビシク
ロへキシル−1゜1°−ジオールの融点は130℃であ
る。従って無溶媒下に水素化反応を行う場合は、生成物
が固化しないように生成物の抜き出しポンプと生成物移
送パイプ等の加熱が必要となる。さらに触媒濾過時に生
成物がr過器等に付着しやすい等の問題があり、溶媒系
での水素化が多用されている。
In addition, the melting point of biscyclohexanol produced by hydrogenation is high, and the melting point of bicyclohexyl-4,4 diol is 216°C for the trans-trans form and 19°C for the cis-cis form.
7°C, the cis-trans form is 179°C to 181°C, and the melting point of bicyclohexyl-1°1°-diol is 130°C. Therefore, when the hydrogenation reaction is carried out without a solvent, it is necessary to heat the product extraction pump, the product transfer pipe, etc. to prevent the product from solidifying. Further, there are problems such as the tendency for products to adhere to an R-filter etc. during catalyst filtration, so hydrogenation in a solvent system is often used.

ビフェノールを水素化して、ビスシクロヘキサノールを
製造する方法は、従来以下(I)〜(2)の方法等が知
られている。
As a method for producing biscyclohexanol by hydrogenating biphenol, the following methods (I) to (2) and the like are conventionally known.

(I)原料のビフェノール40gに、水2容量%までを
含む酢酸エチル等500m1を加え、パラジウム触媒存
在下、100気圧の水素ガス下、140℃、12時間水
素化して、4,4°−ジヒドロキシジシクロヘキサンを
99,5%の収率で得る方法(特開平1−34935号
)。
(I) 500 ml of ethyl acetate containing up to 2% water by volume was added to 40 g of biphenol as a raw material, and the mixture was hydrogenated at 140°C for 12 hours under hydrogen gas at 100 atm in the presence of a palladium catalyst to produce 4,4°-dihydroxy A method for obtaining dicyclohexane with a yield of 99.5% (Japanese Unexamined Patent Publication No. 1-34935).

(2)ビフェニル−4,4°−ジオール100gをイン
プロパツール1リツトルに溶解し、無水炭酸ナトウリム
5gとカーボン担持パラジウム触媒5gを加えて、水素
圧5 k g / c m ”で25〜30時間水素化
して、ビシクロへキシル−4,4−ジオールを得る方法
(特開平1−156935)。
(2) Dissolve 100 g of biphenyl-4,4°-diol in 1 liter of Improper Tool, add 5 g of anhydrous sodium carbonate and 5 g of carbon-supported palladium catalyst, and heat at a hydrogen pressure of 5 kg/cm'' for 25 to 30 hours. A method for obtaining bicyclohexyl-4,4-diol by hydrogenation (JP-A-1-156935).

特開平1−34935号においては、溶媒として2容量
%まで水を含む酢酸エチル、メチル−t−ブチルエーテ
ル、エタノール及びシクロヘキサンが用いられているが
、2容量%まで水を含む溶媒を用いた場合、反応溶媒中
の水分量を管理することは、工程上、煩雑となり生産性
に欠ける。さらに、原料に対し溶媒量が多く、酢酸エチ
ル、エタノールは低沸点であることから溶tIX回収時
の損失、蒸気圧が高いことによる安全上の問題がある。
In JP-A-1-34935, ethyl acetate, methyl-t-butyl ether, ethanol, and cyclohexane containing up to 2% by volume of water are used as solvents; however, when a solvent containing up to 2% by volume of water is used, Controlling the amount of water in the reaction solvent is complicated in terms of process and lacks productivity. Furthermore, since the amount of solvent is large relative to the raw material, and ethyl acetate and ethanol have low boiling points, there are safety problems due to losses during recovery of molten tIX and high vapor pressure.

また生産性を向上させるためには、溶解性のよい溶媒を
用いるか、多量の触媒又は反応温度を高くして短時間で
水素化反応を行う等が必要となる。
In order to improve productivity, it is necessary to use a solvent with good solubility, use a large amount of catalyst, or raise the reaction temperature to carry out the hydrogenation reaction in a short time.

しかし、多量の触媒を使用することは経済的に不利で、
かつ反応終了後の操作にも悪影響を及ぼすこととなる。
However, using a large amount of catalyst is economically disadvantageous;
Moreover, it will also have an adverse effect on operations after the reaction is completed.

また反応温度を限度以上に上げると、二級のヒドロキシ
ル基の脱離等の副反応が生じ、好ましいものではない、
したがって溶解性のよい溶媒を選択することが不可欠と
なる。
In addition, if the reaction temperature is raised above the limit, side reactions such as elimination of secondary hydroxyl groups will occur, which is not preferable.
Therefore, it is essential to select a solvent with good solubility.

特開平1−156935号においては、原料のビフェニ
ル−4,4°−ジオール100gに、インプロパツール
1リツトルを加え、反応を行っているが、原料に対し溶
媒量が多く、イソプロパツールは低沸点であることから
溶媒回収時の損失、蒸気圧が高いことによる安全上の問
題がある。
In JP-A-1-156935, 1 liter of inpropanol is added to 100 g of biphenyl-4,4°-diol as a raw material to carry out the reaction, but the amount of solvent is large relative to the raw material, and isopropanol is low. Due to its boiling point, there are losses during solvent recovery and safety issues due to its high vapor pressure.

一方、ビスフェノールA(4,4’ −ジヒドロキシジ
フェニル−2,2−プロパン)をデカリンWI媒中(A
nn、  472.68 (I929))、又はイン7
0パノール若しくはn−ブタノール溶媒中〈特公昭45
−1423)、メタノール若しくはエタノール等の溶媒
中(特公昭45−35300〉、水素化して水素化ビス
フェノールAを製造する方法が開示されているが、ビス
フェノールAは、インプロピリデン基を有するため、ビ
フェノールやビスシクロヘキサノールと比較して溶媒に
対する溶解性ががなり異なり、ビスフェノールAの水素
化に用いられた溶媒をビフェノールの水素化にそのまま
適用することは困難である。
On the other hand, bisphenol A (4,4'-dihydroxydiphenyl-2,2-propane) was dissolved in decalin WI medium (A
nn, 472.68 (I929)), or in7
0 in panol or n-butanol solvent
-1423), in a solvent such as methanol or ethanol (Japanese Patent Publication No. 45-35300) discloses a method for producing hydrogenated bisphenol A, but since bisphenol A has an inpropylidene group, biphenol The solubility in solvents is lower than that of biscyclohexanol and biscyclohexanol, and it is difficult to directly apply the solvent used for the hydrogenation of bisphenol A to the hydrogenation of biphenol.

ビフェノールの水素化において、原料のビフェノールと
生成物のビスシクロヘキサノールは溶媒に対する溶解度
、親和性が異なり、溶媒の蒸気圧が低く共によく解ける
溶媒の選択はこれまでは非常に困難であった。
In the hydrogenation of biphenol, the raw material biphenol and the product biscyclohexanol have different solubility and affinity for solvents, and it has been extremely difficult to select a solvent that has a low vapor pressure and can dissolve both solvents well.

[発明が解決しようとする課題] ビフェノールを水素化反応してビスシクロヘキサノール
を製造するに際し、原料のビフェノールと、生成物のビ
スシクロヘキサノールの両方に対する良溶媒を選択する
ことにより、反応速度を向上せしめ、ビスシクロヘキサ
ノールの生産性の向上を図ることを目的とする。
[Problem to be solved by the invention] When hydrogenating biphenol to produce biscyclohexanol, the reaction rate is improved by selecting a good solvent for both the raw material biphenol and the product biscyclohexanol. The aim is to improve the productivity of biscyclohexanol.

[課題を解決するための手段] 本発明者らは以上の問題点を解消すべく、一般式1)式
に示すビフェノールと一般式(II>式に示すビスシク
ロヘキサノールの溶媒に対する溶解性を鋭意検討を行っ
た結果、溶解性、反応速度等が溶媒の種類によって大き
く影響されることを見い出し、一般式(III)式に示
されるグリコールモノアルキルエーテルを用いることに
よって、本発明を完成せしめた。
[Means for Solving the Problems] In order to solve the above problems, the present inventors have made efforts to improve the solubility of biphenol shown in general formula 1) and biscyclohexanol shown in general formula (II>) in a solvent. As a result of investigation, it was found that solubility, reaction rate, etc. are greatly affected by the type of solvent, and the present invention was completed by using a glycol monoalkyl ether represented by general formula (III).

RO−(RO)n ■] (III) (Rは炭素数1〜5のアAキル基を示し、Roは炭素数
2〜4のアルキレン基を示す。
RO-(RO)n (III) (R represents an alkyl group having 1 to 5 carbon atoms, and Ro represents an alkylene group having 2 to 4 carbon atoms.

RとRoの炭素数の合計は7以下である。〉さらに、該
グリコールモノアルキルエーテルは、蒸気圧が小さいた
め、反応装置に高度な耐圧性を必要とすることもなく、
溶媒留去時の損失が少なく、溶媒の繰り返し再使用が可
能であり、目的物との沸点差が大きく、蒸留等による分
離精製が容易であるという利点も有する。
The total number of carbon atoms in R and Ro is 7 or less. 〉Furthermore, since the glycol monoalkyl ether has a low vapor pressure, it does not require a high degree of pressure resistance in the reaction equipment.
It also has the advantage that there is little loss during solvent distillation, the solvent can be reused repeatedly, it has a large boiling point difference with the target product, and it is easy to separate and purify by distillation or the like.

本発明の溶媒を用いると、常温から80℃程度の原料の
通常の仕込み温度で、原料50gに対し溶t1100 
m lから300m1程度で十分であり、かつ170℃
程度の水素化温度では蒸気圧が小さいため、同一の耐圧
容器では水素ガスの分圧を大きくすることができ、水素
化反応の時間を短縮することが可能となる。
When the solvent of the present invention is used, it is possible to melt t1100 per 50 g of raw material at the normal charging temperature of raw materials from room temperature to about 80°C.
ml to 300ml is sufficient, and 170℃
Since the vapor pressure is small at a hydrogenation temperature of about 100%, the partial pressure of hydrogen gas can be increased in the same pressure-resistant container, and the hydrogenation reaction time can be shortened.

反応溶媒として用いられるグリコールモノアルキルエー
テルとは、メタノール、エタノール、プロパツール、イ
ンプロパツール、ブタノール、−イソブタノール、アミ
ルアルコール、イソアミルアルコールにエチレンオキシ
ド、プロピレンオキシド、ブチレンオキシド等のアルキ
レンオキシドを付加させたもので、かつ炭素数の合計が
7以下の化合物である。
Glycol monoalkyl ethers used as reaction solvents are methanol, ethanol, propatool, impropatol, butanol, -isobutanol, amyl alcohol, and isoamyl alcohol to which alkylene oxides such as ethylene oxide, propylene oxide, and butylene oxide are added. and the total number of carbon atoms is 7 or less.

具体的には、 エチレングリコールモノメチルエーテル、エチレングリ
コールモノエチルエーテル、エチレングリコールモノプ
ロビルエーテル、エチレングリコールモノイソプロビル
エーテル、エチレングリコールモノブチルエーテル、エ
チレングリコールモノイソブチルエーテル。
Specifically, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether.

エチレングリコールモノアミルエーテル、エチレングリ
コールモノイソアミルエーテル、ジエチレングリコール
モノメチルエーテル、ジエチレングリコールモノエチル
エーテル、ジエチレングリコールモノプロビルエーテル
、ジエチレングリコールモノインプロビルエーテル、ト
リエチレングリコールモノメチルエーテル、プロピレン
グリコールモノメチルエーテル、プロピレングリコール
モノエチルエーテル、プロピレングリコールモノプロピ
ルエーテル、プロピレングリコールモノイソプロピルエ
ーテル、プロピレングリコールモノブチルエーテル、プ
ロピレングリコールモノインブチルエーテル、ジプロピ
レングリコールモノメチルエーテル、ブチレングリコー
ルモノメチルエーテル、ブチレングリコールモノエチル
エーテル、ブチレングリコールモノプロビルエーテル、
ブチレングリコールモノイソプロビルエーテル、等が例
示される。
Ethylene glycol monoamyl ether, ethylene glycol monoisoamyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monoimpropyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, Propylene glycol monopropyl ether, propylene glycol monoisopropyl ether, propylene glycol monobutyl ether, propylene glycol monoin butyl ether, dipropylene glycol monomethyl ether, butylene glycol monomethyl ether, butylene glycol monoethyl ether, butylene glycol monopropyl ether,
Examples include butylene glycol monoisopropyl ether.

上記の例示の中でも特に、沸点、原料の溶解性、生成物
の溶解性の点から、(IV)式に示すプロピレングリコ
ールモノメチルエーテルが好ましい。
Among the above examples, propylene glycol monomethyl ether represented by formula (IV) is particularly preferred from the viewpoint of boiling point, solubility of raw materials, and solubility of products.

CH30−CH2−CH−CH3 0H(IV) 炭素数が8以上のグリコールモノアルキルエーテルは、
沸点が高くなり、目的物と分離する上で好ましくない。
CH30-CH2-CH-CH3 0H(IV) Glycol monoalkyl ether having 8 or more carbon atoms is
It has a high boiling point, which is unfavorable for separation from the target product.

溶媒の量は原料50gに対し、50m1〜500m1で
ある。さらに好ましくは100m1〜300m1である
。溶媒量が50m1以下であると、通常の仕込み温度で
ある常温から80℃程度の温度範囲では、原料及び生成
物を溶解せしめることができず、また逆に500m1以
上であると、原料の仕込み量が減少し、生産性が低下す
る結果となる。
The amount of solvent is 50ml to 500ml per 50g of raw material. More preferably, it is 100 m1 to 300 m1. If the amount of solvent is less than 50ml, the raw materials and products cannot be dissolved in the temperature range from room temperature to 80℃, which is the normal preparation temperature, and conversely, if the amount is more than 500ml, the amount of raw materials charged will be reduced. This results in a decrease in productivity.

本発明に使用される水素化用の触媒は、従来公知の水素
化触媒が例示され、具体的には、ニッケル系触媒、コバ
ルト系触媒、貴金属触媒としてパラジウム触媒、ロジウ
ム触媒、ルテニウム触媒、白金触媒等が使用できる。触
媒の中では安定化二・yケル系触媒、パラジウム系触媒
が好ましいが、これらに限定されるものではない、触媒
を担持する担体は、通常用いられる担体のいずれも使用
でき、ケイソウ土やグラファイト、シリカ、活性炭、ア
ルミナ、炭酸カルシウム等が使用できる。触媒の担持量
は、ケイソウ土やアルミナ、カーボン等の担体に対して
0.1〜5重量%担持したものが適当である。
Examples of the hydrogenation catalyst used in the present invention include conventionally known hydrogenation catalysts, such as nickel-based catalysts, cobalt-based catalysts, and noble metal catalysts such as palladium catalysts, rhodium catalysts, ruthenium catalysts, and platinum catalysts. etc. can be used. Among the catalysts, stabilized di-y-Kel catalysts and palladium-based catalysts are preferred, but they are not limited to these.As the carrier for supporting the catalyst, any commonly used carrier can be used, such as diatomaceous earth or graphite. , silica, activated carbon, alumina, calcium carbonate, etc. can be used. The amount of catalyst supported is suitably 0.1 to 5% by weight on a carrier such as diatomaceous earth, alumina, or carbon.

触媒量は原料仕込み量に対し、0.1重量%〜30重量
%で、好ましくは、0.5重量%〜15重量%である。
The amount of catalyst is 0.1% to 30% by weight, preferably 0.5% to 15% by weight, based on the amount of raw materials charged.

触媒量は水素化に用いる触媒の種類により異なり、安定
化ニッケル系触媒では、通常原料に対し1〜3重量重量
%用いる。貴金属触媒の場合は、通常0.3〜2重量重
量%用いられる。水素化温度はニッケル系触媒の場合、
通常100℃〜250℃であり、これより反応温度が低
いと、水素化反応が遅く、これより高いと生成したビス
シクロヘキサノールの二級のヒドロキシル基の脱離反応
が起こり、オレフィンが生成するなど、好ましいことで
はない、但し、パラジウム系触媒等の貴金属触媒を用い
た場合は、さらに低温でも行うことができる。
The amount of catalyst varies depending on the type of catalyst used for hydrogenation, and in the case of a stabilized nickel catalyst, it is usually used in an amount of 1 to 3% by weight based on the raw material. In the case of a noble metal catalyst, it is usually used in an amount of 0.3 to 2% by weight. For nickel-based catalysts, the hydrogenation temperature is
The temperature is usually 100°C to 250°C. If the reaction temperature is lower than this, the hydrogenation reaction will be slow, and if it is higher than this, the elimination reaction of the secondary hydroxyl group of the biscyclohexanol produced will occur, resulting in the production of olefins. However, when a noble metal catalyst such as a palladium-based catalyst is used, the reaction can be carried out at even lower temperatures.

反応水素圧はゲージ圧(以下、同様)1kg/cm”以
上であればいかなる圧力でもよいが、一般には1〜10
0kg/cm2が好ましく、安定化ニッケル触媒では3
0〜100 k g / c m 2の範囲が適当であ
る。貴金属触媒を用いた場合は、10kg/c m ’
以下でも水素化を行うことができる。
The reaction hydrogen pressure may be any pressure as long as it is a gauge pressure (hereinafter the same) 1 kg/cm" or higher, but generally it is 1 to 10
0 kg/cm2 is preferred, and for stabilized nickel catalysts 3
A range of 0 to 100 kg/cm2 is suitable. When using a precious metal catalyst, 10 kg/cm'
Hydrogenation can also be carried out below.

本発明においては、反応時間は特に規定されないが、水
素化に要する時間は20分〜15時間である。より好ま
しくは、30分〜4時間である。
In the present invention, the reaction time is not particularly limited, but the time required for hydrogenation is 20 minutes to 15 hours. More preferably, it is 30 minutes to 4 hours.

20分より短いと水素化反応が不十分であり、また逆に
15時間よりも長いと、過反応のため二級のヒドロキシ
ル基の脱離を生じ、また生産性の点で好ましいことでは
ない。
If it is shorter than 20 minutes, the hydrogenation reaction will be insufficient, and if it is longer than 15 hours, secondary hydroxyl groups will be eliminated due to overreaction, which is not preferable in terms of productivity.

本発明によれば、従来法より大幅に生産性の向上を図る
ことができ、反応混合物をr過して、溶媒を蒸発せしめ
るだけで、極めて純度の高い製品が得られるなどの利点
を有し、産業上有用な方法である。さらに、繰り返し使
用による触媒の劣化もない。
According to the present invention, productivity can be significantly improved compared to conventional methods, and it has the advantage that a product with extremely high purity can be obtained simply by passing the reaction mixture through filtration and evaporating the solvent. , is an industrially useful method. Furthermore, there is no deterioration of the catalyst due to repeated use.

反応方法はバッチ反応、連続反応方式のどちらでも可能
であり、生産量等により適宜選択される。
The reaction method can be either a batch reaction or a continuous reaction method, and is appropriately selected depending on the production amount and the like.

[実施例] 以下、実施例をあげて本発明の詳細な説明するが、本発
明はこれに限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in detail by giving Examples, but the present invention is not limited thereto.

実施例1゜ 電磁式撹拌装置を供えた内容積5リツトルのオートクレ
ーブに4.4゛−ジヒドロキシジフェニル(本州化学(
株〉製、以下同品を使用1500gと、プロピレングリ
コールモノメチルエーテル(日本乳化剤(株)製i 2
000m lを加え、水素化触媒として5N−300+
安定化ニッケル触媒、堺化学(株〉製)を原料に対し2
重量%仕込み、水素ガスでオートクレーブ内部を置換し
て、30 k g / c m 2の圧力になるように
仕込んで昇温し、170℃に到達したら、水素圧を50
 k g /’cm2に調整した。水素ガスの吸収があ
れば、随時水素ガスを追加し、反応圧力が常に50 k
 g / cm2の圧力になるように調整し、水素ガス
の吸収が停止するまで120分間、水素化反応を行った
Example 1 4.4゛-dihydroxydiphenyl (Honshu Chemical Co., Ltd.) was placed in a 5 liter autoclave equipped with an electromagnetic stirrer.
1,500 g of the same product manufactured by Nippon Nyukazai Co., Ltd. and 1,500 g of propylene glycol monomethyl ether (manufactured by Nippon Nyukazai Co., Ltd.)
000ml and 5N-300+ as hydrogenation catalyst.
Stabilized nickel catalyst, manufactured by Sakai Chemical Co., Ltd.
% by weight, replace the inside of the autoclave with hydrogen gas, charge the autoclave to a pressure of 30 kg/cm2, raise the temperature, and when it reaches 170°C, increase the hydrogen pressure to 50 kg/cm2.
It was adjusted to kg/'cm2. If hydrogen gas is absorbed, add hydrogen gas as needed to keep the reaction pressure at 50 k.
The pressure was adjusted to g/cm2, and the hydrogenation reaction was carried out for 120 minutes until absorption of hydrogen gas stopped.

その後20分かけて60℃まで冷却し、内容物をオート
クレーブより取り出して、r通接、溶媒を減圧下で蒸発
せしめ、目的物である4、4゜ジヒドロキシジシクロヘ
キサンを得た。純度の分析はガスクロマトグラフィで行
った。得られた結果を表1に示す。
Thereafter, the contents were cooled to 60° C. over 20 minutes, taken out from the autoclave, and the solvent was evaporated under reduced pressure to obtain the desired product, 4,4° dihydroxydicyclohexane. Purity analysis was performed by gas chromatography. The results obtained are shown in Table 1.

実施例2 溶媒としてジエチレングリコール七ツメチルエーテル(
日本乳化剤(株)製)を用いた以外は実施例1と同様に
行った。得られた結果を表1に示す。
Example 2 Diethylene glycol 7-methyl ether (
The same procedure as in Example 1 was conducted except that Nippon Nyukazai Co., Ltd.) was used. The results obtained are shown in Table 1.

実施例3゜ 溶媒としてエチレングリコールモノブチルエーテル(日
本乳化剤〈株〉製)を用いた以外は実施例1と同様に行
った。得られた結果を表1に示す。
Example 3 The same procedure as in Example 1 was carried out except that ethylene glycol monobutyl ether (manufactured by Nippon Nyukazai Co., Ltd.) was used as the solvent. The results obtained are shown in Table 1.

実施例4゜ 原料に2,2゛−ジヒドロキシジフェニル(和光純薬(
株)製試薬1級品)を用いた以外は、実施例1と同様に
行った。得られた結果の結果を表1に示す。
Example 4 2,2゛-dihydroxydiphenyl (Wako Pure Chemical Industries, Ltd.) was used as a raw material.
The same procedure as in Example 1 was carried out except that a reagent (1st class reagent manufactured by Co., Ltd.) was used. The results obtained are shown in Table 1.

実施例5゜ 触媒としてカーボンに5重量%担持されたパラジウム触
媒(エヌ イーテムキャット(株)製)を原料に対し0
.5重量%用い1反応水素圧を10 k g / c 
m ’に代えた以外は、実施IMIと同様に行った。得
られた結果を表1に示す。
Example 5 As a catalyst, a palladium catalyst (manufactured by NT Cat Co., Ltd.) supported at 5% by weight on carbon was added to
.. 1 reaction using 5 wt% hydrogen pressure 10 kg/c
The procedure was carried out in the same manner as the actual IMI except that m' was replaced. The results obtained are shown in Table 1.

実施例6゜ 原料の4.4゛−ジヒドロキシジフェニル500gに、
プロピレングリコールモノメチルエーテル10100O
を加えた以外は、実施例1と同様に行った。得られた結
果を表1に示す。
Example 6 500g of 4.4゛-dihydroxydiphenyl as raw material,
Propylene glycol monomethyl ether 10100O
The same procedure as in Example 1 was carried out except that . The results obtained are shown in Table 1.

実施例7゜ 触媒の5N−300の使用量を原料の4.4−ジヒドロ
キシジフェニルに対し、1重量%用いた以外は実施例1
と同様に反応を行った。得られた結果を表1に示す。
Example 7゜Same as Example 1 except that the catalyst 5N-300 was used in an amount of 1% by weight based on the raw material 4,4-dihydroxydiphenyl.
The reaction was carried out in the same manner. The results obtained are shown in Table 1.

比較例1 原料として4.4゛−ジヒドロキシジフェニル500g
、!媒として酢酸エチル(和光純薬(株)製試薬1級品
)2500ml用いた以外は実yMPs1と同様に行っ
た。得られた結果を表1に示す。
Comparative Example 1 500g of 4.4゛-dihydroxydiphenyl as raw material
,! The same procedure as in yMPs1 was carried out except that 2,500 ml of ethyl acetate (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used as the medium. The results obtained are shown in Table 1.

比較例2 原料として4,4゛−ジヒドロキシジフェニル500g
、溶媒としてイソプロパツール(和光純薬(株)製試薬
1級品12500ml用いた以外は実施例1と同様に行
った。得られた結果を表1に示す。
Comparative Example 2 500g of 4,4゛-dihydroxydiphenyl as raw material
The same procedure as in Example 1 was carried out except that 12,500 ml of isopropanol (12,500 ml of a first-grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used as the solvent. The obtained results are shown in Table 1.

250g、溶媒として酢酸エチル(和光純薬〈株)製試
薬1級品)2500ml用いた以外は実施例1と同様に
行った。得られた結果を表1に示す。
The same procedure as in Example 1 was carried out, except that 250 g and 2500 ml of ethyl acetate (a first-class reagent manufactured by Wako Pure Chemical Industries, Ltd.) were used as the solvent. The results obtained are shown in Table 1.

[発明の効果コ 本発明によれば、従来法より大幅に生産性の向上を図る
ことができ、反応混合物をl遇して、溶媒を蒸発せしめ
るだけで、極めて純度の高い製品が得られるなどの利点
を有する。
[Effects of the invention] According to the present invention, productivity can be significantly improved compared to conventional methods, and products with extremely high purity can be obtained simply by treating the reaction mixture and evaporating the solvent. It has the following advantages.

Claims (1)

【特許請求の範囲】 一般式( I )式で示すビフェノールを水素化して一般
式(II)式で示すビスシクロヘキサノールを製造するに
際し、一般式(III)式に示すグリコールモノエーテル
の1種又は2種以上の溶媒を使用することを特徴とする
ビスシクロヘキサノールの製造方法。 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) RO−(R’O)n−H(III) (Rは炭素数1〜5のアルキル基を示し、R’は炭素数
2〜4のアルキレン基を示す。 RとR’の炭素数の合計は7以下である。)
[Claims] When producing biscyclohexanol represented by general formula (II) by hydrogenating biphenol represented by general formula (I), one of the glycol monoethers represented by general formula (III) or A method for producing biscyclohexanol, which comprises using two or more types of solvents. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) RO-(R'O)n-H(III) (R is an alkyl group with 1 to 5 carbon atoms and R' represents an alkylene group having 2 to 4 carbon atoms. The total number of carbon atoms of R and R' is 7 or less.)
JP2074500A 1990-03-23 1990-03-23 Method for producing biscyclohexanol Expired - Fee Related JP2520759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2074500A JP2520759B2 (en) 1990-03-23 1990-03-23 Method for producing biscyclohexanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074500A JP2520759B2 (en) 1990-03-23 1990-03-23 Method for producing biscyclohexanol

Publications (2)

Publication Number Publication Date
JPH03275637A true JPH03275637A (en) 1991-12-06
JP2520759B2 JP2520759B2 (en) 1996-07-31

Family

ID=13549094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074500A Expired - Fee Related JP2520759B2 (en) 1990-03-23 1990-03-23 Method for producing biscyclohexanol

Country Status (1)

Country Link
JP (1) JP2520759B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153957A1 (en) 2012-04-09 2013-10-17 株式会社ダイセル Method for producing hydrogenated biphenol
WO2015012262A1 (en) * 2013-07-26 2015-01-29 株式会社ダイセル Hydrogenated phenols production method
US9545617B2 (en) 2014-12-09 2017-01-17 Industrial Technology Research Institute Catalyst and manufacturing method thereof and method for manufacturing hydrogenated bisphenol A or derivatives thereof using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153957A1 (en) 2012-04-09 2013-10-17 株式会社ダイセル Method for producing hydrogenated biphenol
US9206099B2 (en) 2012-04-09 2015-12-08 Daicel Corporation Method for producing hydrogenated biphenol
WO2015012262A1 (en) * 2013-07-26 2015-01-29 株式会社ダイセル Hydrogenated phenols production method
US9545617B2 (en) 2014-12-09 2017-01-17 Industrial Technology Research Institute Catalyst and manufacturing method thereof and method for manufacturing hydrogenated bisphenol A or derivatives thereof using the same
US10005068B2 (en) 2014-12-09 2018-06-26 Industrial Technology Research Institute Catalyst and manufacturing method thereof

Also Published As

Publication number Publication date
JP2520759B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
US3190928A (en) Preparation of tetraalkylcyclo-butanediols
JP2006524188A (en) Method for producing 4-aminodiphenylamine
US3859369A (en) Process for the production of 2-methyl-1,4-butanediol
KR20050004143A (en) A process for preparing 4-aminodiphenylamine
CN1091654C (en) Catalyst mainly using for benzene hydrogenation with nickel as principal component
JPH03275637A (en) Production of biscyclohexanol
US3666791A (en) Process for the purification of crude bis-({62 -hydroxyethyl) terephthalate
JPS63307832A (en) Manufacture of alkanol from alkynol
US4885409A (en) Process for the hydrogenation of bis-phenols
JP4182305B2 (en) Hydrogenated bisphenol A isomer composition
JPH04279537A (en) Production of bicyclohexyldiol
JPS6160636A (en) Manufacture of amine
JPS58131979A (en) Manufacture of phthalide
JPH10204002A (en) Nucleus hydrogenation of substituted aromatic compound
JPH03279336A (en) Production of branched dimerized alcohol
US4156787A (en) One-step dehydrohalogenation-rearrangement-hydrogenation of 1,1-bis(4-hydroxyaryl)-2-haloethanes
US4053524A (en) Hydrogenation process and catalyst
US2704771A (en) Preparation of ether-substituted 1, 5-pentanediols
US2993912A (en) Process for the production of
JP2696382B2 (en) Method for producing alkanediol
CN111662182A (en) Method for producing phenylenediamine by dinitrobenzene solvent-free hydrogenation continuous reaction
EP0286991B1 (en) Process for preparing fluorine-substituted alicyclic diols
JP2684431B2 (en) Method for purifying 4,4&#39;-isopropylidenedicyclohexanol
CN111100083B (en) Method for reducing solid waste in production of antioxidant 3114
CN116693494B (en) Synthesis method of vinylene carbonate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees