JPH03274545A - Wavelength multiplex recording medium - Google Patents
Wavelength multiplex recording mediumInfo
- Publication number
- JPH03274545A JPH03274545A JP2075927A JP7592790A JPH03274545A JP H03274545 A JPH03274545 A JP H03274545A JP 2075927 A JP2075927 A JP 2075927A JP 7592790 A JP7592790 A JP 7592790A JP H03274545 A JPH03274545 A JP H03274545A
- Authority
- JP
- Japan
- Prior art keywords
- light
- electron
- recording
- wavelength
- stepwise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims abstract description 27
- 230000027756 respiratory electron transport chain Effects 0.000 claims abstract description 20
- 238000006276 transfer reaction Methods 0.000 claims abstract description 20
- 230000008859 change Effects 0.000 claims abstract description 11
- 230000005284 excitation Effects 0.000 claims description 14
- 230000006866 deterioration Effects 0.000 abstract description 5
- 230000000638 stimulation Effects 0.000 abstract 3
- 239000000975 dye Substances 0.000 description 21
- 239000000370 acceptor Substances 0.000 description 18
- GTZCNONABJSHNM-UHFFFAOYSA-N 5,10,15,20-tetraphenyl-21,23-dihydroporphyrin zinc Chemical compound [Zn].c1cc2nc1c(-c1ccccc1)c1ccc([nH]1)c(-c1ccccc1)c1ccc(n1)c(-c1ccccc1)c1ccc([nH]1)c2-c1ccccc1 GTZCNONABJSHNM-UHFFFAOYSA-N 0.000 description 14
- 238000000862 absorption spectrum Methods 0.000 description 11
- 239000002609 medium Substances 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000006552 photochemical reaction Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- HJTAXGKRJGUCNN-UHFFFAOYSA-N [Mg].c1cc2nc1c(-c1ccccc1)c1ccc([nH]1)c(-c1ccccc1)c1ccc(n1)c(-c1ccccc1)c1ccc([nH]1)c2-c1ccccc1 Chemical compound [Mg].c1cc2nc1c(-c1ccccc1)c1ccc([nH]1)c(-c1ccccc1)c1ccc(n1)c(-c1ccccc1)c1ccc([nH]1)c2-c1ccccc1 HJTAXGKRJGUCNN-UHFFFAOYSA-N 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- ZYBWTEQKHIADDQ-UHFFFAOYSA-N ethanol;methanol Chemical compound OC.CCO ZYBWTEQKHIADDQ-UHFFFAOYSA-N 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、光化学ホールバーニング現象(PHB現象)
を利用した波長多重記録媒体に関するものであり、特に
段階的2光子励起により記録を行う波長多重記録媒体に
関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the photochemical hole burning phenomenon (PHB phenomenon).
The present invention relates to a wavelength multiplexing recording medium that utilizes wavelength multiplexing, and particularly relates to a wavelength multiplexing recording medium that performs recording by stepwise two-photon excitation.
(発明の概要〕
本発明は、段階的2光子励起により起こる電子移動反応
により記録が行われる波長多重記録媒体において、光吸
収色素と電子受容体あるいは電子供与体とを組み合わせ
ることにより、電子移動反応の自由エネルギー変化を最
適化し、記録劣化のない良好な光化学ホールバーニング
を可能とするものである。(Summary of the Invention) The present invention provides a wavelength multiplexing recording medium in which recording is performed by an electron transfer reaction caused by stepwise two-photon excitation. Optimizes the free energy change of , and enables good photochemical hole burning without recording deterioration.
〔従来の技術]
光化学ホールバーニングを利用する波長多重記録は、超
高密度の記録が可能であり、次世代の光メモリ等への応
用を目的に研究開発が行われている。[Prior Art] Wavelength multiplexing recording using photochemical hole burning is capable of ultra-high density recording, and research and development is being conducted with the aim of applying it to next-generation optical memories and the like.
光化学ホールバーニングを利用した波長多重記録の原理
は、例えば特開昭53−99735号公報等に記載され
るように、透明媒体に分散された光吸収色素が極低温に
おいて示す一つの広い吸収帯(不均一吸収帯)の中に、
狭帯域のレーザ光を照射して鋭い富み(ホール)を形成
させるというものである。不均一吸収帯には、照射する
レーザ光の波長を僅かずつ変化させることによって、多
数のホールを形成することができる。理論的には、一つ
の不均一吸収帯中に101〜10′個のホールが形成可
能であると言われており、このホールの有無をビット記
録に利用すれば1スポツト当たりの情報量を飛躍的に増
大することができるものと期待される。The principle of wavelength multiplexing recording using photochemical hole burning is based on one broad absorption band ( in the non-uniform absorption band),
This method involves irradiating narrow-band laser light to form sharp holes. A large number of holes can be formed in the non-uniform absorption band by slightly changing the wavelength of the irradiated laser light. Theoretically, it is said that 101 to 10' holes can be formed in one nonuniform absorption band, and if the presence or absence of these holes is used for bit recording, the amount of information per spot can be dramatically increased. It is expected that this will be able to increase significantly.
(発明が解決しようとする課題〕
ところで、従来多くの研究がなされてきた光化学ホール
バーニング材料は、1光子励起による光化学反応によっ
て記録が行われるものであるため、記録にしきい値がな
く読み出し光により記録が破壊されるという本質的な問
題を抱えている。(Problem to be solved by the invention) By the way, photochemical hole burning materials, on which much research has been done, perform recording by a photochemical reaction caused by one-photon excitation, so there is no threshold for recording and the readout light is used to record. The fundamental problem is that records are being destroyed.
これを解決するために、2波長の光を同時に照射して生
じる高い励起状態から起きる光化学反応を記録に用いる
段階的2光子励起方式(光ゲート型)の光化学ホールバ
ーニング材料が研究されている。段階的2光子励起方弐
では、一方の波長の光のみでは記録が破壊されることは
なく、読み出し光により記録が劣化することはない。To solve this problem, research is being carried out on photochemical hole burning materials using a stepwise two-photon excitation method (light gate type), which records photochemical reactions that occur from highly excited states generated by simultaneous irradiation with light of two wavelengths. In the second stepwise two-photon excitation method, the recording is not destroyed by light of one wavelength alone, and the recording is not deteriorated by the readout light.
前記段階的2光子励起方式の光化学ホールバーニング材
料としては、電子移動反応により記録が行われる材料系
が最も材料系選択の自由度があり記録特性を向上する上
で有望であると考えられているが、実際に光化学ホール
バーニングが生ずるのは特定の分子構造を有するものに
限られ、自由度があると言っても材料系を選択するうえ
で大きく制約されている。As photochemical hole burning materials using the stepwise two-photon excitation method, materials in which recording is performed through electron transfer reactions are considered to have the greatest degree of freedom in material selection and are promising for improving recording characteristics. However, photochemical hole burning actually occurs only in materials with a specific molecular structure, and even though there is a degree of freedom, there are significant restrictions on the selection of material systems.
また、特に段階的2光子励起方式の光化学ホールバーニ
ング材料における電子移動反応を支配する自由エネルギ
ー変化と光化学ホールバーニングの関係については全く
解明されていないのが実情である。In addition, the actual situation is that the relationship between free energy changes that govern electron transfer reactions and photochemical hole burning, especially in stepwise two-photon excitation type photochemical hole burning materials, has not been elucidated at all.
そこで本発明は、このような従来の実情に鑑みて捷案さ
れたものであって、電子移動反応を支配する自由エネル
ギー変化と光化学ホールバーニングの関係を解明し、段
階的2光子励起により劣化のない良好な記録再生を行う
、:とが可能な波長多重記録媒体を提供することを目的
とする。Therefore, the present invention was devised in view of such conventional circumstances, and it clarifies the relationship between free energy changes that govern electron transfer reactions and photochemical hole burning, and uses stepwise two-photon excitation to suppress deterioration. An object of the present invention is to provide a wavelength multiplexing recording medium that is capable of performing good recording and reproducing operations.
本発明者等は、上述の目的を達成セんものと長期に亘り
鋭意研究を重ねた結果、光吸収色素に電子受容体若しく
は電子供与体を添加し電子移動反応の自白エネルギー変
化を特定の範囲に制御したときに、段階的2光子励起に
よる光化学ホールパニングが起きるとの知見を得るに至
った。The inventors of the present invention have conducted intensive research over a long period of time to achieve the above-mentioned objective, and as a result, they added an electron acceptor or an electron donor to a light-absorbing dye to control the apparent energy change of the electron transfer reaction within a specific range. We have obtained the knowledge that photochemical hole panning occurs due to stepwise two-photon excitation when controlled to .
本発明は、かかる知見に基づいて完成されたものであっ
て、光吸収色素と電子受容体または電子供与体が支持物
質に分散されるとともに、電子移動反応の自由エネルギ
ー変化ΔGが−2.0eV以上とされてなり、段階的2
光子励起により記録が行われることを特徴とするもので
ある。The present invention has been completed based on this knowledge, and includes a light-absorbing dye, an electron acceptor, or an electron donor dispersed in a supporting material, and a free energy change ΔG of an electron transfer reaction of -2.0 eV. The above is now stage 2
It is characterized in that recording is performed by photon excitation.
ここで、電子移動反応の自由エネルギー変化ΔGは、次
式
%式%(1)
E、、 ;電子供与体の1電子酸化ポテンシヤルE r
、4:電子受容体のIt子遍元ポテンシャルEo :反
応状態を性成するのに必要な光励起エネルギー
で与えられる。Here, the free energy change ΔG of the electron transfer reaction is expressed by the following formula % formula % (1) E, , ; one-electron oxidation potential E r of the electron donor
, 4: It elemental potential Eo of the electron acceptor: It is given by the photoexcitation energy required to form a reaction state.
したがって、光吸収色素が電子供与体である場合には電
子受容体を添加することで、逆に光吸収色素が電子受容
体である場合には電子供与体を添加することで、前記Δ
Gの価が−2,0eV以上となるように設定する。Therefore, when the light-absorbing dye is an electron donor, by adding an electron acceptor, and conversely, when the light-absorbing dye is an electron acceptor, by adding an electron donor, the above Δ
The value of G is set to be -2.0 eV or more.
使用する光吸収色素(感光物質)や電子受容体電子供与
体は、何ら制約されるものではないが、例えば光吸収色
素としてはテトラフェニルポルフィン亜鉛錯体やテトラ
フェニルポルフィンマグネシウム錯体(いずれも電子供
与体)等が挙げられる。The light-absorbing dye (photosensitive substance) and electron acceptor electron donor to be used are not restricted in any way, but examples of light-absorbing dyes include tetraphenylporphine zinc complex and tetraphenylporphine magnesium complex (both of which are electron donors). ) etc.
一方、これら光吸収色素や電子受容体、電子供与体が分
散される支持物質(分散媒)としては、前記光吸収色素
の吸収領域に吸収のない光学的に透明な物質であって、
光吸収色素を均一に分散させることができ、且つ極低温
において割れを生しない物質であればいずれも使用可能
であるが、不均一吸収帯の幅を広くするためには非晶質
媒質を使用するのが良く、またホールの幅を小さくする
にはフォノンとの相互作用が小さくなるように光吸収色
素と支持物質の組み合わせや構造を設計することが重要
である。さらに、光吸収色素と支持物質との相互作用が
強い系ではサイドホールが発生して記録信号のSN比を
劣化させるため、できるだけ相互作用の弱い系を選択す
る必要がある。On the other hand, the support material (dispersion medium) in which these light-absorbing dyes, electron acceptors, and electron donors are dispersed is an optically transparent material that does not absorb in the absorption region of the light-absorbing dye, and
Any material can be used as long as it can uniformly disperse the light-absorbing dye and does not crack at extremely low temperatures, but in order to widen the width of the non-uniform absorption band, use an amorphous medium. In order to reduce the width of the hole, it is important to design the combination and structure of the light-absorbing dye and supporting material so that the interaction with phonons is reduced. Furthermore, in a system in which the interaction between the light-absorbing dye and the support material is strong, side holes are generated and the S/N ratio of the recorded signal is degraded, so it is necessary to select a system in which the interaction is as weak as possible.
支持物質は、このような条件を考慮したうえで選択され
るものであり、エタノール−メタノール系、テトラヒド
ロフラン、グリセロール等の有機ガラス系、n−アルカ
ンによる結晶系媒体(シュポルスキー・マトリクス)、
ポリスチレン、ポリエチレン、ポリビニルアルコール、
ポリメチルメタクリレート等の高分子樹脂材料等が使用
可能である。The supporting material is selected after taking these conditions into consideration, and includes ethanol-methanol, tetrahydrofuran, organic glass such as glycerol, crystalline medium based on n-alkanes (Spolsky matrix),
polystyrene, polyethylene, polyvinyl alcohol,
Polymer resin materials such as polymethyl methacrylate can be used.
これらの支持物質と光吸収色素や電子受容体。These supporting substances and light-absorbing dyes and electron acceptors.
電子供与体は、所定の比率で混合され波長多重記録材料
とされるが、この場合の光吸収色素の濃度は、支持物質
に分散させたときに光吸収色素の分子−分子間の相互作
用が無視できるような割合に設定すればよく、使用する
光吸収色素及び支持物質の種類に応じて適宜選択できる
ものである0通常は、光吸収色素は全体の10−−〜1
0−!モル%とされる。Electron donors are mixed at a predetermined ratio to form a wavelength multiplexing recording material, but the concentration of the light-absorbing dye in this case is determined by the interaction between molecules of the light-absorbing dye when dispersed in a support material. It is sufficient to set the ratio to be negligible, and it can be selected appropriately depending on the type of light-absorbing dye and supporting material used.Normally, the light-absorbing dye accounts for 10 to 1 of the total amount.
0-! It is expressed as mol%.
電子受容体や電子供与体は、前記光吸収色素よりも過剰
に存在すればよく、通常は支持物質と体積比で1:1程
度とされ光吸収色素に対して大過剰とされる。The electron acceptor and electron donor need only be present in excess of the light-absorbing dye, and usually the volume ratio to the supporting material is about 1:1, which is in large excess with respect to the light-absorbing dye.
光吸収色素に電子受容体あるいは電子供与体を添加して
電子移動反応の自由エネルギー変化ΔGを−2.0eV
以上とした波長多重記録媒体を極低温に冷却し、波長選
択光とゲート光とを同時に照射すると、段階的2光子励
起による光化学ホールバーニング現象により記録が行わ
れる。Adding an electron acceptor or electron donor to the light-absorbing dye reduces the free energy change ΔG of the electron transfer reaction to -2.0 eV
When the wavelength multiplexing recording medium described above is cooled to an extremely low temperature and simultaneously irradiated with wavelength selection light and gate light, recording is performed by a photochemical hole burning phenomenon caused by stepwise two-photon excitation.
読み出しは、波長選択光のみを照射することにより行わ
れ、当該波長選択光のみの照射では光化学ホールバーニ
ングは起きず、記録状態はそのまま維持される。Reading is performed by irradiating only the wavelength-selected light, and photochemical hole burning does not occur when only the wavelength-selected light is irradiated, and the recorded state is maintained as is.
[実施例〕 以下、本発明を具体的な実験結果に基づいて説明する。[Example〕 The present invention will be explained below based on specific experimental results.
本実施例では、光吸収色素としてテトラフェニルポルフ
ィン亜鉛錯体を用い、支持物質(分散媒物t)としてポ
リメタクリル酸メチル(分子量9XIO’)を用いた。In this example, a tetraphenylporphine zinc complex was used as the light-absorbing dye, and polymethyl methacrylate (molecular weight 9XIO') was used as the support material (dispersion medium t).
このものに電子受容体として臭化エチルを加えたものを
試料とした。A sample was prepared by adding ethyl bromide as an electron acceptor to this product.
なお、試料に含まれるテトラフェニルポルフィン亜鉛錯
体の割合は10′□3モル%であり、電子受容体と支持
物質は容量比でl:1である。The proportion of the tetraphenylporphine zinc complex contained in the sample was 10'□3 mol %, and the volume ratio of the electron acceptor to the supporting material was 1:1.
第1図にテトラフェニルポルフィン亜鉛錯体の吸収スペ
クトル(図中実線で示す、)及び三重項状態の吸収スペ
クトル(T−T吸収スペクトル。FIG. 1 shows the absorption spectrum of the tetraphenylporphine zinc complex (indicated by the solid line in the figure) and the absorption spectrum of the triplet state (T-T absorption spectrum).
図中破線で示す。)を示す、テトラフェニルポルフィン
亜鉛錯体では、465nmのアルゴンイオンレーザの発
振線に対して、基底状態の吸収は無いが、最低三重項状
態から更に高い三重項状態への電子遷移は、大きな吸収
を持つことがわかる。Indicated by a broken line in the figure. ), the tetraphenylporphine zinc complex exhibits no absorption in the ground state for the 465 nm argon ion laser oscillation line, but the electronic transition from the lowest triplet state to a higher triplet state causes a large absorption. I know I have it.
テトラフェニルポルフィン亜鉛錯体は、波長選択光によ
り光励起され、励起−重項状態を経て最低三重項状Im
(励起エネルギー1.59eV)に遷移する。この状態
でゲート光(465nm)を照射することにより、ゲー
ト光のエネルギー(2,79eV)に対応した高い三重
項状態への遷移が起きる。The tetraphenylporphine zinc complex is photoexcited by wavelength-selected light and undergoes an excited-multiplet state to form the lowest triplet Im
(excitation energy 1.59 eV). By irradiating gate light (465 nm) in this state, a transition to a high triplet state corresponding to the energy of gate light (2,79 eV) occurs.
第2図は、この試料にレーザ光を照射した結果を示すも
のである。第2図中、16761.8cr’の位置(図
中矢印Aで示す位置)で波長選択光のみを、16789
.0CI−’の位置(図中矢印Bで示す位置)で波長選
択光とゲート光(465nm)を同時に照射した。なお
、波長選択光の強度は450mW/cj、ゲート光の強
度は50@W/ciiであり、照射時間はいずれも1分
間である。FIG. 2 shows the results of irradiating this sample with laser light. In Fig. 2, only the wavelength-selected light is transmitted at the position 16761.8 cr' (the position indicated by arrow A in the figure).
.. Wavelength selective light and gate light (465 nm) were simultaneously irradiated at the 0CI-' position (the position indicated by arrow B in the figure). The intensity of the wavelength selective light is 450 mW/cj, the intensity of the gate light is 50@W/cii, and the irradiation time is 1 minute in both cases.
波長選択光のみを照射した場合には光化学ホールバーニ
ングは起きず、ゲート光が同時に存在する場合にのみ光
化学ホールバーニングが起きている。Photochemical hole burning does not occur when only wavelength-selected light is irradiated, and photochemical hole burning occurs only when gate light is present at the same time.
このことは、高い三重項状態に励起されたテトラフェニ
ルポルフィン亜鉛錯体と臭化エチルの間の電子移動反応
によりホールが生成することを示している。なお、本試
料における電子移動反応の自由エネルギーの変化ΔGは
−1,57eVである。This indicates that holes are generated by an electron transfer reaction between the tetraphenylporphine zinc complex excited to a high triplet state and ethyl bromide. Note that the change ΔG in free energy of the electron transfer reaction in this sample is −1.57 eV.
第3図はテトラフェニルポルフィン亜鉛錯体単独の試料
に波長選択光のみ、あるいは波長選択光とゲート光を同
時に照射したときの結果を示す吸収スペクトルである。FIG. 3 is an absorption spectrum showing the results when a sample of tetraphenylporphine zinc complex alone was irradiated with only wavelength-selected light or with wavelength-selected light and gate light simultaneously.
この第3図から明らかなように、テトラフェニルポルフ
ィン亜鉛錯体単独の試料では、波長選択光のみ照射した
とき、あるいは波長選択光とゲート光を同時に照射した
ときのいずれの場合でも光化学ホールバーニングが起き
ていない。As is clear from Fig. 3, photochemical hole burning occurs in the sample containing the tetraphenylporphine zinc complex alone, whether it is irradiated with only wavelength-selected light or when simultaneously irradiated with wavelength-selected light and gate light. Not yet.
一方、電子受容体にクロロホルム(1電子還元ポテンシ
ャルー1.67eV)を用いた場合では、第4図に示す
ように、テトラフェニルポルフィン亜鉛錯体単独の試料
と同様、波長選択光のみ照射したとき、あるいは波長選
択光とゲート光を同時に照射したときのいずれの場合で
も光化学ホールバーニングが起きていない、電子受容体
にクロロホルムを用いた場合の電子移動反応の自由エネ
ルギーの変化ΔGは−2,03eVである。On the other hand, when chloroform (one-electron reduction potential - 1.67 eV) is used as the electron acceptor, as shown in Figure 4, when only the wavelength-selected light is irradiated, as in the case of the tetraphenylporphine zinc complex alone sample, as shown in Figure 4, Alternatively, when irradiating wavelength selective light and gate light simultaneously, photochemical hole burning does not occur, and when chloroform is used as the electron acceptor, the free energy change ΔG of the electron transfer reaction is -2.03 eV. be.
そこで、電子受容体として各種の化合物を用い、そのと
きの電子移動反応の自由エネルギーΔGと光ゲーI・型
光化学ホールバーニング反応性(PHB反応性)の有無
について調べた。結果を次表に示す。なお、次表におい
て、1電子還元ポテンシャルE redの債は、飽和カ
ロメル電極に対する値である。Therefore, various compounds were used as electron acceptors, and the free energy ΔG of the electron transfer reaction and the presence or absence of photogear I type photochemical hole burning reactivity (PHB reactivity) were investigated. The results are shown in the table below. In the following table, the one-electron reduction potential E red is the value for a saturated calomel electrode.
表
以上の結果より、電子移動反応による光化学ホールバー
ニングを起こすためには、電子移動反応の自由エネルギ
ーΔGをΔG≧−2゜OeVとする必要があるとの結論
に達した。From the results shown in the table above, it was concluded that in order to cause photochemical hole burning due to an electron transfer reaction, the free energy ΔG of the electron transfer reaction needs to be ΔG≧−2°OeV.
以上の説明からも明らかなように、本発明においては、
電子移動反応を支配する自由エネルギー変化と光化学ホ
ールバーニングの関係を解明し、光吸収色素に電子受容
体あるいは電子供与体を添加して電子移動反応に関与す
る自由エネルギー変化を最適化しているので、段階的2
光子励起により劣化のない良好な記録再侘を行うことが
可能な波長多重記録媒体を提供することが可能である。As is clear from the above description, in the present invention,
We are elucidating the relationship between free energy changes that govern electron transfer reactions and photochemical hole burning, and optimizing free energy changes involved in electron transfer reactions by adding electron acceptors or electron donors to light-absorbing dyes. Step 2
It is possible to provide a wavelength multiplexing recording medium that can perform good recording and replaying without deterioration by photon excitation.
また、必ずしも単独の化合物にとられれる必要がないの
で、波長多重記録媒体における材料の選択の幅を広げる
ことができる。Furthermore, since the material does not necessarily have to be a single compound, the range of material selection for the wavelength multiplexing recording medium can be expanded.
第1図はテトラフェニルポルフィン亜鉛錯体の吸収スペ
クトル並びに三重項状態の吸収スペクトルを示す特性図
である。
第2図はテトラフェニルポルフィン亜鉛錯体に電子受容
体として臭化エチルを添加した試料に波長選択光あるい
は波長選択光とゲート光を同時に照射したときの吸収ス
ペクトルであり、第3図はテトラフェニルポルフィン亜
鉛錯体を単独で用いた試料に波長選択光あるいは波長選
択光とゲート光を同時に照射したときの吸収スペクトル
、第4図はテトラフェニルポルフィン亜鉛錯体に電子受
容体としてクロロホルムを添加した試料に波長選択光あ
るいは波長選択光とゲート光を同時に照射したときの吸
収スペクトルである。FIG. 1 is a characteristic diagram showing the absorption spectrum of the tetraphenylporphine zinc complex and the absorption spectrum of the triplet state. Figure 2 shows the absorption spectrum of tetraphenylporphine zinc complex when a sample containing ethyl bromide as an electron acceptor is irradiated with wavelength selective light or wavelength selective light and gate light simultaneously, and Figure 3 shows the absorption spectrum of tetraphenylporphine zinc complex. The absorption spectrum when a sample using a zinc complex alone is irradiated with wavelength-selected light or wavelength-selected light and gate light simultaneously. Figure 4 shows the absorption spectrum of a sample using a tetraphenylporphine zinc complex with chloroform added as an electron acceptor. This is an absorption spectrum when light or wavelength selective light and gate light are irradiated simultaneously.
Claims (1)
に分散されるとともに、電子移動反応の自由エネルギー
変化ΔGが−2.0eV以上とされてなり、段階的2光
子励起により記録が行われることを特徴とする波長多重
記録媒体。A light-absorbing dye and an electron acceptor or an electron donor are dispersed in a supporting material, and the free energy change ΔG of the electron transfer reaction is set to -2.0 eV or more, and recording is performed by stepwise two-photon excitation. A wavelength multiplexing recording medium characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2075927A JP2979571B2 (en) | 1990-03-26 | 1990-03-26 | WDM recording media |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2075927A JP2979571B2 (en) | 1990-03-26 | 1990-03-26 | WDM recording media |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03274545A true JPH03274545A (en) | 1991-12-05 |
JP2979571B2 JP2979571B2 (en) | 1999-11-15 |
Family
ID=13590407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2075927A Expired - Fee Related JP2979571B2 (en) | 1990-03-26 | 1990-03-26 | WDM recording media |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2979571B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005100599A (en) * | 2003-08-25 | 2005-04-14 | Fuji Photo Film Co Ltd | Photon mode recording method and 3-dimensional optical recording method |
EP1492092A3 (en) * | 2003-06-27 | 2007-07-04 | FUJIFILM Corporation | Two-photon absorbing optical recording material and two-photon absorbing optical recording and reproducing method |
-
1990
- 1990-03-26 JP JP2075927A patent/JP2979571B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1492092A3 (en) * | 2003-06-27 | 2007-07-04 | FUJIFILM Corporation | Two-photon absorbing optical recording material and two-photon absorbing optical recording and reproducing method |
EP2180467A1 (en) * | 2003-06-27 | 2010-04-28 | Fujifilm Corporation | Photon-mode recording method |
US7771915B2 (en) * | 2003-06-27 | 2010-08-10 | Fujifilm Corporation | Two-photon absorbing optical recording material and two-photon absorbing optical recording and reproducing method |
JP2005100599A (en) * | 2003-08-25 | 2005-04-14 | Fuji Photo Film Co Ltd | Photon mode recording method and 3-dimensional optical recording method |
Also Published As
Publication number | Publication date |
---|---|
JP2979571B2 (en) | 1999-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Walker et al. | A new dimension | |
Seto et al. | Macrocyclic functional dyes: Applications to optical disk media, photochemical hole burning and non-linear optics | |
JPH0246538A (en) | Optical memory element | |
CA1242883A (en) | Enhanced optically sensitive medium using organic charge transfer materials to provide reproducible thermal/optical erasure | |
JPH03274545A (en) | Wavelength multiplex recording medium | |
US5252371A (en) | Rewritable photochromic optical disk | |
JP2957793B2 (en) | Optical recording medium and method of using the same | |
JPH03274544A (en) | Wavelength multiplex recording medium | |
JP2702570B2 (en) | Thermoreversible optical recording medium | |
JPH03192345A (en) | Optical recording medium and recording method | |
JPH03200957A (en) | Rewritable photochromic optical disk | |
JP4440307B2 (en) | Information recording layer of optical disc, optical disc, and disc device | |
JPH07320273A (en) | Method for erasing recorded information of wavelength multiplex recording medium and device therefor | |
Dvornikov et al. | Reaction kinetics of photochromic materials and their application to 3D optical memories | |
JPH05127303A (en) | Optical recording medium and optical recording device using the same | |
JP2000019572A (en) | Optical recording medium | |
JPH07319107A (en) | Multiwavelength recording medium, multiwavelength recording or reproducing device, and multiwavelength recording or reproducing method | |
JP4591790B2 (en) | Information recording layer of optical disc and optical disc | |
JPH05297511A (en) | Wavelength multiplex recording medium and wavelength multiplex recording method using this medium | |
Dvornikov et al. | Studies on 3D volume memory | |
JPS62160283A (en) | Rewriting type heat mode optical memory medium | |
JPS63153193A (en) | Optical information recording method | |
JPH05139040A (en) | Phb optical recording medium | |
JPH07130004A (en) | Optical recording medium and its production | |
JPS63175239A (en) | Optical information recording method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |