JPH03275055A - Artificial intervertebral disk - Google Patents

Artificial intervertebral disk

Info

Publication number
JPH03275055A
JPH03275055A JP2074524A JP7452490A JPH03275055A JP H03275055 A JPH03275055 A JP H03275055A JP 2074524 A JP2074524 A JP 2074524A JP 7452490 A JP7452490 A JP 7452490A JP H03275055 A JPH03275055 A JP H03275055A
Authority
JP
Japan
Prior art keywords
disc
bodies
artificial intervertebral
polymer
intervertebral disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2074524A
Other languages
Japanese (ja)
Other versions
JPH084606B2 (en
Inventor
Kiyoshi Kaneda
金田 清志
Satoshi Asano
聡 浅野
Shigeru Tadano
茂 但野
Hiromasa Ishikawa
石川 博將
Takehiro Shibuya
武宏 渋谷
Masataka Takagi
雅隆 高木
Yukio Sakuraba
桜場 幸雄
Kiyoshi Baba
馬場 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Nippon Electric Glass Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd, Nippon Electric Glass Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2074524A priority Critical patent/JPH084606B2/en
Publication of JPH03275055A publication Critical patent/JPH03275055A/en
Publication of JPH084606B2 publication Critical patent/JPH084606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Neurology (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

PURPOSE:To provide flexibility capable of sufficiently following the motion of a human body by respectively integrally mounting two almost plate-shaped bodies composed of a living body-active ceramic material to the upper and under surfaces of an almost plate-shaped body composed of a polymer elastic material having bio-compatibility. CONSTITUTION:Two upper and lower layers are formed from hard disc-shaped bodies 10, 11 made of ceramics such as hydroxyapatite and the intermediate layer held between two layers is formed from a disc-shaped body 12 composed of a polymer such as silicone rubber for a living body having bio-compatibility and definite elasticity to constitute a sandwich structure. Therefore, when the upper and lower ceramic disc bodies 10, 11 of this artificial intervertebral disk are bonded to the vertebral bodies of a human body, the upper and lower ceramic disc bodies 10, 11 are freely revolved in a certain degree around the polymer disc body 12 having elasticity as if the intervertebral disk is flexibly connected to the upper and lower vertebral bodies. As a result, since this artificial intervertebral disk flexibly moves in matching relation to forward and rearward movement, the whole of the spine smoothly moves and no unreasonable load is applied to the spine.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、椎間板ヘルニア等の疾患や事故によるを椎
の損傷等を治療するために用いられる人工椎間板に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an artificial intervertebral disc used to treat diseases such as intervertebral disc herniation and damage to the vertebrae caused by accidents.

〔従来の技術〕[Conventional technology]

人体のを椎は、第7図に示すように、縦一列に並ぶ硬い
椎体1と、上下に隣接する椎体1同士を連結する軟骨質
の椎間板2がら形成されている。
As shown in FIG. 7, the vertebrae of the human body are made up of hard vertebral bodies 1 arranged in a vertical line and cartilaginous intervertebral discs 2 that connect vertically adjacent vertebral bodies 1 to each other.

上記を椎の疾患や損傷がひどい場合には、切開手術によ
って椎体1の全部ないし一部と椎間板2を除去し、その
部分に自家骨または人工椎体を埋め込むという外科的な
治療が行われている。
If the vertebral disease or damage described above is severe, surgical treatment is performed in which all or part of the vertebral body 1 and the intervertebral disc 2 are removed through open surgery, and autologous bone or an artificial vertebral body is implanted in that area. ing.

このような人工椎体としては、従来がら、第8図および
第9図に示すように、アルミナセラミックスを略円板状
もしくは直方体状に成形したものが用いられている。ま
た、最近では、アパタイト結晶相を有する公知の生体活
性セラミックス材料や、これに高密度ポリエチレンもし
くはメタクリレート系樹脂等を配合したもの等が用いら
れている。
As such an artificial vertebral body, as shown in FIGS. 8 and 9, alumina ceramics molded into a substantially disk shape or rectangular parallelepiped shape have been conventionally used. In addition, recently, known bioactive ceramic materials having an apatite crystal phase and materials blended with high-density polyethylene or methacrylate resins have been used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、これらの人工椎体は、いずれも、椎間板
等を切除した場合にその隙間を埋めて荷重を支持するス
ペーサーとして用いられているにすぎず、本来の椎間板
を挟む椎体のような柔軟性がない。したがって、人体の
運動に追従しきれず、無理な荷重が治療部にかかつて、
治療部あるいはその周辺部を再度損傷することが多く、
問題となっている。
However, these artificial vertebral bodies are only used as spacers to fill the gap and support the load when an intervertebral disc is removed, and they do not have the same flexibility as the original vertebral bodies that sandwich the intervertebral disc. There is no. Therefore, it cannot follow the movement of the human body, and an unreasonable load is placed on the treatment area.
Often, the treated area or surrounding area is reinjured,
This has become a problem.

この発明は、このような事情に鑑みなされたもので、人
体の運動に充分に追従しうる柔軟な人工椎間板の提供を
その目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a flexible artificial intervertebral disc that can sufficiently follow the movements of the human body.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、この発明の人工椎間板は、
生体活性セラミックス材料からなる2枚の略板状体が、
生体適合性ある高分子弾性材料からなる略板状体の上面
および下面に、それぞれ−体的に取り付けられていると
いう構成をとる。
In order to achieve the above object, the artificial intervertebral disc of the present invention includes:
Two approximately plate-shaped bodies made of bioactive ceramic material,
The structure is such that they are physically attached to the upper and lower surfaces of a generally plate-shaped body made of a biocompatible polymeric elastic material.

〔作用〕[Effect]

すなわち、この発明は、従来の人工椎体が硬いブロック
状のものであったのに対し、弾力性ある高分子製の略板
状体を上下両側から硬いセラミックス製略板状体で挟ん
でサンドイッチ構造にしたものである。したがって、こ
の人工椎間板の上下のセラミックス部分を生体内の椎体
に接合すれば、あたかも椎間板が上下の椎体を柔軟に連
結しているように、弾力ある高分子板を中心にして上下
のセラミックス板がある程度自由に旋回する。したがっ
て、この人工椎間板は前屈、後屈等の動きに合わせて柔
軟に動くので、を椎全体がスムーズに動き、無理な荷重
がかからない。また、人工椎間板が上下のセラミックス
部と中央の弾性体部の3部分に分かれているため、それ
ぞれの部分の形状や材質を適宜に選択することにより、
患者の体格や他のを椎機能とのバランス等をみながら、
その人その人に合った人工椎間板を提供することができ
、きめこまやかな治療を施すことができる。
In other words, whereas conventional artificial vertebral bodies were shaped like hard blocks, this invention creates a sandwich in which a roughly plate-shaped body made of elastic polymer is sandwiched between roughly plate-shaped bodies made of hard ceramics from both the upper and lower sides. It is structured. Therefore, if the upper and lower ceramic parts of this artificial intervertebral disc are bonded to the in-vivo vertebral body, the upper and lower ceramic parts can be connected with the elastic polymer disc at the center, just as if the intervertebral disc flexibly connects the upper and lower vertebral bodies. The board can rotate freely to some extent. Therefore, this artificial intervertebral disc moves flexibly according to movements such as forward bending and backward bending, so the entire vertebra moves smoothly and no unreasonable load is applied. In addition, since the artificial intervertebral disc is divided into three parts: the upper and lower ceramic parts and the central elastic body part, by appropriately selecting the shape and material of each part,
While looking at the patient's physique and balance with other spinal functions,
It is possible to provide an artificial intervertebral disc that is suitable for each person, and it is possible to provide detailed treatment.

つぎに、この発明の詳細な説明する。Next, this invention will be explained in detail.

この発明の人工椎間板は、例えば、第1図に示すような
3層構造になっている。すなわち、上下の2層がともに
セラミックス製の硬い円板状体10.11で形成され、
上記2層に挟まれた中間層が、弾力的な高分子からなる
円板状体12で形成されている。
The artificial intervertebral disc of the present invention has, for example, a three-layer structure as shown in FIG. That is, the upper and lower two layers are both formed of hard disk-shaped bodies 10 and 11 made of ceramics,
The intermediate layer sandwiched between the above two layers is formed of a disk-shaped body 12 made of an elastic polymer.

上記上層および下層となるセラミックス円板10 11
は、骨と化学的に結合し分離不可能となる生体活性を備
えていることが必要であり、生体活性を備えたセラミッ
クス材料からつくられる。
Ceramic disks 10 and 11 to be the upper and lower layers
It must have bioactivity to chemically bond with bone and become inseparable, and it is made from a bioactive ceramic material.

上記セラミックス材料としては、例えば、ハイドロキシ
アパタイト、バイオガラス、ガラスセラミックス等があ
げられる。なかでも、結晶化ガラスであるアパタイト−
ウオラストナイト含有ガラスセラミックスが好適である
Examples of the ceramic material include hydroxyapatite, bioglass, glass ceramics, and the like. Among them, apatite, which is crystallized glass,
Wollastonite-containing glass ceramics are preferred.

一方、上記セラミックス円板10.11に挟まれる高分
子円板12は、生体適合性および一定の弾力性を備えて
いることが必要で、例えば生体用シリコーンゴムや生体
用ウレタンゴム等からつくられる。また、発泡によって
弾性が与えられたシリコーン樹脂やウレタン樹脂を用い
てもよい。ただし、これらの高分子弾性材料は、硬さ(
JIS A)が10〜50度の範囲内であることが望ま
しい。硬さが10度未満では、軟らかすぎてを椎途中に
埋め込んだ場合に、負荷によってこの部分が簡単に変形
して前後左右方向にはみ出し、神経組織を圧迫するため
不適である。逆に、硬さが50度を超えると硬すぎて得
られる人工椎間板に屈曲性がなくなり、使い勝手が悪い
On the other hand, the polymer disk 12 sandwiched between the ceramic disks 10 and 11 needs to be biocompatible and have a certain elasticity, and is made of, for example, biological silicone rubber or biological urethane rubber. . Alternatively, silicone resin or urethane resin that has been given elasticity by foaming may be used. However, these polymeric elastic materials have a hardness (
JIS A) is preferably within the range of 10 to 50 degrees. If the hardness is less than 10 degrees, it is unsuitable because it is too soft and when implanted in the middle of a vertebra, this part easily deforms under load and protrudes in the front, back, left and right directions, compressing nerve tissue. On the other hand, if the hardness exceeds 50 degrees, it will be too hard and the resulting artificial intervertebral disc will have no flexibility, making it difficult to use.

そして、上記高分子弾性材料を略円板状に成形するには
、ゴムを用いるのであれば、所定形状の型内に未加硫(
未架橋)の樹脂材料を充填し、これを加硫(架橋)させ
て硬化させるようにすればよい。また、発泡樹脂を用い
る場合には、所定形状の発泡樹脂を切断によって円板状
に成形するようにすればよい。
In order to mold the above-mentioned elastic polymer material into a substantially disk shape, if rubber is used, unvulcanized (
What is necessary is to fill it with an uncrosslinked resin material and vulcanize (crosslink) it to harden it. Further, when using a foamed resin, the foamed resin of a predetermined shape may be cut to form a disk shape.

この発明の人工椎間板は、上記高分子円板12を中央に
置き、上下から前記セラミックス円板10.11でこれ
を挟むようにして3者を一体的に接合して得ることがで
きる。上記接合には、生体適合性ある接着剤が用いられ
る。このような生体適合性ある接着剤としては、シリコ
ーン系カップリング剤、チタン系カップリング剤、アル
ミニウム系カップリング剤等があげられ、なかでも、シ
リコーン系カップリング剤が好適である。
The artificial intervertebral disc of the present invention can be obtained by placing the polymer disc 12 in the center and sandwiching it between the ceramic discs 10 and 11 from above and below, and joining the three parts together. A biocompatible adhesive is used for the above bonding. Examples of such biocompatible adhesives include silicone-based coupling agents, titanium-based coupling agents, aluminum-based coupling agents, and the like, with silicone-based coupling agents being particularly preferred.

なお、この発明の人工椎間板において、セラミックス円
板10.11および高分子円板12の形状や厚み、ある
いは弾性体層の硬さは、患者の体格や他のを椎機能との
バランス等に応じて個別に設定することができる。例え
ば、高分子円板12の外周面を、第2図に示すように、
凹状にへこませて全体がくの字状に屈曲しやすくしても
よいし、逆に、第3図に示すように、凸状の丸みを持た
せて上下方向にかかる荷重に対し強い抵抗力を示すよう
にしてもよい。
In the artificial intervertebral disc of the present invention, the shape and thickness of the ceramic disc 10.11 and the polymer disc 12, or the hardness of the elastic body layer, may vary depending on the patient's physique and balance with other vertebral functions. can be set individually. For example, as shown in FIG. 2, the outer peripheral surface of the polymer disk 12 is
You can make it concave so that the whole body bends easily in a dogleg shape, or conversely, as shown in Figure 3, you can make it convex and rounded so that it has strong resistance to loads applied in the vertical direction. may also be shown.

また、セラミックス円板10.11の外側にくる面に、
第4図に示すような突起(あるいは筋状の溝)を形成す
るようにしてもよい、このようにすると、生体内に埋め
込む場合に、椎体(第7図参照)とセラミックス円板1
0.11との接合面積が大きくなり、人工椎間板の固定
が強固に行われるようになる。
In addition, on the outer surface of the ceramic disk 10.11,
It is also possible to form protrusions (or streak-like grooves) as shown in Fig. 4. In this way, when implanted in a living body, the vertebral body (see Fig. 7) and the ceramic disc
The joint area with 0.11 becomes larger, and the artificial intervertebral disc is firmly fixed.

さらに、上下のセラミックス円板10.11および高分
子円板12の形状を、実際のを椎を模して、第4図に示
すように、円の片側がおしつぶれたような形状に設定し
てもよい。
Furthermore, the shapes of the upper and lower ceramic discs 10 and 11 and the polymer disc 12 are set to resemble an actual vertebra, with one side of the circle crushed as shown in Figure 4. You may.

なお、上下のセラミックス板および高分子板は円板状に
限定されず、四角板状等、適宜の形状のものを用いるこ
とができる。
Note that the upper and lower ceramic plates and polymer plates are not limited to a disk shape, but may have an appropriate shape such as a square plate shape.

つぎに、実施例について比較例と併せて説明する。Next, examples will be described together with comparative examples.

〔実施例1〜3〕 まず、生体活性結晶化ガラスの円板(直径40■、厚み
5閣)を2枚作製した。また、シリコーンゴム(Q74
720.ダウコーニング社製、硬度30度)を、直径4
0■、厚み10閣の円板状に成形した。ただし、円周面
を凹状にへこませた、そして、これらを、接着剤(プラ
イマーA、信越化学社製)によって接合し、第2図に示
すような人工椎間板をつくった。
[Examples 1 to 3] First, two discs (diameter 40 cm, thickness 5 cm) of bioactive crystallized glass were produced. In addition, silicone rubber (Q74
720. Made by Dow Corning, hardness 30 degrees), diameter 4
It was molded into a disk shape with a thickness of 0 mm and a thickness of 10 mm. However, the circumferential surface was recessed into a concave shape, and these were bonded together using an adhesive (Primer A, manufactured by Shin-Etsu Chemical Co., Ltd.) to create an artificial intervertebral disc as shown in FIG. 2.

また、シリコーンゴムの硬度を10度(実施例2)、5
0度(実施例3)のそれぞれに変えた人工椎間板をつく
った。
In addition, the hardness of silicone rubber was 10 degrees (Example 2), 5 degrees
Artificial intervertebral discs with different angles of 0 degrees (Example 3) were made.

このようにして得られた3種類の人工椎間板について、
試験速度1■/sinで試料を圧縮することにより圧縮
ばね特性を測定した。その結果を第6図に示す。
Regarding the three types of artificial intervertebral discs obtained in this way,
Compression spring properties were measured by compressing the sample at a test rate of 1/sin. The results are shown in FIG.

〔実施例4〜7〕 下記の表にしたがって、セラミックス円板のセラミック
ス材料および高分子円板の高分子弾性材料の種類を変え
た。それ以外は実施例1と同様にして人工椎間板をつく
った。
[Examples 4 to 7] According to the table below, the ceramic material of the ceramic disk and the type of polymer elastic material of the polymer disk were changed. An artificial intervertebral disc was produced in the same manner as in Example 1 except for this.

そして、上記実施例1〜7の人工椎間板を死体標本に埋
め込んで、前方屈曲性、後方屈曲性、軸方向ねじり性、
側方屈曲性を測定し、実際の椎間板のそれと対比し、動
きの良否を評価した。
The artificial intervertebral discs of Examples 1 to 7 above were implanted into cadaveric specimens, and the forward bending, backward bending, and axial torsion properties were improved.
Lateral bendability was measured and compared with that of an actual intervertebral disc to evaluate the quality of movement.

これらの結果を下記の表に示す。また、対照例として、
第8図に示す従来の人工椎体を準備し、上記と同様の評
価を行い、その結果を下記の表に併せて示した。
These results are shown in the table below. Also, as a comparative example,
The conventional artificial vertebral body shown in FIG. 8 was prepared and evaluated in the same manner as above, and the results are also shown in the table below.

(以下余白) 以上の結果から、実施例品は、いずれも良好なばね圧縮
性を示し、また、対照品に比べて屈曲性に優れているこ
とがわかる。
(The following is a blank space) From the above results, it can be seen that all of the example products exhibited good spring compressibility and were superior in flexibility compared to the control product.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の人工椎間板は、弾力性ある高
分子製の略板状体を上下両側から硬いセラミックス製略
板状体で挟んでサンドイッチ構造にしているため、この
人工椎間板は、弾力ある高分子板を中心にして上下のセ
ラミックス板がある程度自由に旋回する。したがって、
この人工椎間板は前屈、後屈等の動きに合わせて柔軟に
動くので、を椎全体がスムーズに動き、無理な荷重がか
からない、また、人工椎間板が上下のセラミックス部と
中央の弾性体部の3部分に分かれているため、それぞれ
の部分の形状や材質を適宜に選択することにより、患者
の体格や他のを椎機能とのバランス等をみながら、その
人その人に合った人工椎間板を提供することができ、き
めのこまかい治療を施すことができる。
As described above, the artificial intervertebral disc of the present invention has a sandwich structure in which a substantially plate-like body made of an elastic polymer is sandwiched between the substantially plate-like bodies made of hard ceramics from both the upper and lower sides. The upper and lower ceramic plates rotate with some degree of freedom around a certain polymer plate. therefore,
This artificial intervertebral disc moves flexibly according to movements such as forward bending and backward bending, so the entire vertebra moves smoothly and no undue load is applied. Since it is divided into three parts, by appropriately selecting the shape and material of each part, we can create an artificial intervertebral disc that suits each person, taking into account the patient's physique and balance with other spinal functions. can be provided and can provide detailed treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す斜視図、第2図は他
の実施例を示す斜視図、第3図はさらに他の実施例を示
す斜視図、第4図はセラミックス円板の変形例を示す斜
視図、第5図はセラミックス円板および高分子円板の形
状の変形例を示す平面図、第6図は実施例品の圧縮ばね
特性を示す線図、第7図はを椎の構成を示す部分的な斜
視図、第8図および第9図はそれぞれ従来品の一例を示
す斜視図である。 10.11・・・セラミックス円板 12・・・高分子
円板
Fig. 1 is a perspective view showing one embodiment of the present invention, Fig. 2 is a perspective view showing another embodiment, Fig. 3 is a perspective view showing still another embodiment, and Fig. 4 is a perspective view showing a ceramic disk. FIG. 5 is a perspective view showing a modified example, FIG. 5 is a plan view showing a modified example of the shape of the ceramic disc and polymer disc, FIG. 6 is a diagram showing the compression spring characteristics of the example product, and FIG. A partial perspective view showing the structure of a vertebra, and FIGS. 8 and 9 are perspective views each showing an example of a conventional product. 10.11... Ceramic disk 12... Polymer disk

Claims (3)

【特許請求の範囲】[Claims] (1)生体活性セラミツクス材料からなる2枚の略板状
体が、生体適合性ある高分子弾性材料からなる略板状体
の上面および下面に、それぞれ一体的に取り付けられて
いることを特徴とする人工椎間板。
(1) Two substantially plate-like bodies made of a bioactive ceramic material are integrally attached to the upper and lower surfaces of the substantially plate-like body made of a biocompatible polymer elastic material, respectively. artificial intervertebral disc.
(2)生体活性セラミツクス材料が、生体活性ガラスま
たは生体活性結晶化ガラスである請求項(1)記載の人
工椎間板。
(2) The artificial intervertebral disc according to claim 1, wherein the bioactive ceramic material is bioactive glass or bioactive crystallized glass.
(3)生体適合性ある高分子弾性材料が、ウレタンゴム
もしくはシリコーンゴムである請求項(1)または(2
)記載の人工椎間板。
(3) Claim (1) or (2) wherein the biocompatible polymeric elastic material is urethane rubber or silicone rubber.
) Artificial intervertebral disc described.
JP2074524A 1990-03-23 1990-03-23 Artificial disc Expired - Lifetime JPH084606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2074524A JPH084606B2 (en) 1990-03-23 1990-03-23 Artificial disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074524A JPH084606B2 (en) 1990-03-23 1990-03-23 Artificial disc

Publications (2)

Publication Number Publication Date
JPH03275055A true JPH03275055A (en) 1991-12-05
JPH084606B2 JPH084606B2 (en) 1996-01-24

Family

ID=13549793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074524A Expired - Lifetime JPH084606B2 (en) 1990-03-23 1990-03-23 Artificial disc

Country Status (1)

Country Link
JP (1) JPH084606B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277141A (en) * 1992-03-30 1993-10-26 Tokai Rubber Ind Ltd Artificial intervertebral disk
JPH06285099A (en) * 1993-02-09 1994-10-11 Acromed Corp Spinal intervertebral disk prosthesis for exchanging injured spinal intervertebral disk
US6129763A (en) * 1996-09-13 2000-10-10 Chauvin; Jean-Luc Expandable osteosynthesis cage
DE10337088A1 (en) * 2003-08-12 2005-03-10 Biedermann Motech Gmbh Placeholder for vertebral bodies or intervertebral discs
JP2007275545A (en) * 2006-04-04 2007-10-25 Rnp Korea Co Ltd Vertebral arch spacer for dilation operation of vertebral canal of cervical vertebra body
JP2007530093A (en) * 2003-07-17 2007-11-01 ネクスジェン スパイン、インク. Intervertebral disc prosthesis
JP2010281742A (en) * 2009-06-05 2010-12-16 Nihon Univ Intervertebral disk hardness measuring device
US9233011B2 (en) 2006-09-15 2016-01-12 Pioneer Surgical Technology, Inc. Systems and apparatuses for inserting an implant in intervertebral space
US9314348B2 (en) 2014-06-04 2016-04-19 Wenzel Spine, Inc. Bilaterally expanding intervertebral body fusion device
US9351852B2 (en) 2002-05-23 2016-05-31 Pioneer Surgical Technology, Inc. Artificial disc device
US9408714B1 (en) 2015-06-12 2016-08-09 Amendia, Inc. Artificial disc
US9445916B2 (en) 2003-10-22 2016-09-20 Pioneer Surgical Technology, Inc. Joint arthroplasty devices having articulating members
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
US11147682B2 (en) 2017-09-08 2021-10-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
US11219531B2 (en) 2019-04-10 2022-01-11 Wenzel Spine, Inc. Rotatable intervertebral spacing implant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006078663A2 (en) * 2005-01-19 2006-07-27 Nexgen Spine, Inc. Elastomeric intervertebral disc prosthesis
JP5028276B2 (en) * 2005-01-19 2012-09-19 ケー2エム, インコーポレイテッド Fixing elastomers to rigid structures

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277141A (en) * 1992-03-30 1993-10-26 Tokai Rubber Ind Ltd Artificial intervertebral disk
JPH06285099A (en) * 1993-02-09 1994-10-11 Acromed Corp Spinal intervertebral disk prosthesis for exchanging injured spinal intervertebral disk
US6129763A (en) * 1996-09-13 2000-10-10 Chauvin; Jean-Luc Expandable osteosynthesis cage
US6371989B1 (en) 1996-09-13 2002-04-16 Jean-Luc Chauvin Method of providing proper vertebral spacing
US8992621B2 (en) 1996-09-13 2015-03-31 Liliane Attali Expandable osteosynthesis cage
US9351852B2 (en) 2002-05-23 2016-05-31 Pioneer Surgical Technology, Inc. Artificial disc device
JP2007530093A (en) * 2003-07-17 2007-11-01 ネクスジェン スパイン、インク. Intervertebral disc prosthesis
US7896918B2 (en) 2003-08-12 2011-03-01 Biedermann Motech Gmbh Space holder for vertebrae or intervertebral discs
US8551174B2 (en) 2003-08-12 2013-10-08 Biedermann Technologies Gmbh & Co. Kg Space holder for vertebrae or intervertebral discs
US9078762B2 (en) 2003-08-12 2015-07-14 Biedermann Technologies Gmbh & Co. Kg Space holder for vertebrae or intervertebral discs
DE10337088A1 (en) * 2003-08-12 2005-03-10 Biedermann Motech Gmbh Placeholder for vertebral bodies or intervertebral discs
US9445916B2 (en) 2003-10-22 2016-09-20 Pioneer Surgical Technology, Inc. Joint arthroplasty devices having articulating members
JP2007275545A (en) * 2006-04-04 2007-10-25 Rnp Korea Co Ltd Vertebral arch spacer for dilation operation of vertebral canal of cervical vertebra body
US9233011B2 (en) 2006-09-15 2016-01-12 Pioneer Surgical Technology, Inc. Systems and apparatuses for inserting an implant in intervertebral space
US9693872B2 (en) 2006-09-15 2017-07-04 Pioneer Surgical Technology, Inc. Intervertebral disc implant
US10080667B2 (en) 2006-09-15 2018-09-25 Pioneer Surgical Technology, Inc. Intervertebral disc implant
JP2010281742A (en) * 2009-06-05 2010-12-16 Nihon Univ Intervertebral disk hardness measuring device
US9314348B2 (en) 2014-06-04 2016-04-19 Wenzel Spine, Inc. Bilaterally expanding intervertebral body fusion device
US9707095B2 (en) 2014-06-04 2017-07-18 Wenzel Spine, Inc. Bilaterally expanding intervertebral body fusion device
US10098756B2 (en) 2014-06-04 2018-10-16 Wenzel Spine, Inc. Bilaterally expanding intervertebral body fusion device
US10945857B2 (en) 2014-06-04 2021-03-16 Wenzel Spine, Inc. Bilaterally expanding intervertebral body fusion device
US9408714B1 (en) 2015-06-12 2016-08-09 Amendia, Inc. Artificial disc
US11147682B2 (en) 2017-09-08 2021-10-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
USD968613S1 (en) 2017-10-09 2022-11-01 Pioneer Surgical Technology, Inc. Intervertebral implant
US11219531B2 (en) 2019-04-10 2022-01-11 Wenzel Spine, Inc. Rotatable intervertebral spacing implant

Also Published As

Publication number Publication date
JPH084606B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
JPH03275055A (en) Artificial intervertebral disk
EP0563332B1 (en) Hydrogel intervertebral disc nucleus
US7550009B2 (en) Spinal prosthesis
JP5209493B2 (en) Anatomical intervertebral spacer and its applications
JPH0363898B2 (en)
EP0754018B1 (en) Intervertebral disk arthroplasty device
US7927373B2 (en) Intervertebral disc prosthesis
US5425773A (en) Intervertebral disk arthroplasty device
US5674294A (en) Intervertebral disk prosthesis
US7195644B2 (en) Ball and dual socket joint
JPH02215461A (en) Spinal disc prosthesis
US20040093087A1 (en) Fluid-filled artificial disc replacement (ADR)
US20070100454A1 (en) Intervertebral disc prosthesis
JPH02224660A (en) Intervertebral spacer and making thereof
WO2010088766A1 (en) Implant for total disc replacement, and method of forming
WO2006091627A2 (en) Interior insert ball and dual socket joint
JP2007504899A (en) Flexible spine
JP2004105732A (en) Radiation visible hydrogel intervertebral disk nucleus
US7785369B2 (en) Artificial intervertebral disk
JPH05277141A (en) Artificial intervertebral disk
JPH03275056A (en) Artificial intervertebral disk
RU2646579C2 (en) Liquid spinal endoprosthesis
WO2007023399A1 (en) A novel intervertebral disc prosthesis
RU2140229C1 (en) Prosthesis of intervertebral disc
CN113017937A (en) Rigid-flexible coupling buffer bionic intervertebral disc