JPH03275325A - Temperature control device of t-die - Google Patents

Temperature control device of t-die

Info

Publication number
JPH03275325A
JPH03275325A JP2075481A JP7548190A JPH03275325A JP H03275325 A JPH03275325 A JP H03275325A JP 2075481 A JP2075481 A JP 2075481A JP 7548190 A JP7548190 A JP 7548190A JP H03275325 A JPH03275325 A JP H03275325A
Authority
JP
Japan
Prior art keywords
temperature
value
die
corrected
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2075481A
Other languages
Japanese (ja)
Inventor
Tomoya Ota
朝也 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2075481A priority Critical patent/JPH03275325A/en
Publication of JPH03275325A publication Critical patent/JPH03275325A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/92409Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To make it possible to control the temperature at the deep position of a T-die by following up to temperature set point by a method wherein temperature set point is corrected on the basis of the temperature difference between a first and a second temperature detection signals and the controlling of energizing amount supplied to heaters is performed on the basis of the deviation between the corrected temperature set point and the first detected temperature indicated by a first temperature detection signal. CONSTITUTION:With a second temperature sensor 16, which is newly provided near a resin rich area so as to measure the temperature of a T-die 11, second detected temperature is sampled with a predetermined period after the counting for the predetermined setting time under the given temperature set point of the T-die so as to calculate the rate of change of sampled value. When said rate of change is below set point, a compensated temperature value is calculated on the basis of the difference between a first and a second detected temperatures with a compensator 18 of set point in order to obtain a corrected temperature value by summing up the compensated temperature value and the temperature set point. Next, the energizing amount to heaters 14 is controlled on the basis of the deviation between the corrected temperature value obtained as mentioned above and the first detected temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はラミネーター等の押出成形機に用いられるTダ
イの温度制御を行う温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a temperature control device for controlling the temperature of a T-die used in an extrusion molding machine such as a laminator.

(従来の技術) 一般に、フィルム状の成形物を成形するためのラミネー
ターでは所!WTダイか用いられている。
(Prior art) In general, laminators for forming film-like molded products are not used! WT die is used.

このTダイは溶融樹脂が与えられる入側ポートと、溶融
樹脂が一旦溜められる樹脂溜まり部と、樹脂溜まり部に
連結されフィルム状の樹脂(以下単にフィルムと呼ぶ)
を出すギャップを備えており、このギャップはTダイの
長手方向に延びている。
This T-die has an inlet port to which molten resin is supplied, a resin reservoir where the molten resin is temporarily stored, and a film-like resin connected to the resin reservoir (hereinafter simply referred to as a film).
This gap extends in the longitudinal direction of the T-die.

このようなTダイではギャップから取り出されるフィル
ムの肉厚精度を高めるためTダイ温度を予め設定された
設定温度に制御する必要がある。
In such a T-die, it is necessary to control the T-die temperature to a preset temperature in order to improve the accuracy of the thickness of the film taken out from the gap.

従来、Tダイの温度制御を行う際には、Tダイ表面にギ
ャップの延在方向に沿って複数個の加熱用ヒーターを設
け、さらに、Tダイ中に加熱用ヒーターに近接して複数
の温度センサーを設けて、設定温度値と検出温度値とを
比較して加熱用ヒーターへの通電量制御を行っている。
Conventionally, when controlling the temperature of a T-die, a plurality of heating heaters are provided on the T-die surface along the extending direction of the gap, and a plurality of temperature heaters are provided in the T-die close to the heating heater. A sensor is provided to compare the set temperature value and the detected temperature value to control the amount of electricity supplied to the heating heater.

この際、加熱用ヒーターからの熱伝達に直ちに応答でき
るように温度センサーを設ける位置(温度計測点)は前
述のように加熱用ヒーターに近接する浅い位置が選択さ
れる。
At this time, the position where the temperature sensor is provided (temperature measurement point) is selected to be a shallow position close to the heating heater as described above so that it can immediately respond to heat transfer from the heating heater.

前述したようにラミネーターにおいて樹脂温度がフィル
ム厚に与える影響は極めて大きいため、従来検出温度値
と設定温度値とに基づく温度制御によってTダイの温度
(温度場)が安定すると、経験的にTダイの他の部分(
樹脂溜まり部近傍のTダイの深い位置)における温度の
安定時間を考慮して生産運転を行っている。
As mentioned above, the influence of resin temperature on film thickness in a laminator is extremely large, so when the T-die temperature (temperature field) is stabilized by conventional temperature control based on the detected temperature value and the set temperature value, it has been empirically shown that the T-die temperature Other parts of (
Production operations are conducted taking into consideration the temperature stabilization time at the deep position of the T-die (near the resin reservoir).

(発明が解決しようとする課題) ところが、上述のようにTダイの深い位置の安定時間を
見計らって生産運転に入っているから、生産運転中に種
々の外乱等によって樹脂温度に変動が生じた場合、Tダ
イの深い位置における温度を設定温度値に追従して制御
することが難しいという問題点がある。
(Problem to be solved by the invention) However, as mentioned above, since the production operation is started after determining the stabilization time of the deep position of the T-die, the resin temperature fluctuates due to various disturbances etc. during the production operation. In this case, there is a problem that it is difficult to control the temperature at a deep position of the T-die to follow the set temperature value.

さらに、樹脂溜まり部近傍における樹脂温度を考慮して
いないからTダイの長手方向(幅方向)に温度むらが生
じ易く、ギャップから取り出されるフィルムの厚さに悪
影響を及ぼし偏肉が生じるという問題点がある。
Furthermore, since the resin temperature in the vicinity of the resin reservoir is not considered, temperature unevenness tends to occur in the longitudinal direction (width direction) of the T-die, which adversely affects the thickness of the film taken out from the gap, resulting in uneven thickness. There is.

本発明の目的はTダイの深い位置における温度を設定温
度値に追従して制御することができるTダイ温度制御装
置を提供することにある。
An object of the present invention is to provide a T-die temperature control device that can control the temperature at a deep position of the T-die in accordance with a set temperature value.

本発明の他の目的はフィルムの厚さに偏肉が生じること
のないTダイ温度制御装置を提供することにある。
Another object of the present invention is to provide a T-die temperature control device that does not cause uneven thickness of the film.

(課題を解決するための手段) 本発明によれば、溶融樹脂が供給され、溶融樹脂を溜め
る樹脂溜まり部と、この樹脂溜まり部に連結され予め定
められた方向に延びるギャップとが形成され、このギャ
ップからフィルム状樹脂が取り出されるTダイの温度制
御を行う際に用いられ、Tダイに設けられTダイを加熱
制御するためのヒーターと、ヒーターに近接して設けら
れTダイの温度を計測して第1の温度検出信号を出力す
る第1の温度センサーと、樹脂溜まり部の近傍に設けら
れTダイの温度を計測して第2の温度検出信号を出力す
る第2の温度センサーと、Tダイの設定温度値が入力さ
れ、設定温度値入力後所定の設定時間が経過すると予め
定められた周期で第2の温度検出信号が示す第2の検出
温度をサンプルしてサンプル値の変化率を算出する第1
の手段と、上記の変化率が予め設定された設定値以下と
なると第1の温度検出信号で示される第1の検出温度と
前記第2の検出温度との差に基づいて補正温度値を求め
る第2の手段と、該補正温度値と前記設定温度値とを加
算して修正温度値を求める第3の手段と、該修正温度値
を受け前記第1の検出温度と前記修正温度値との偏差に
基づいて前記ヒーターへの通電量を制御する温度調節手
段とを有することを特徴とするTダイ温度制御装置が得
られる。
(Means for Solving the Problems) According to the present invention, a molten resin is supplied, a resin reservoir portion for storing the molten resin, and a gap connected to the resin reservoir portion and extending in a predetermined direction are formed, It is used to control the temperature of the T-die from which the film-shaped resin is taken out from this gap, and there is a heater installed in the T-die to control the heating of the T-die, and a heater installed close to the heater to measure the temperature of the T-die. a first temperature sensor that measures the temperature of the T-die and outputs a second temperature detection signal, which is provided near the resin reservoir and outputs a second temperature detection signal; The set temperature value of the T-die is input, and when a predetermined set time has elapsed after inputting the set temperature value, the second detected temperature indicated by the second temperature detection signal is sampled at a predetermined period, and the rate of change of the sample value is measured. The first step is to calculate
and determining a corrected temperature value based on the difference between the first detected temperature and the second detected temperature, which are indicated by the first temperature detection signal when the rate of change becomes equal to or less than a preset value. a second means; a third means for obtaining a corrected temperature value by adding the corrected temperature value and the set temperature value; and a third means for calculating the corrected temperature value by adding the corrected temperature value and the set temperature value; There is obtained a T-die temperature control device characterized in that it has a temperature control means for controlling the amount of current applied to the heater based on the deviation.

(作用) 本発明では、新たに樹脂溜まり部の近傍にTダイの温度
を計測する第2の温度センサーを設けて、Tダイの温度
設定値が与えられた際所定の設定時間をカウントしてそ
の後予め定められた周期で第2の検出温度をサンプリン
グしてこれらサンプル値の変化率を求める。そして、こ
の変化率が設定値以下となると第1の検出温度と第2の
検出温度との差に基づいて補正温度値を求め、この補正
温度値と設定温度値とを加算して修正温度値を求める。
(Function) In the present invention, a second temperature sensor for measuring the temperature of the T-die is newly provided near the resin reservoir, and when the temperature setting value of the T-die is given, a predetermined setting time is counted. Thereafter, the second detected temperature is sampled at a predetermined period and the rate of change of these sample values is determined. Then, when this rate of change becomes less than the set value, a corrected temperature value is calculated based on the difference between the first detected temperature and the second detected temperature, and the corrected temperature value is calculated by adding this corrected temperature value and the set temperature value. seek.

次に、この修正温度値を用いて修正温度値と第1の検出
温度との偏差に基づいてヒーターへの通電量を制御する
Next, using this corrected temperature value, the amount of electricity applied to the heater is controlled based on the deviation between the corrected temperature value and the first detected temperature.

このように、修正温度値を用いて、つまり、第2の検出
温度を考慮してヒーター通電量を制御しているから、T
ダイの深い位置における温度を設定温度値に追従して制
御することができ、フィルムの厚さに偏肉が生じること
のない。
In this way, since the heater energization amount is controlled using the corrected temperature value, that is, in consideration of the second detected temperature, T
The temperature at the deep position of the die can be controlled to follow the set temperature value, and uneven thickness of the film will not occur.

(実施例) 以下本発明について実施例によって説明する。(Example) The present invention will be explained below with reference to Examples.

第1図を参照して、Tダイ11はTダイ本体12を備え
ており、Tダイ本体12には溶融樹脂が供給される入側
ボート13が備えられている。
Referring to FIG. 1, the T-die 11 includes a T-die main body 12, and the T-die main body 12 is provided with an entry boat 13 to which molten resin is supplied.

Tダイ本体12には図示のように第1の樹脂通路12a
が形成され、この第1の樹脂通路12aは長手(横)方
向に広がる樹脂溜まり部12bに連結されている。さら
に、この樹脂溜まり部12bはTダイの長手方向に広が
る第2の樹脂通路12cに連結されてTダイ本体12の
下端には長手方向に延びるギャップ12dが形成されて
いる。
The T-die main body 12 has a first resin passage 12a as shown in the figure.
is formed, and this first resin passage 12a is connected to a resin reservoir portion 12b that extends in the longitudinal (lateral) direction. Further, this resin reservoir portion 12b is connected to a second resin passage 12c extending in the longitudinal direction of the T-die, and a gap 12d extending in the longitudinal direction is formed at the lower end of the T-die main body 12.

図示のようにTダイ本体12は複数(N個)のセグメン
トに分割されており、周知のように各セグメント単位に
ギャップの寸法(厚み)を調整できるようになっている
。Tダイ本体12にはその表面上に複数の加熱用ヒータ
ー14が配設されている。例えば、加熱用ヒーター14
は各セグメント単位に配設される。この場合には、合計
N個の加熱用ヒーター14が配設されることになる。さ
らに、加熱用ヒーター14の近傍において(第1の温度
計測点という)Tダイ本体12中には各セグメント単位
に第1の温度センサー(例えば、熱電対)15が埋め込
まれており、Tダイの温度を計測して第1の温度検出信
号を出力する。また、樹脂溜まり部12bに近接して(
第2の温度計測点という)Tダイ本体12中には各セグ
メント単位に第2の温度センサー(例えば、熱電対)1
6が埋め込まれており、Tダイの温度を計測して第2の
温度検出信号を出力する。
As shown in the figure, the T-die main body 12 is divided into a plurality of (N) segments, and as is well known, the gap dimension (thickness) can be adjusted for each segment. A plurality of heaters 14 are arranged on the surface of the T-die main body 12. For example, heating heater 14
is arranged for each segment. In this case, a total of N heaters 14 will be provided. Furthermore, a first temperature sensor (for example, a thermocouple) 15 is embedded in each segment in the T-die main body 12 (referred to as a first temperature measurement point) near the heating heater 14, and The temperature is measured and a first temperature detection signal is output. Also, in the vicinity of the resin reservoir portion 12b (
A second temperature sensor (for example, thermocouple) 1 is installed in each segment in the T-die body 12 (referred to as a second temperature measurement point).
6 is embedded, and measures the temperature of the T-die and outputs a second temperature detection signal.

各加熱用ヒーター14は温度調節器17に接続され、こ
の温度調節器17によって後述するように通電制御され
る。つまり、各加熱用ヒーター14はそれぞれ独立して
通電制御される。第1及び第2の温度センサー15及び
16は設定値補正装置18に接続されるとともに図示し
ない表示装置に接続されており、設定値補正装置18は
加算器18a及び設定値補正演算部18bを備えている
。また、第1の温度センサー15は温度調節器17に接
続されている。
Each heater 14 is connected to a temperature regulator 17, and the temperature regulator 17 controls the energization as described later. That is, each heating heater 14 is independently controlled to be energized. The first and second temperature sensors 15 and 16 are connected to a set value correction device 18 and also to a display device (not shown), and the set value correction device 18 includes an adder 18a and a set value correction calculation section 18b. ing. Further, the first temperature sensor 15 is connected to a temperature regulator 17.

ここで、第2図も参照して、ラミネーターを駆動する際
、まず、オペレーターによって設定樹脂温度値(TA)
が設定値補正装置18に与えられる。この時点では設定
値補正演算部18bからの出力はなく、設定温度値(T
A)は加算器18aを介して温度調節器17に入力され
る。そして、温度調節器17は設定温度値(TA)と第
1の温度検出信号で示される第1の検出温度値(t a
)との偏差に基づいて加熱用ヒーター14への通電量を
制御する。
Here, referring also to Fig. 2, when driving the laminator, first the resin temperature value (TA) is set by the operator.
is given to the set value correction device 18. At this point, there is no output from the set value correction calculation section 18b, and the set temperature value (T
A) is input to the temperature controller 17 via the adder 18a. The temperature regulator 17 then sets the set temperature value (TA) and the first detected temperature value (ta) indicated by the first temperature detection signal.
) is used to control the amount of electricity supplied to the heating heater 14.

加熱用ヒーター14からの熱の供給によってまず第1の
温度計測点における第1の検出温度(ta)が上昇し、
設定温度値(TA)に追従する。加熱用ヒーター14か
らの熱は第2の温度計測点にも伝達され、第2の検出温
度も徐々に上昇する。
By supplying heat from the heating heater 14, first the first detected temperature (ta) at the first temperature measurement point increases,
Follows the set temperature value (TA). The heat from the heating heater 14 is also transmitted to the second temperature measurement point, and the second detected temperature also gradually increases.

一般に、十分な時間が経過すると第1の検出温度(t 
a)及び第2の検出温度(tb)は平衡状態に達する。
Generally, the first detected temperature (t
a) and the second detected temperature (tb) reach an equilibrium state.

つまり、第1の検出温度は設定温度値(TA)に平衡し
、第2の検出温度は設定温度値(TA)より低い温度に
平衡する。
That is, the first detected temperature is balanced to the set temperature value (TA), and the second detected temperature is balanced to a temperature lower than the set temperature value (TA).

本発明では、設定値補正装置18は設定温度値(TA)
を受けると、予め設定された設定時間(待ち時間)をカ
ウントする。この設定時間はTダイの形状及び熱容量等
に基づいて設定される。
In the present invention, the set value correction device 18 adjusts the set temperature value (TA)
When received, a preset time (waiting time) is counted. This set time is set based on the shape and heat capacity of the T-die.

上記の設定時間が経過すると、設定値補正演算部18b
は予め定められた周期(例えば、10秒毎)で第2の温
度検出信号をサンプルして今回のサンプル値と前回のサ
ンプル値との差を求め、この差を変化率(変化値)とす
る。そして、この変化値が所定の値以下となると(例え
ば、定常状態となった時、第2図では待ち時間経過から
上記の所定の値になるまでの区間を定常状態監視区間と
している)設定値補正演算部18bは第2の検出温度が
定常状態に達したと判断して、第1の検出温度(ta)
及び第2の検出温度(tb)から補正温度値ΔTAを次
の第(1)式によって求める。
When the above set time has elapsed, the set value correction calculation section 18b
samples the second temperature detection signal at a predetermined period (for example, every 10 seconds), calculates the difference between the current sample value and the previous sample value, and uses this difference as the rate of change (change value). . When this change value becomes less than a predetermined value (for example, when the steady state is reached, in Figure 2, the period from the elapse of the waiting time until the above predetermined value is reached is the steady state monitoring section), the set value The correction calculation unit 18b determines that the second detected temperature has reached a steady state, and adjusts the first detected temperature (ta).
The corrected temperature value ΔTA is calculated from the second detected temperature (tb) using the following equation (1).

ΔT A −K X (t a −t b ) ・= 
(1)ここで、Kはパラメーターであり、第1の検出温
度(ta)に関する関数としてK −f (ta)で示
され、Tダイの形状及び熱容量に基づいて決定される。
ΔT A −K X (t a −t b ) ・=
(1) Here, K is a parameter, expressed as K - f (ta) as a function regarding the first detected temperature (ta), and is determined based on the shape and heat capacity of the T-die.

さらに、実用上、Kはラミネーターにおける生産温度、
例えば、200〜350度の間で複数用意される。この
パラメーターには予め設定値補正演算部18bに記憶さ
れている。従って、第3図に示すように横軸を(ta−
tb)、縦軸をΔTAとすると、ΔTA−KX (t 
a −t b)はパラメーターKに応じて傾きが異なる
直線で表される。
Furthermore, in practice, K is the production temperature in the laminator,
For example, a plurality of angles are prepared between 200 and 350 degrees. This parameter is stored in advance in the set value correction calculation section 18b. Therefore, as shown in Figure 3, the horizontal axis is (ta-
tb), and the vertical axis is ΔTA, then ΔTA−KX (t
a-t b) is represented by a straight line whose slope differs depending on the parameter K.

上述のようにして算出された補正温度値ΔTAは加算器
18gに与えられ、設定温度値TAと加算され、修正設
定温度値(T−TA+ΔTA)が出力される。この修正
設定温度値(T)は温度調節器17に与えられ、温度調
節器17は第1の検出温度と修正設定温度値(T)との
偏差に基づいて、例えば、PID制御によってヒーター
操作量を決定し、この操作量によって加熱用ヒーター1
4への通電量を制御する。
The corrected temperature value ΔTA calculated as described above is given to the adder 18g, where it is added to the set temperature value TA, and a corrected set temperature value (T-TA+ΔTA) is output. This corrected set temperature value (T) is given to the temperature regulator 17, and the temperature regulator 17 determines the amount of heater operation by, for example, PID control based on the deviation between the first detected temperature and the corrected set temperature value (T). is determined, and heating heater 1 is determined based on this operation amount.
Controls the amount of electricity supplied to 4.

この結果、第2図に示すように第1の検出温度は設定温
度値(TA)より高い温度に平衡し、第2の検出温度は
設定温度(TA ’)に平衡する。
As a result, as shown in FIG. 2, the first detected temperature is balanced to a temperature higher than the set temperature value (TA), and the second detected temperature is balanced to the set temperature (TA').

ここで、設定温度値がTAからTBに変更されると、設
定値補正演算部18bは補正温度値ΔTAの退出を停止
する。そして、設定値補正装置t18は設定時間(待ち
時間)のカウントを開始する。設定時間が経過すると、
前述したように、設定値補正演算部18bは予め定めら
れた周期(例えば、10秒毎)で第2の温度検出信号を
サンプルして変化率を求める。そして、この変化率が所
定の値以下となると、第(1)式に基づいて第1の検出
温度(ta)及び第2の検出温度(tb)から補正温度
値ΔTBを求めて加算器18aに与える。これによって
、加算器18aは修正設定温度値T” (T’−−”r
B十ΔTs)を温度調節器17に与える。温度調節器1
7はこの修正設定温度値T′と第1の検出温度(ta)
との偏差に基づいて加熱用ヒーター14への通電量を制
御する。
Here, when the set temperature value is changed from TA to TB, the set value correction calculation unit 18b stops leaving the corrected temperature value ΔTA. Then, the set value correction device t18 starts counting the set time (waiting time). After the set time has elapsed,
As described above, the set value correction calculation unit 18b samples the second temperature detection signal at a predetermined period (for example, every 10 seconds) to determine the rate of change. When this rate of change becomes equal to or less than a predetermined value, a corrected temperature value ΔTB is calculated from the first detected temperature (ta) and the second detected temperature (tb) based on equation (1) and is sent to the adder 18a. give. As a result, the adder 18a outputs the corrected set temperature value T"(T'--"r
B+ΔTs) is applied to the temperature controller 17. Temperature controller 1
7 is this corrected set temperature value T' and the first detected temperature (ta)
The amount of electricity supplied to the heating heater 14 is controlled based on the deviation from the above.

この結果、第2図に示すように第1の検出温度は一旦設
定温度値(Ts )に平衡した後、設定温度値(Ts 
)より高い温度となる。一方、第2の検出温度は一旦設
定温度値(TB)より低い温度になった後、設定温度値
(Ts)に平衡する。
As a result, as shown in Figure 2, the first detected temperature once equilibrates to the set temperature value (Ts), and then
) will result in a higher temperature. On the other hand, the second detected temperature once becomes lower than the set temperature value (TB), and then equilibrates to the set temperature value (Ts).

(発明の効果) 以上説明したように、本発明では第1及び第2の温度検
出信号の温度差に基づいて設定温度値を修正し、この修
正設定温度値と第1の温度検出信号で示される第1の検
出温度との偏差に基づいてヒーターへの通電量制御を行
っているから、Tダイの深い位置における温度を設定温
度値に追従して制御することができ、フィルムの厚さに
偏肉が生じることのないという効果がある。
(Effects of the Invention) As explained above, in the present invention, the set temperature value is corrected based on the temperature difference between the first and second temperature detection signals, and the set temperature value is indicated by the corrected set temperature value and the first temperature detection signal. Since the amount of electricity applied to the heater is controlled based on the deviation from the first detected temperature, the temperature at the deep position of the T-die can be controlled to follow the set temperature value, and the thickness of the film can be controlled. This has the effect that uneven thickness does not occur.

実施例を示す図、第2図は第1図に示すTダイ温度制御
装置の温度制御動作を説明するための図、第3図は補正
温度値ΔTAと温度差(ta−tb)との関係をパラメ
ーターにの値に応じて示す図である。
A diagram showing an example; FIG. 2 is a diagram for explaining the temperature control operation of the T-die temperature control device shown in FIG. 1; FIG. 3 is a diagram showing the relationship between the corrected temperature value ΔTA and the temperature difference (ta-tb) FIG.

11・・・Tダイ、12・・・Tダイ本体、13・・・
入側ポート、14・・・加熱用ヒーター 15・・・第
1の温度センサー 16・・・第2の温度センサー 1
7・・・温度調節器、18・・・設定値補正装置。
11...T-die, 12...T-die body, 13...
Inlet port, 14... Heating heater 15... First temperature sensor 16... Second temperature sensor 1
7... Temperature controller, 18... Set value correction device.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 1、溶融樹脂が供給され、該溶融樹脂を溜める樹脂溜ま
り部と、該樹脂溜まり部に連結され予め定められた方向
に延びるギャップとが形成され、該ギャップからフィル
ム状樹脂が取り出されるTダイの温度制御を行う際に用
いられ、前記Tダイに設けられ前記Tダイを加熱制御す
るためのヒーターと、該ヒーターに近接して設けられ前
記Tダイの温度を計測して第1の温度検出信号を出力す
る第1の温度センサーと、前記樹脂溜まり部の近傍に設
けられ前記Tダイの温度を計測して第2の温度検出信号
を出力する第2の温度センサーと、前記Tダイの設定温
度値が入力され、該設定温度値入力後所定の設定時間が
経過すると予め定められた周期で前記第2の温度検出信
号が示す第2の検出温度をサンプルして該サンプル値の
変化率を算出する第1の手段と、該変化率が予め設定さ
れた設定値以下となると前記第1の温度検出信号で示さ
れる第1の検出温度と前記第2の検出温度との差に基づ
いて補正温度値を求める第2の手段と、前記補正温度値
と前記設定温度値とを加算して修正温度値を求める第3
の手段と、該修正温度値を受け前記第1の検出温度と前
記修正温度値との偏差に基づいて前記ヒーターへの通電
量を制御する温度調節手段とを有することを特徴とする
Tダイ温度制御装置。
1. A T-die to which a molten resin is supplied, a resin reservoir for storing the molten resin, a gap connected to the resin reservoir and extending in a predetermined direction, and a film-like resin is taken out from the gap. A heater that is used when performing temperature control and is provided on the T-die to control heating of the T-die, and a heater that is provided close to the heater and measures the temperature of the T-die to generate a first temperature detection signal. a second temperature sensor that is installed near the resin reservoir and measures the temperature of the T-die and outputs a second temperature detection signal, and a set temperature of the T-die. When the value is input and a predetermined set time has elapsed after inputting the set temperature value, the second detected temperature indicated by the second temperature detection signal is sampled at a predetermined period and the rate of change of the sampled value is calculated. and a correction temperature based on the difference between the first detected temperature indicated by the first temperature detection signal and the second detected temperature when the rate of change becomes equal to or less than a preset value. a second means for calculating a value; and a third means for calculating a corrected temperature value by adding the corrected temperature value and the set temperature value.
and temperature adjustment means for receiving the corrected temperature value and controlling the amount of current applied to the heater based on the deviation between the first detected temperature and the corrected temperature value. Control device.
JP2075481A 1990-03-27 1990-03-27 Temperature control device of t-die Pending JPH03275325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075481A JPH03275325A (en) 1990-03-27 1990-03-27 Temperature control device of t-die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075481A JPH03275325A (en) 1990-03-27 1990-03-27 Temperature control device of t-die

Publications (1)

Publication Number Publication Date
JPH03275325A true JPH03275325A (en) 1991-12-06

Family

ID=13577528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075481A Pending JPH03275325A (en) 1990-03-27 1990-03-27 Temperature control device of t-die

Country Status (1)

Country Link
JP (1) JPH03275325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462338B1 (en) * 1997-02-14 2005-02-28 도시바 기카이 가부시키가이샤 A method of adjusting a heat-displacing t-die
WO2005105018A1 (en) 2004-04-30 2005-11-10 Sherwood Services Ag Gastrostomy tube extension device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462338B1 (en) * 1997-02-14 2005-02-28 도시바 기카이 가부시키가이샤 A method of adjusting a heat-displacing t-die
WO2005105018A1 (en) 2004-04-30 2005-11-10 Sherwood Services Ag Gastrostomy tube extension device

Similar Documents

Publication Publication Date Title
JPH04119814A (en) Temperature control method of injection molding machine
KR101874712B1 (en) Ingot growth control apparatus and control method thereof
CZ667484A3 (en) Method of a liquid level control and apparatus for making the same
JPH04153016A (en) Non-interference temperature control method for injection molding machine
KR20180041598A (en) A method for finding a target conveying capacity of a pumping system
JP3231601B2 (en) Electric furnace temperature control method and apparatus
US20060249502A1 (en) Distance estimation apparatus, abnormality detection apparatus, temperature regulator, and thermal treatment apparatus
JPH03275325A (en) Temperature control device of t-die
JP5015019B2 (en) Control method and control device for heater of injection molding machine
JP2634106B2 (en) Metal surface level control method in continuous casting
US6107610A (en) Power factor correction system for a resistive load device
JP2002297244A (en) Method for controlling pressure of reaction chamber and device for the same
JPH03274135A (en) Apparatus for controlling temperature of t-die
JP3221990B2 (en) Mold level measuring device
JPH03268922A (en) Temperature controller for t-die
JPS62270263A (en) Control device for powder charging quantity in continuous caster
JP3234001B2 (en) Vulcanizer temperature controller
JPH0622957Y2 (en) Tandishyu heat retention device
JPH081330B2 (en) Temperature controller for continuous fluid heating device
JP3664125B2 (en) Control device, temperature controller and heat treatment device
JPS6261383B2 (en)
JPH0571340B2 (en)
JP2629334B2 (en) Injection molding method
JP2910136B2 (en) Temperature control system for tundish molten steel plasma heating system
JPS62168652A (en) Molten metal surface level control method in continuous casting machine