JPH03274525A - Multiple quantum well optical modulating element - Google Patents

Multiple quantum well optical modulating element

Info

Publication number
JPH03274525A
JPH03274525A JP2075844A JP7584490A JPH03274525A JP H03274525 A JPH03274525 A JP H03274525A JP 2075844 A JP2075844 A JP 2075844A JP 7584490 A JP7584490 A JP 7584490A JP H03274525 A JPH03274525 A JP H03274525A
Authority
JP
Japan
Prior art keywords
state
quantum well
bias
quantum wells
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2075844A
Other languages
Japanese (ja)
Inventor
Atsushi Kurobe
篤 黒部
Haruhiko Yoshida
春彦 吉田
Yasuo Ashizawa
芦沢 康夫
Yutaka Uematsu
豊 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoelectronics Technology Research Laboratory
Original Assignee
Optoelectronics Technology Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoelectronics Technology Research Laboratory filed Critical Optoelectronics Technology Research Laboratory
Priority to JP2075844A priority Critical patent/JPH03274525A/en
Publication of JPH03274525A publication Critical patent/JPH03274525A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01725Non-rectangular quantum well structures, e.g. graded or stepped quantum wells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01725Non-rectangular quantum well structures, e.g. graded or stepped quantum wells
    • G02F1/01733Coupled or double quantum wells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To allow the execution of a modulation operation without entailing the deterioration of an extinction ratio even in an ultra-high speed modulation or strong input operation by determining a bias in such a manner that a resonance tunnel phenomenon arises between adjacent quantum wells in the transmission state or absorption state of a light absorption layer. CONSTITUTION:The cause for a sharp increase in the absolute value of a photoinduced current at an impressed voltage V10 in the case of the reverse bias applied to the multiple quantum wells lies in that the resonance tunnel phenomenon arises between the adjacent quantum wells. Namely, the base state E1 of the quantum well 42 on the right side and the 1st excitation state E2 of the quantum well 44 on the left side coincide in energy and, therefore, the tunnel phenomenon eventually takes place. Photoexcited carriers can be rapidly removed from the multiple quantum wells by setting the bias of the element in the transmission state or absorption state of the light absorption layer at the value at which the resonance tunnel phenomenon takes place. The optical modulation operation to obviate the generation of the piling up of the carriers in the quantum well absorption layer and to prevent the degradation in the extinction ratio, etc., is possible in this way.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、光フアイバ通信等に用いられる外部変調方式
の多重量子井戸光変調素子に係わり、特に変調駆動手段
の改良をはかった多重量子井戸光変調素子に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to an external modulation type multi-quantum well optical modulation device used in optical fiber communication, etc., and particularly relates to an improvement in modulation drive means. This invention relates to a multi-quantum well optical modulator.

(従来の技術) 光フアイバ通信において、光信号を光ファイバで長距離
伝送した時に、信号の歪みを極力少なくするためには、
光信号のスペクトル線幅が十分狭いことが必要になる。
(Prior art) In optical fiber communications, in order to minimize signal distortion when transmitting optical signals over long distances,
It is necessary that the spectral linewidth of the optical signal is sufficiently narrow.

半導体レーザの直接食調光を光信号に用いた場合、半導
体レーザ内でのキャリアの変動に応じて発振周波数が変
動するチャーピングと呼ばれる現象のためにスペクトル
線幅が広がり、スペクトル狭帯化ノ妨げとなる。これを
改善するために、半導体レーザを連続発振させ光の変調
は外部変調器で行う外部変調方式が有望視されている。
When direct eclipse dimming of a semiconductor laser is used for optical signals, the spectral linewidth widens due to a phenomenon called chirping, in which the oscillation frequency fluctuates in response to carrier fluctuations within the semiconductor laser, resulting in spectral narrowing. It becomes a hindrance. In order to improve this, an external modulation method in which a semiconductor laser is continuously oscillated and the light is modulated by an external modulator is considered to be promising.

外部変調器として、半導体多重量子井戸構造の量子閉じ
込めシュタルク効果を利用した多重量子井戸光変調素子
が提案されている(例えば、D、A、B、  Mlll
er et at、  IEEE J、Quantus
Electron、 QE−22,1818(198B
) ) 、この素子の動作原理を第5図に示す。
As an external modulator, a multi-quantum well optical modulator that utilizes the quantum-confined Stark effect of a semiconductor multi-quantum well structure has been proposed (for example, D, A, B, Mlll
er et at, IEEE J, Quantus
Electron, QE-22, 1818 (198B
) The operating principle of this device is shown in FIG.

!!fss図(a)は、GaAs/A lGaAsから
なる量子井戸構造に垂直方向の電界が印加されたときの
バンド・ダイヤグラムと波動関数を示す図であり、図中
51は量子井戸、52は基底電子状態の波動関数、53
は基底電子状態のエネルギー中レベル、54は基底正孔
状態の波動関数、55は基底正孔状態のエネルギー・レ
ベルを示している。電子及び正孔が障壁層によって閉じ
込められているために、電子と正孔は電界分離せずに、
高い電界においても励起子が存在する。
! ! The fss diagram (a) shows the band diagram and wave function when a vertical electric field is applied to a quantum well structure made of GaAs/AlGaAs. In the figure, 51 is the quantum well, and 52 is the fundamental electron. wave function of state, 53
indicates the energy level of the ground electronic state, 54 indicates the wave function of the ground hole state, and 55 indicates the energy level of the ground hole state. Since the electrons and holes are confined by the barrier layer, the electrons and holes are not separated by electric field,
Excitons are present even at high electric fields.

また、量子準位間エネルギーはシュタルク効果によって
、低エネルギー側に移動する。第5図(b)はこの様子
を吸収係数の変化として示す図であり、図中56は無電
界下の多重量子井戸の吸収スペクトル、57は有限界下
の多重量子井戸の吸収スペクトルを示している。量子井
戸に印加される電界の増加に伴い吸収ピークが長波長側
(低エネルギー側)にシフトするため、入射波長をバン
ド端近傍に適当に設定すれば(第5図(b)のλjn)
 、外部電界による光変調(この図では吸収損失型)が
可能となる。通常、量子井戸構造は、pin構造のi層
(ノンドープ層)に形成され、量子井戸への電界印加は
逆バイアスにより実現される。、=の変調素子のON状
態(透過状!g)は素子を無バイアスすることで、また
OFF状!@(吸収状態)は逆バイアスすることで得ら
れる。
Furthermore, the energy between quantum levels moves to the lower energy side due to the Stark effect. FIG. 5(b) is a diagram showing this situation as a change in the absorption coefficient. In the figure, 56 indicates the absorption spectrum of the multiple quantum well under no electric field, and 57 indicates the absorption spectrum of the multiple quantum well under a finite limit. There is. Since the absorption peak shifts to the longer wavelength side (lower energy side) as the electric field applied to the quantum well increases, if the incident wavelength is appropriately set near the band edge (λjn in Figure 5(b))
, optical modulation (absorption loss type in this figure) using an external electric field becomes possible. Usually, a quantum well structure is formed in an i-layer (non-doped layer) of a pin structure, and application of an electric field to the quantum well is realized by reverse bias. The ON state (transmissive state!g) of the modulation element of , = can be changed to the OFF state by applying no bias to the element! @ (absorption state) can be obtained by reverse biasing.

しかしながら、この種の素子にあっては次のような問題
があった。即ち、多重量子井戸の光吸収層を用いて超高
速変調或いは強光入力動作を行うと、吸収状態において
光を吸収して生成された電子・正孔対が透過状態になっ
てもi層(m子井戸構造領域)から抜は切らずにキャリ
アのパイル会アップが起こる。キャリアのパイル・アッ
プが起こるとその光非線形性によって、多重量子井戸の
吸収係数は第5図(e)に実線56’ 、57’で示す
ように減少する。このため、消光比(ON状態の光出力
をOFF状態の光出力で割った1i1)が減少する等の
障害を引き起こしていた。
However, this type of element has the following problems. That is, when performing ultrahigh-speed modulation or strong light input operation using a multi-quantum well light absorption layer, even if the electron-hole pairs generated by absorbing light in the absorption state become transparent, the i-layer ( The carrier pile up occurs without cutting from the m-well structure region). When pile-up of carriers occurs, the absorption coefficient of the multiple quantum well decreases as shown by solid lines 56' and 57' in FIG. 5(e) due to its optical nonlinearity. This has caused problems such as a reduction in the extinction ratio (1i1, which is the optical output in the ON state divided by the optical output in the OFF state).

(発明が解決しようとする課題) このように従来、多重量子井戸光変調素子を超高速に或
いは強入力で変調動作させると、キャリアのパイル・ア
ップを引き起こし、消光比が劣化する等の問題があった
(Problems to be Solved by the Invention) Conventionally, when a multi-quantum well optical modulator is operated at ultra-high speed or with a strong input, problems such as carrier pile-up are caused and the extinction ratio is deteriorated. there were.

本発明は、上記事情を考慮してなされたもので、その目
的とするところは、超高速変調或いは強入力動作におい
ても、消光比の劣化を招くことなく変調動作を行うこと
のできる多重量子井戸光変調素子を提供することにある
The present invention has been made in consideration of the above circumstances, and its purpose is to provide a multiple quantum well that can perform modulation operations without deteriorating the extinction ratio even in ultra-high-speed modulation or strong input operations. An object of the present invention is to provide a light modulation element.

[発明の構成] (3題を解決するための手段) 本発明の骨子は、光吸収層の透過状態或いは吸収状態に
おいて、隣り合う量子井戸間で共鳴トンネル現象を起こ
すことにより、キャリアのパイル・アップを防止するこ
とにある。
[Structure of the Invention] (Means for Solving the Three Problems) The gist of the present invention is to create a resonant tunneling phenomenon between adjacent quantum wells in the transmission state or absorption state of the light absorption layer, thereby reducing the pile-up of carriers. The goal is to prevent uploads.

即ち本発明は、所定波長の光が入射される光吸収層が複
数個の量子井戸からなり、該量子井戸に対するバイアス
の大きさにより光吸収層を入射光波長に対して透過状態
又は吸収状態に選択することにより、光吸収層を介して
得られる光を変調する多重量子井戸光変調素子において
、光吸収層の透過状態及び吸収状態の少なくとも一方で
、隣り合う量子井戸間で共鳴トンネル現象が起こるよう
にバイアスを設定するようにしたものである。
That is, in the present invention, the light absorption layer into which light of a predetermined wavelength is incident is made up of a plurality of quantum wells, and the light absorption layer is placed in a transmission state or an absorption state for the wavelength of the incident light depending on the magnitude of the bias applied to the quantum wells. By selecting, in a multi-quantum well light modulation element that modulates light obtained through a light absorption layer, resonant tunneling occurs between adjacent quantum wells in at least one of the transmission state and absorption state of the light absorption layer. The bias is set as follows.

(作用) 本発明によれば、光吸収層の透過状態或いは吸収状態に
おいて、隣り合う量子井戸間で共鳴トンネル現象が起こ
るようにバイアスを設定することにより、吸収状態にお
いて生成された電子・正孔対が量子井戸構造領域から速
やかに抜けるため、光吸収層にキャリアのパイル・アッ
プが起こるのを未然に防止することができる。
(Function) According to the present invention, by setting a bias so that a resonant tunneling phenomenon occurs between adjacent quantum wells in the transmission state or absorption state of the light absorption layer, electrons and holes generated in the absorption state are Since the pairs quickly escape from the quantum well structure region, it is possible to prevent pile-up of carriers from occurring in the light absorption layer.

以下に、その理由を説明する。The reason for this will be explained below.

第4図(a)は、多重量子井戸に逆バイアスを加えた場
合の光誘起電流を示す特性図である。
FIG. 4(a) is a characteristic diagram showing the photo-induced current when a reverse bias is applied to the multiple quantum well.

印加電圧V1.)において、光誘起電流の絶対値が急激
に増加するのは、vl。において隣り合う量子井戸間の
共鳴トンネル現象が起こるためである。この事情を、第
4図(b)に示す。なお、図中41.43.45はAl
GaAs層、42゜44はGaAs層(量子井戸)を示
している。
Applied voltage V1. ), the absolute value of the photoinduced current increases rapidly at vl. This is because resonant tunneling occurs between adjacent quantum wells. This situation is shown in FIG. 4(b). In addition, 41, 43, 45 in the figure is Al
GaAs layer, 42° 44 indicates a GaAs layer (quantum well).

印加電圧v、oにおいて、右側の量子井戸42の基底状
態E1と左側の量子井戸44の第1励起状態E2とはエ
ネルギー的に一致し、このため共鳴的にトンネル現象が
起きることになる(FuruLa eL al、 Jp
n、J、^[l]、Phys、 25(2)L151(
198B))。
At applied voltages v and o, the ground state E1 of the quantum well 42 on the right side and the first excited state E2 of the quantum well 44 on the left side coincide in energy, so that a tunneling phenomenon occurs resonantly (FuruLa eL al, Jp
n, J, ^[l], Phys, 25(2) L151(
198B)).

このように本発明では、光吸収層の透過状態或いは吸収
状態における素子のバイアスを共鳴トンネル現象の起こ
る値に設定することにより、光励起キャリアを素早く多
重量子井戸より排除することが可能である。従って、量
子井戸吸収層にキャリアのパイル・アップが起きず、消
光比等の劣化を防いだ光変調動作が可能となる。
As described above, in the present invention, by setting the bias of the element in the transmission state or absorption state of the light absorption layer to a value that causes the resonant tunneling phenomenon, it is possible to quickly exclude photoexcited carriers from the multiple quantum well. Therefore, pile-up of carriers does not occur in the quantum well absorption layer, and optical modulation operation that prevents deterioration of extinction ratio etc. is possible.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる多重量子井戸光変調
素子の素子構造を示す斜視図、第2図は該素工のバンド
ダイアグラムである。多重量子井戸領域20はi層であ
り、AlGaAs層21 (21+ 〜21N+1 )
及びGaAs層22 (221〜22N)を交互に積層
して形成されている。この多重量子井戸領域20を挾ん
で、上側にp型GaAs層11が形成され、下側にn 
型G a A s層12が形成されている。そして、G
aAs層11.12の表面には電極13.14がそれぞ
れ被着されている。なお、図中15は入射光を導入する
ための円形窓、16は出射光を導出するための円形窓、
30は光変調のための駆動電源である。
FIG. 1 is a perspective view showing the device structure of a multi-quantum well light modulation device according to an embodiment of the present invention, and FIG. 2 is a band diagram of the element. The multiple quantum well region 20 is an i-layer, and the AlGaAs layer 21 (21+ to 21N+1)
and GaAs layers 22 (221 to 22N) are alternately stacked. A p-type GaAs layer 11 is formed on the upper side sandwiching this multiple quantum well region 20, and an n-type GaAs layer 11 is formed on the lower side.
A type GaAs layer 12 is formed. And G
Electrodes 13.14 are applied to the surfaces of the aAs layers 11.12, respectively. In addition, in the figure, 15 is a circular window for introducing incident light, 16 is a circular window for leading out output light,
30 is a driving power source for optical modulation.

多重量子井戸領域20において、AIo、4Gao、、
、As層(障壁層)21の幅はそれぞれ5n■、GaA
s層(量子井戸)22の幅はそれぞれIQn*とした。
In the multiple quantum well region 20, AIo, 4Gao, .
, the width of the As layer (barrier layer) 21 is 5n■, GaA
The width of each s-layer (quantum well) 22 was set to IQn*.

従って、量子井戸構造の1周期LPは15n■である。Therefore, one period LP of the quantum well structure is 15n■.

また、量子井戸数は5oとした。なお、多重量子井戸領
域20の最外側のAlGaAs層211.21N+1は
、窓開けのエツチングを考慮して他の部分よりも厚く形
成した。この素子のビルトイン・ポテンシャルはおよそ
2eVであった。この素子の無バイアス時の励起子吸収
ピークは0.859μmであり、7eVの逆バイアス印
加(1,2X 10’ V / ell:対応する)す
ることにより、ピーク波長は0.873μmに移動した
Further, the number of quantum wells was set to 5o. Note that the outermost AlGaAs layer 211.21N+1 of the multiple quantum well region 20 was formed thicker than the other portions in consideration of etching for opening the window. The built-in potential of this device was approximately 2 eV. The exciton absorption peak of this device without bias was 0.859 μm, and by applying a reverse bias of 7 eV (corresponding to 1,2×10′ V/ell), the peak wavelength was shifted to 0.873 μm.

一方、量子井戸の第1励起状態と基底状態とのエネルギ
ー差ΔEIOは110seVと計算され、これにより内
部電界が ΔE +o/ L p −7,3X 10’  V /
 (1の時に共鳴トンネル現象が起こると計算される。
On the other hand, the energy difference ΔEIO between the first excited state and the ground state of the quantum well is calculated to be 110 seV, which causes the internal electric field to be ΔE + o / L p -7,3X 10' V /
(It is calculated that resonance tunneling occurs when the value is 1.

この内部電界は本実施例の素子で3.5vの逆バイアス
を印加することに対応する。実際、この逆バイアスにお
いて共鳴トンネルに由来する光励起電流の増大が観測さ
れた。また、3.5■の逆バイアス印加時の励起子吸収
ビーク波長は0.865μmであった。なお、L5Vの
逆バイアス印加時の吸収係数は、そのピークが無バイア
ス時に比べて低エネルギー側にシフトするものの、7v
の逆バイアス印加時の励起子吸収ピーク波長0.873
μmにおいては十分に小さいものであった。
This internal electric field corresponds to applying a reverse bias of 3.5 V in the device of this example. In fact, an increase in photoexcitation current originating from resonant tunneling was observed at this reverse bias. Furthermore, the exciton absorption peak wavelength when a reverse bias of 3.5 μm was applied was 0.865 μm. Note that the peak of the absorption coefficient when reverse bias is applied to L5V shifts to the lower energy side compared to when no bias is applied;
Exciton absorption peak wavelength when reverse bias is applied is 0.873
It was sufficiently small in μm.

以上より、入射光波長として0.87μmの連続レーザ
光を用い、透過(ON)状態のバイアスとしテVl −
−3,5V−1また吸収(OFF)状態のバイアスとし
てV、−−7Vを選んだ(第3図)。これにより、キャ
リアのパイル・アップもなく数十GHz以上の超高速変
調が可能となった。
From the above, using a continuous laser beam of 0.87 μm as the incident light wavelength and setting the bias in the transmission (ON) state, Te Vl −
-3,5V-1 Also, V, -7V was selected as the bias for the absorption (OFF) state (Fig. 3). This has made it possible to perform ultra-high-speed modulation of tens of GHz or more without carrier pile-up.

かくして本実施例によれば、量子井戸光吸収層20の透
過状態における素子のバイアスを共鳴トンネル現象の起
こる値に設定しているので、吸収状態において生成され
た光励起キャリアを透過状態において素早く光吸収層2
0から排除することが可能である。従って、超高速変調
或いは強入力動作においても、量子井戸吸収層20にキ
ャリアのパイル・アップを招くことなく、良好な光変調
動作を行うことができる。また、従来の素子構造を変え
ることなく、バイアス電圧を設定するのみで簡易に実現
し得る等の利点がある。
Thus, according to this embodiment, since the bias of the element in the transmission state of the quantum well light absorption layer 20 is set to a value that causes the resonant tunneling phenomenon, the photoexcited carriers generated in the absorption state are quickly absorbed by light in the transmission state. layer 2
It is possible to exclude from 0. Therefore, even in ultra-high speed modulation or strong input operation, a good optical modulation operation can be performed without causing a pile-up of carriers in the quantum well absorption layer 20. Another advantage is that it can be easily realized by simply setting the bias voltage without changing the conventional element structure.

なお、本発明は上述した実施例に限定されるものではな
い。天施例においては、透過状態のバイアスで共鳴トン
ネル現象が起こるように素子を駆動したが、吸収状態で
起こるように、或いは両方の状態で起こるように逆バイ
アスを設定してもよい。さらに、共鳴トンネル現象は基
底状態と第1励起状態との間で起こるとして説明したが
、高次の励起状態を利用した共鳴トンネル現象を利用す
ることも可能である。材料系としては、GaAs/Al
GaAs系に限るものではなく、! n P / I 
n G a A s P系、GaAs/1nGaAs系
、I nGaAs/InAlAs系等の他の材料系にも
同様に適用できる。素子構造としては、積層面に垂直に
光が入射する場合に限らず、入射光が積層面に平行に入
射される、所謂導波型の光変調素子にも適用することが
できる。また、実施例では量子井戸構造として最も単純
な箱型ポテンシャルで説明したが、非対称量子井戸や箱
型以外のポテンシャルを持つ量子井戸においても同様に
適用できる。その他、本発明の要旨を逸脱しない範囲で
、種々変形して実施することができる。
Note that the present invention is not limited to the embodiments described above. In the above embodiment, the element was driven so that the resonant tunneling phenomenon occurs with a bias in the transmission state, but a reverse bias may be set so that it occurs in the absorption state or in both states. Furthermore, although the resonant tunneling phenomenon has been described as occurring between the ground state and the first excited state, it is also possible to utilize the resonant tunneling phenomenon that utilizes a higher-order excited state. As for the material system, GaAs/Al
Not limited to GaAs type! nP/I
It can be similarly applied to other material systems such as nGaAsP system, GaAs/1nGaAs system, and InGaAs/InAlAs system. The element structure is not limited to cases in which light is incident perpendicularly to the laminated surfaces, but can also be applied to so-called waveguide type optical modulation elements in which incident light is incident parallel to the laminated surfaces. Furthermore, although the embodiments have been described using the simplest box-like potential as a quantum well structure, the invention can be similarly applied to an asymmetric quantum well or a quantum well having a potential other than a box-like potential. In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果コ 以上詳述したように本発明によれば、光吸収層の透過状
態或いは吸収状態において、隣り合う量子井戸間で共鳴
トンネル現象を起こすようにバイアスを設定しているの
で、キャリアのパイル−アップを未然に防止することが
でき、高速変調或いは強入力光強度においても、消光比
等の性能を劣化することのない多重量子井戸領域2素子
を実現することができる。
[Effects of the Invention] As detailed above, according to the present invention, the bias is set to cause a resonant tunneling phenomenon between adjacent quantum wells in the transmission state or absorption state of the light absorption layer. Pile-up can be prevented in advance, and a multi-quantum well region 2 element can be realized in which performance such as extinction ratio does not deteriorate even under high-speed modulation or strong input light intensity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図本発明の一実施例に係わる多重量子井戸光変調素
子の素子構造を示す斜視図、第2図は上記素子のバンド
構造を示す模式図、第3図は上記素子の動作を説明する
ためのタイミングチャート、第4図は共鳴トンネル現象
を説明するための模式図、第5図は従来の多重量子井戸
光変調素子の動作原理及びその問題点を説明するための
模式図である。 11−p型GaAs層、 12−n型Ga1As層、 13.14・・・電極、 15.16・・・窓、 20・・・多重量子井戸領域、 21−i !11 A I G a A s層(障壁層
)、22−i型GaAs層(量子井戸)、 30・・・駆動電源。 入村乞 蓼 Ill
Fig. 1 is a perspective view showing the device structure of a multi-quantum well light modulation device according to an embodiment of the present invention, Fig. 2 is a schematic diagram showing the band structure of the device, and Fig. 3 explains the operation of the device. FIG. 4 is a schematic diagram for explaining the resonant tunneling phenomenon, and FIG. 5 is a schematic diagram for explaining the operating principle of a conventional multi-quantum well optical modulator and its problems. 11-p-type GaAs layer, 12-n-type Ga1As layer, 13.14...electrode, 15.16...window, 20...multiple quantum well region, 21-i! 11 AIGaAs layer (barrier layer), 22-i type GaAs layer (quantum well), 30... drive power source. Irimura Kouta Ill

Claims (2)

【特許請求の範囲】[Claims] (1)所定波長の光が入射される光吸収層が複数個の量
子井戸からなり、該量子井戸に対するバイアスの大きさ
により光吸収層を入射光波長に対して透過状態又は吸収
状態に選択することにより、光吸収層を介して得られる
光を変調する多重量子井戸光変調素子において、 前記透過状態及び吸収状態の少なくとも一方で、隣り合
う量子井戸間で共鳴トンネル現象が起こるようにバイア
スを設定してなることを特徴とする多重量子井戸光変調
素子。
(1) The light absorption layer into which light of a predetermined wavelength is incident is made up of a plurality of quantum wells, and the light absorption layer is selected to be in a transmitting state or an absorbing state for the wavelength of the incident light depending on the magnitude of the bias for the quantum wells. In a multi-quantum well optical modulator that modulates light obtained through a light absorption layer, a bias is set so that a resonant tunneling phenomenon occurs between adjacent quantum wells in at least one of the transmission state and absorption state. A multi-quantum well optical modulation device characterized by comprising:
(2)前記バイアスの設定は、隣り合う量子井戸におけ
る基底状態と第1励起状態との間で共鳴トンネル現象を
起こすように行うことを特徴とする請求項1記載の多重
量子井戸光変調素子。
(2) The multi-quantum well optical modulator according to claim 1, wherein the bias is set so as to cause a resonant tunneling phenomenon between the ground state and the first excited state in adjacent quantum wells.
JP2075844A 1990-03-26 1990-03-26 Multiple quantum well optical modulating element Pending JPH03274525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075844A JPH03274525A (en) 1990-03-26 1990-03-26 Multiple quantum well optical modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075844A JPH03274525A (en) 1990-03-26 1990-03-26 Multiple quantum well optical modulating element

Publications (1)

Publication Number Publication Date
JPH03274525A true JPH03274525A (en) 1991-12-05

Family

ID=13587925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075844A Pending JPH03274525A (en) 1990-03-26 1990-03-26 Multiple quantum well optical modulating element

Country Status (1)

Country Link
JP (1) JPH03274525A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195323A (en) * 1987-10-08 1989-04-13 Asahi Chem Ind Co Ltd Voice input device
WO1989009425A2 (en) * 1988-03-24 1989-10-05 Martin Marietta Corporation Electro-optic quantum well device
JPH01306689A (en) * 1988-05-31 1989-12-11 Mitsuo Fujisawa Sheet material having pattern knitted therein
JPH0263024A (en) * 1988-08-30 1990-03-02 Mitsubishi Electric Corp Optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195323A (en) * 1987-10-08 1989-04-13 Asahi Chem Ind Co Ltd Voice input device
WO1989009425A2 (en) * 1988-03-24 1989-10-05 Martin Marietta Corporation Electro-optic quantum well device
JPH01306689A (en) * 1988-05-31 1989-12-11 Mitsuo Fujisawa Sheet material having pattern knitted therein
JPH0263024A (en) * 1988-08-30 1990-03-02 Mitsubishi Electric Corp Optical element

Similar Documents

Publication Publication Date Title
Akiyama et al. Quantum-dot semiconductor optical amplifiers
US6611539B2 (en) Wavelength-tunable vertical cavity surface emitting laser and method of making same
US3973216A (en) Laser with a high frequency rate of modulation
JPH0715093A (en) Optical semiconductor element
JP5207381B2 (en) Coupled quantum well structure
EP1729167B1 (en) Semiconductor optical modulator having a quantum well structure for increasing effective photocurrent generating capability
US6978055B2 (en) Optical modulator
JPH05297421A (en) Optical nonlinear element and method for using the same
US6956232B2 (en) Electroabsorption modulator
US20220360038A1 (en) Systems and methods for external modulation of a laser
JPH03274525A (en) Multiple quantum well optical modulating element
KR100605372B1 (en) Electro-absorption optical modulator having multiple quantum well
JP2922160B2 (en) Nonlinear optical device
JP3566365B2 (en) Optical semiconductor device
JP2991707B1 (en) Semiconductor optical switch
JP3751423B2 (en) Semiconductor element
JPH06164067A (en) Multiple quantum well optical modulation element
JP2000305055A (en) Electric field absorption optical modulator
JPH0728104A (en) Light modulation element
Otsubo et al. Automatically-controlled C-band wavelength conversion with constant output power based on four-wave mixing in SOA's
Chu et al. 1.3 μm quantum-dot electro-absorption modulator
Akiyama et al. Recent progress in quantum-dot semiconductor optical amplifiers
JPH0886985A (en) Multiple quantum well optical modulation element
JP3087129B2 (en) Light modulator
JP2004347650A (en) Semiconductor optical modulator