JP2004347650A - Semiconductor optical modulator - Google Patents

Semiconductor optical modulator Download PDF

Info

Publication number
JP2004347650A
JP2004347650A JP2003141418A JP2003141418A JP2004347650A JP 2004347650 A JP2004347650 A JP 2004347650A JP 2003141418 A JP2003141418 A JP 2003141418A JP 2003141418 A JP2003141418 A JP 2003141418A JP 2004347650 A JP2004347650 A JP 2004347650A
Authority
JP
Japan
Prior art keywords
quantum well
well layer
layer
energy
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003141418A
Other languages
Japanese (ja)
Inventor
Naofumi Shimizu
直文 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003141418A priority Critical patent/JP2004347650A/en
Publication of JP2004347650A publication Critical patent/JP2004347650A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize an electro-absorption semiconductor optical modulator which modulates light with respect to a wide wavelength region and does not require temperature control of an element. <P>SOLUTION: The semiconductor optical modulator has a p-type cladding layer 2 disposed on a GaAs substrate 1, a double quantum well structure 3 disposed on the cladding layer 2 and consisting of a first quantum well layer 5 and a second quantum well layer 6 alternately laminated across a barrier layer 4, and an n-type cladding layer 7 disposed on the double quantum well structure 3, and is constructed in such a way that bottom energy of a conduction band of the second quantum well layer 6 is larger than that of the first quantum well layer 5, band gap energy of the second quantum well layer 6 is larger than band gap energy 13 of the first quantum well layer 5, and ground level energy of the first quantum well layer 5 is smaller than that of the second quantum well layer 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光通信などで用いられる電気の変調信号を光の変調信号に変換するための電界吸収型の半導体光変調素子に関する。
【0002】
【従来の技術】
【特許文献】特許第2670051号公報。
【0003】
従来、半導体光変調素子の一つとして、量子井戸構造における励起子のシュタルク効果による吸収端のレッドシフトを利用した電界吸収型光変調素子が提案されている。上記特許文献には、この素子の典型例が示されている。以下、図7と図8を用いてこの従来例について説明する。図7はこの従来の素子構造の斜視図、図8は図7の素子の光吸収スペクトルを示す特性図である。
図7において、71はInP基板、72はInP基板71上に配置したn型InPからなる第1のクラッド層、73は厚さ100ÅのIn0.55Ga0.45As0.970.03量子井戸層で、その光の吸収端は波長1.50μmに保たれている。74は厚さ150ÅのInP障壁層で、量子井戸層73と障壁層74とが交互に20周期積層され活性層である多重量子井戸層構造が形成されている。75はP型InPからなる第2のクラッド層で、その上部は図示のごとくストライプ状をなしている。第2のクラッド層75は厚さ0.4μmで、その上部に高さ1.6μm、幅6μmのストライプを形成して装荷クラッド部76としてある。77はストライプ上に形成された厚さ0.15μmのp型In0.53Ga0.47Asキャップ層、78および79は電極、81は入力光、82は出力光である。この構造は、光を多重量子井戸層構造に平行に入射して光の変調器あるいはスイッチとして動作させる。
p型およびn型クラッド層75、72で挟まれた活性層に電圧を印加した場合の光吸収係数の変化は図8(a)のようになる。この図の横軸は波長、縦軸は吸収係数を示し、λgは吸収端を示す。破線は電界有り、実線は電界無しを示す。図のように、吸収係数のピークは、電圧の印加によって長波長側ヘシフトする。従って、図8(b)に示すように、電界の有無により吸収端λg付近で吸収係数が大きく変化することになる。これにより電極78と79間の電位差を制御することで、素子を通過する光の強度を変えることが可能となる。
【0004】
【発明が解決しようとする課題】
しかし、図8(b)から分かるように、吸収係数が変化するのは波長1.55μm付近の10nmの限られた波長領域だけで、この領域以外の波長の光に対する変調効率は急激に劣化することになる。そのため、波長1.54μm以下の光を変調する光変調器を実現するためには、量子井戸層73に用いる材料のIn0.53Ga0.47Asに対するInP組成を増加させて、吸収端λgを短波長側に調整する必要がある。また、波長1.56μm以上の光を変調する光変調器を実現するためには、量子井戸層1103に用いる材料のIn0.53Ga0.47Asに対するInP組成を減少させて、吸収端λgを長波長側に調整する必要がある。そのため、大容量波長多重伝送に従来例による電界吸収型光変調器を適用することを考えた場合、数種類の結晶構造を準備する必要があり、非常に非効率的である。
さらに素子温度が変わった場合、バンドギャップエネルギのシフトに伴い、吸収端λgがシフトするので変調可能な波長領域もシフトする。従って、想定していた波長の光が、素子温度の変化で変調可能な波長領域から外れることも起こり得る。これを避けるため、従来の電界吸収型光変調素子では、素子温度を一定に保つための装置との併用が必須となり、低コスト化、集積化への障害となっていた。
本発明の目的は、上述の問題点を解決して、広い波長領域に対して変調可能で、素子温度の制御が不要な電界吸収型の半導体光変調素子を実現することである。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明においては特許請求の範囲に記載するような構成をとる。
すなわち、本発明の半導体光変調素子は、基板上に設けた第1伝導型の第1のクラッド層と、前記第1のクラッド層上に設けられ、第1の量子井戸層と、第2の量子井戸層とを障壁層を介して交互に積層してなる二重量子井戸構造と、前記二重量子井戸構造上に設けた第2伝導型の第2のクラッド層とを有し、前記第2の量子井戸層の伝導帯の下端のエネルギが、前記第1の量子井戸層の伝導帯の下端のエネルギより大きく、前記第2の量子井戸層のバンドギャップエネルギが、前記第1の量子井戸層のバンドギャップエネルギより大きく、前記第1の量子井戸層の電子の基底準位のエネルギが、前記第2の量子井戸層の電子の基底準位のエネルギより小さいという構成になっている。
また、前記二重量子井戸構造に電圧を印加した際の、電子の量子準位の共鳴/非共鳴による光吸収係数の波長依存性の差を利用して当該半導体光変調素子の光の透過する割合を制御する構成になっている。
【0006】
【発明の実施の形態】
以下、まず図5、図6を用いて本発明の原理(作用)について説明する。図5は二重量子井戸構造における電子、正孔のエネルギ準位の関係を説明する図、図6は二重量子井戸構造で、電子準位が共鳴している状態と共鳴していない状態での光の吸収係数の違いを説明するための図である。
図5において、4は障壁層、5は第1の量子井戸層、6は第2の量子井戸層、11は第1の量子井戸層5の伝導帯の下端、12は第2の量子井戸層6の伝導帯の下端、13は第1の量子井戸層5のバンドギャップエネルギ、14は第2の量子井戸層6のバンドギャップエネルギ、15は第1の量子井戸層5の電子の基底準位、16は第2の量子井戸層6の電子の基底準位、17は第1の量子井戸層5の正孔の基底準位、18は第2の量子井戸層6の正孔の基底準位、Egは第1の量子井戸層5の電子の基底準位15と正孔の基底準位17間の遷移エネルギ、E1は第2の量子井戸層6の電子の基底16と正孔の基底準位18間の遷移エネルギである。
【0007】
本発明による半導体光変調素子における半導体超格子構造(二重量子井戸構造)では、図5に示すように第1の量子井戸層5内と第2の量子井戸層6内に電子および正孔の準位が形成される。これにより、二重量子井戸構造に電圧が印加されていない状態では、第1の量子井戸層5内に電子の基底準位15、正孔の基底準位17が、第2の量子井戸層6内に電子の基底準位16、正孔の基底準位18が形成されることになる。この第1の量子井戸層5内の電子の基底準位15と正孔の基底準位17間の遷移エネルギをEg、第2の量子井戸層6内の電子の基底準位16と正孔の基底準位18間の遷移エネルギをE1とすると、図6(a)の一点鎖線に示すように超格子構造に対する光の吸収係数は、遷移エネルギEgおよびE1のところでステップ状に増加する特性を示し、遷移エネルギEgより大きなエネルギの光を超格子構造は吸収することになる。
この構造で、第1の量子井戸層5に形成される電子の基底準位15が、第2の量子井戸層6に形成される電子の量子準位のうち、エネルギ的に最低の準位と共鳴する状態になる電界強度をFresとする。この場合、この電界強度Fresが超格子構造に印加された状態では、第1の量子井戸層5に形成される電子の基底準位15の波動関数は、第1の量子井戸層5と第2の量子井戸層6に広がって存在することになるため、電子の基底準位15の電子と正孔の基底準位17の正孔の波動関数の重なり積分が小さくなり、遷移エネルギE1より大きなエネルギの光に対する超格子構造での光の吸収率が低下する。このときの超格子構造の光吸収特性を図6(a)にプロットすると実線のようになる。
超格子構造に印加される電界強度が、電界強度Fresよりさらに大きくなると、電子の波動関数は障壁を越えて隣の井戸に染み出すことはなくなり、波動関数は片方の井戸に局在することになり、各準位での光の吸収率は、超格子構造に電界が印加されていない状態と同じ値に回復する。つまり、図6(a)の一点鎖線のような状態に戻る。
ここで、F=FresとF≠Fresでの光吸収係数の差をエネルギを横軸にプロットすると図6(b)のようになり、遷移エネルギEgより大きなエネルギの光、つまり遷移エネルギEgに対応する波長より短波側の広い波長領域の光に対して吸収係数の変化が得られる。従って本提案の超格子構造を採用することで、従来の電界吸収型光変調器に比べて、広い波長領域に対して変調可能な光変調素子を実現することが可能となる。また、変調可能な波長領域が広がったため、素子温度が変化して遷移エネルギEgがシフトしても変調可能な波長領域から外れることは起こりえず、素子温度の一定に保つための装置が不要となり、低コスト化、高集積化が可能となる。
【0008】
以下、図面を用いて本発明の実施の形態について詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
実施の形態1
図1(a)は本発明の実施の形態1の半導体超格子構造を有する半導体光変調素子の構造の一例を示す断面模式図である。図1(a)において、絶縁性GaAs基板1上にp型Al0.35Ga0.65Asからなるクラッド層2と、超格子構造である二重量子井戸構造3と、n型Al0.35Ga0.65Asからなるクラッド層7が形成されており、クラッド層2と7にはそれぞれオーミック電極8と9が形成されている。また、図1(b)は、図1(a)の二重量子井戸構造3の拡大断面詳細図で、厚さ5nmのAl0.35Ga0.65Asからなる障壁層4、厚さ12nmのGa0.68In0.320.01As0.99からなる第1の量子井戸層5、厚さ5nmのAl0.35Ga0.65As障壁層4、厚さ14nmのGaN0.008As0.992からなる第2の量子井戸層6を一周期として、これを20周期重ねた上に厚さ3nmのAl0.35Ga0.65As障壁層4を形成した構造になっている。また、この構造で入力光41は、二重量子井戸構造3のヘテロ界面に平行な方向に進行し、出力光42となる。
図2において、11は第1の量子井戸層5の伝導帯の下端、12は第2の量子井戸層6の伝導帯の下端、13は第1の量子井戸層5のバンドギャップエネルギ、14は第2の量子井戸層6のバンドギャップエネルギ、15は第1の量子井戸層5の電子の基底準位、16は第2の量子井戸層6の電子の基底準位、17は第1の量子井戸層5の正孔の基底準位、18は第2の量子井戸層6の正孔の基底準位、19は第1の量子井戸層5の電子の第1励起準位、20は第1の量子井戸層5の正孔の第1励起準位、Egは第1の量子井戸層5の電子の基底準位15と正孔の基底準位17間の遷移エネルギ、E1は第2の量子井戸層6の電子の基底準位16と正孔の基底準位18間の遷移エネルギ、E2は第1の量子井戸層5の電子の第1励起準位19と正孔の第1励起準位20間の遷移エネルギである。
【0009】
この二重量子井戸構造3における量子準位は、図2(a)に示すように、第1の量子井戸層5内と第2の量子井戸層6内に電子および正孔の準位が形成される。これにより、二重量子井戸構造3に電圧がかかってない状態では、図2(b)の一点鎖線で示すように、波長1.31、1.09、0.95μmでそれぞれ光吸収係数がステップ状に増大する特性を示す。
この素子の電極8と9に、電極9がプラスになるように電圧を印加し、二重量子井戸構造3に108kV/cmの電界を形成する。その場合、二重量子井戸構造3において第1の量子井戸層5の電子の基底準位15と第2の量子井戸層6の電子の基底準位16が共鳴を起こすことになるので、上述の原理の説明で述べたような理由により、図2(b)の実線のように光吸収係数が減少する。
また、この状態から電極8と9間に印加する電圧をさらに増大させると、第1の量子井戸層5の電子の基底準位15と第2の量子井戸層6の電子の基底準位16の共鳴状態は解消され、図2(b)の一点鎖線のように光吸収係数が回復する。
このように本実施の形態1の半導体光変調素子は、GaAs基板1上に設けた第1伝導型(ここではp型)の第1のクラッド層2と、このクラッド2層上に設けられ、第1の量子井戸層5と、第2の量子井戸層6とを障壁層4を介して交互に積層してなる二重量子井戸構造3と、この二重量子井戸構造3上に設けた第2伝導型(ここではn型)の第2のクラッド層7とを有し、▲1▼第2の量子井戸層6の伝導帯の下端12のエネルギが、第1の量子井戸層5の伝導帯の下端11のエネルギより大きく、▲2▼第2の量子井戸層6のバンドギャップエネルギ14が、第1の量子井戸層5のバンドギャップエネルギ13より大きく、▲3▼第1の量子井戸層5の電子の基底準位15のエネルギが、第2の量子井戸層6の電子の基底準位16のエネルギより小さい構成になっている。
また、二重量子井戸構造3に電圧を印加した際の、電子の量子準位の共鳴/非共鳴による波導関数の染み出しの強弱で光吸収係数の波長依存性の差を利用して当該半導体光変調素子の光の透過する割合(透過率)を制御する構成になっている。
なお、本二重量子井戸構造3を決定するのは、上記▲1▼、▲2▼の要件を満たす材料を選択した上で、第1の量子井戸層5および第2の量子井戸層6の層厚を調整することにより、容易に上記▲3▼の要件を満たすことができる。
【0010】
この素子で、電界強度の制御により光吸収係数の大きな変化が得られるのは、波長にして1.31から1.09μmと非常に広い波長域にわたっており、従来の電界吸収型光変調素子に比べて変調可能な波長域が1桁以上広い光変調器が実現できる。また、変調可能な波長領域が広がったため、素子温度が変化して遷移エネルギEgがシフトしても変調可能な波長領域から外れることは起こりえず、素子温度の一定に保つための装置が不要となり、低コスト化、高集積化が可能となる。
なお、以上の実施の形態1では、波長1.31μmより短波長の光変調器を示したが、変調可能な波長域が、本実施の形態1に提案された値に限定されるものでなく、第1の量子井戸層5の井戸幅を変更し、遷移エネルギEgを調整することで、波長をシフトさせることが可能であることは自明である。また、本実施の形態1では、用いる半導体材料としてGaAsとAl0.35Ga0.65As、Ga0.68In0.320.01As0.99、GaN0.008As0.992を用いたが、InP、InGa1−xAs1−y、In0.52Al0.48As、などの他のIII−V族半導体およびその混晶系においても、本発明の半導体光変調素子を実現することができることは明らかである。
【0011】
実施の形態2
以下に上記実施の形態1とは別の一例を挙げ説明する。図3(a)は本発明の実施の形態2の半導体超格子構造を有する半導体光変調素子の構造の一例を示す断面模式図である。図3(a)において、絶縁性GaAs基板31上にp型Al0.45Ga0.55Asからなるクラッド層32と、超格子構造である二重量子井戸構造33と、n型Al0.45Ga0.55Asからなるクラッド層37が形成されており、クラッド層32と34にはそれぞれオーミック電極38と39が形成されている。図3(b)は、図3(a)の二重量子井戸構造33の拡大断面詳細図で、厚さ5nmのAl0.45Ga0.55Asからなる障壁層34、厚さ7nmのGaAsからなる第1の量子井戸層35、厚さ5nmのAl0.45Ga0.55As障壁層34、厚さ15nmのGa0.51In0.49Pからなる第2の量子井戸層36を一周期として、これを20周期重ねた上に厚さ5nmのAl0.45Ga0.55As障壁層34を形成した構造になっている。また、この構造で入力光41は、二重量子井戸構造33のヘテロ界面に平行な方向に進行し、出力光42となる。
図4において、11は第1の量子井戸層35の伝導帯の下端、12は第2の量子井戸層36の伝導帯の下端、13は第1の量子井戸層35のバンドギャップエネルギ、14は第2の量子井戸層36のバンドギャップエネルギ、15は第1の量子井戸層35の電子の基底準位、16は第2の量子井戸層36の電子の基底準位、17は第1の量子井戸層35の正孔の基底準位、20は第1の量子井戸層35の正孔の第1励起準位、Egは第1の量子井戸層5の電子の基底準位15と第1の量子井戸層5の正孔の基底準位17間の遷移エネルギ、E1は電子の第1励起準位18と正孔の第1励起準位21間の遷移エネルギ、Ebは障壁層34のバンドギャップエネルギである。
【0012】
この二重量子井戸構造33における量子準位は、図4(a)に示すように、第1の量子井戸層35内と第2の量子井戸層36内に電子および正孔の準位が形成される。これにより、二重量子井戸構造33に電圧がかかってない状態では、図4(b)の一点鎖線で示すように、波長0.805μmで光吸収係数がステップ状に増大する特性を示す。
なお、この構造で第2の量子井戸層36内の電子の基底準位16と第1の量子井戸層35内の正孔の第1励起準位20間の遷移に対応する0.727μm付近で光の吸収係数が増大しないのは、この準位の電子と正孔が第1の量子井戸層35と第2の量子井戸層36に分かれて存在し、遷移がほとんど起こらないためである。
この素子の電極38と39に、電極39がプラスになるように電圧を印加し、二重量子井戸構造33に80kV/cmの電界を形成する。その場合、二重量子井戸構造33において電子の基底準位15と電子の基底準位16が共鳴を起こすことになるので、上述の原理の説明でのべたような理由により、図4(b)の実線のように光吸収係数が減少する。
また、この状態から電極38と39間に印加する電圧をさらに増大させると、電子の基底準位15と電子の基底準位16の共鳴状態は解消され、図4(b)の一点鎖線のように光吸収係数が回復する。
この素子で、電界強度の制御により光吸収係数の大きな変化が得られるのは、波長にして0.805μmから障壁層34での光吸収が始まる0.623μm付近までの非常に広い波長域にわたっており、従来の電界吸収型光変調素子に比べて変調可能な波長域が1桁以上広い光変調器が実現できる。
なお、以上の実施の形態2では、波長0.805μmより短波長の光変調器を示したが、変調可能な波長域が、本実施の形態2に提案された値に限定されるものでなく、第1の量子井戸層35の井戸幅を変更し、遷移エネルギEgを調整することで、波長をシフトさせることが可能であることは自明である。また、本実施の形態2ではGaAs、Al0.45Ga0.55As、Ga0.51In0.49Pを用いたが、InPに格子整合するIn0.58Ga0.42As0.90.1、In0.53Ga0.47As、In0.52Al0.48Asなどの他のIII−V族半導体およびその混晶系においても、本発明の半導体光変調素子を実現することができることは明らかである。
【0013】
以上本発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。
【0014】
【発明の効果】
以上説明したように、本発明によれば、従来の電界吸収型光変調素子に比べて広い波長領域にわたり光の強度変調が可能となるため、素子温度の変化による変調効率の劣化を防止でき、素子温度調整機構が不要な光変調素子を実現でき、低コストか、高集積化の実現を可能とすることができる。
【図面の簡単な説明】
【図1】(a)は本発明の実施の形態1の光変調素子の構造を示す模式図、(b)は(a)の光変調素子の超格子構造部の拡大詳細図である。
【図2】(a)は本発明の実施の形態1の超格子構造部のバンド構造を示す模式図、(b)は本発明の実施の形態1の超格子構造部の光吸収特性を示す図である。
【図3】(a)は本発明の実施の形態2の光変調素子の構造を示す模式図、(b)は(a)の光変調素子の超格子構造部の拡大詳細図である。
【図4】(a)は本発明の実施の形態2の超格子構造部のバンド構造を示す模式図、(b)は本発明の実施の形態2の超格子構造部の光吸収特性を示す図である。
【図5】二重量子井戸構造における電子、正孔のエネルギ準位の関係を示す説明図である。
【図6】二重量子井戸構造で、電子準位が共鳴している状態と共鳴していない状態での光の吸収係数の違いを示す説明図である。
【図7】従来の電界吸収型光変調素子の構造を示す斜視図である。
【図8】従来の電界吸収型光変調素子の波長と吸収係数の関係を示す説明図である。
【符号の説明】
1…絶縁性GaAs基板
2…p型Al0.35Ga0.65Asクラッド層
3…二重量子井戸構造
4…Al0.35Ga0.65As障壁層
5…Ga0.68In0.320.01As0.99第1の量子井戸層
6…GaN0.008As0.992第2の量子井戸層
7…n型Al0.35Ga0.65Asクラッド層
8、9…オーミック電極
11…第1の量子井戸層の伝導帯の下端
12…第2の量子井戸層の伝導帯の下端
13…第1の量子井戸層のバンドギャップエネルギ
14…第2の量子井戸層のバンドギャップエネルギ
15…第1の量子井戸層の電子の基底準位
16…第2の量子井戸層の電子の基底準位
17…第1の量子井戸層の正孔の基底準位
18…第2の量子井戸層の正孔の基底準位
19…第1の量子井戸層の電子の第1励起準位
20…第1の量子井戸層の正孔の第1励起準位
31…絶縁性GaAs基板
32…p型Al0.45Ga0.55Asクラッド層
33…二重量子井戸構造
34…Al0.45Ga0.55As障壁層
35…GaAs第1の量子井戸層
36…Ga0.51In0.49P第2の量子井戸層
37…n型Al0.45Ga0.55Asクラッド層
38、39…オーミック電極
41…入力光
42…出力光
71…InP基板
72…n型クラッド層
73…In0.55Ga0.45As0.970.03量子井戸層
74…InP障壁層
75…P型クラッド層
76…装荷クラッド部
77…p型In0.53Ga0.47Asキャップ層
78、79…電極
81…入力光
82…出力光
Eg…第1の量子井戸層の電子の基底準位と正孔の基底準位間の遷移エネルギ
E1…第2の量子井戸層の電子の基底準位と正孔の基底準位間の遷移エネルギ
E2…第1の量子井戸層の電子の第1励起準位と正孔の第1励起準位間の遷移エネルギ
Eb…障壁層のバンドギャップエネルギ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electro-absorption type semiconductor light modulation element for converting an electric modulation signal used in optical communication or the like into a light modulation signal.
[0002]
[Prior art]
[Patent Document] Japanese Patent No. 2670051.
[0003]
2. Description of the Related Art Conventionally, as one of semiconductor light modulation elements, an electroabsorption light modulation element using a red shift of an absorption edge due to a Stark effect of an exciton in a quantum well structure has been proposed. The above patent document shows a typical example of this element. The conventional example will be described below with reference to FIGS. FIG. 7 is a perspective view of this conventional device structure, and FIG. 8 is a characteristic diagram showing a light absorption spectrum of the device of FIG.
7, reference numeral 71 denotes an InP substrate; 72, a first cladding layer made of n-type InP disposed on the InP substrate 71; 73, a 100-degree thick In 0.55 Ga 0.45 As 0.97 P 0. The light absorption edge of the 03 quantum well layer is maintained at a wavelength of 1.50 μm. Reference numeral 74 denotes an InP barrier layer having a thickness of 150 °. The quantum well layers 73 and the barrier layers 74 are alternately stacked for 20 periods to form a multiple quantum well layer structure as an active layer. Reference numeral 75 denotes a second cladding layer made of P-type InP, and the upper part thereof has a stripe shape as shown in the figure. The second cladding layer 75 has a thickness of 0.4 μm, and a stripe having a height of 1.6 μm and a width of 6 μm is formed thereon to form a loading clad portion 76. 77 is a p-type In 0.53 Ga 0.47 As cap layer having a thickness of 0.15 μm formed on the stripe, 78 and 79 are electrodes, 81 is input light, and 82 is output light. In this structure, light is incident on the multiple quantum well layer structure in parallel and operates as a light modulator or switch.
FIG. 8A shows a change in the light absorption coefficient when a voltage is applied to the active layer sandwiched between the p-type and n-type cladding layers 75 and 72. In this figure, the horizontal axis represents the wavelength, the vertical axis represents the absorption coefficient, and λg represents the absorption edge. The broken line indicates the presence of an electric field, and the solid line indicates the absence of an electric field. As shown in the figure, the peak of the absorption coefficient shifts to the longer wavelength side by applying a voltage. Therefore, as shown in FIG. 8B, the absorption coefficient greatly changes near the absorption edge λg depending on the presence or absence of the electric field. By controlling the potential difference between the electrodes 78 and 79, the intensity of light passing through the element can be changed.
[0004]
[Problems to be solved by the invention]
However, as can be seen from FIG. 8B, the absorption coefficient changes only in the limited wavelength region of 10 nm around the wavelength of 1.55 μm, and the modulation efficiency for light of wavelengths other than this region rapidly deteriorates. Will be. Therefore, in order to realize an optical modulator that modulates light having a wavelength of 1.54 μm or less, the InP composition for In 0.53 Ga 0.47 As, which is a material used for the quantum well layer 73, is increased to increase the absorption edge λg Needs to be adjusted to the shorter wavelength side. Further, in order to realize an optical modulator that modulates light having a wavelength of 1.56 μm or more, the InP composition with respect to In 0.53 Ga 0.47 As of the material used for the quantum well layer 1103 is reduced to reduce the absorption edge λg Needs to be adjusted to the longer wavelength side. Therefore, when applying the conventional electro-absorption optical modulator to large-capacity wavelength division multiplexing transmission, it is necessary to prepare several types of crystal structures, which is very inefficient.
Further, when the element temperature changes, the wavelength range that can be modulated also shifts because the absorption edge λg shifts with the shift of the band gap energy. Therefore, the light of the assumed wavelength may deviate from the wavelength range that can be modulated by the change in the element temperature. In order to avoid this, in the conventional electro-absorption type optical modulation device, it is essential to use the device together with a device for keeping the device temperature constant, which has been an obstacle to cost reduction and integration.
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to realize an electroabsorption type semiconductor optical modulation device which can modulate over a wide wavelength range and does not require control of the device temperature.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs a configuration as described in the claims.
That is, the semiconductor light modulation device of the present invention includes a first conductivity type first clad layer provided on a substrate, a first quantum well layer provided on the first clad layer, and a second quantum well layer provided on the first clad layer. A double quantum well structure in which quantum well layers are alternately stacked with a barrier layer interposed therebetween, and a second cladding layer of a second conductivity type provided on the double quantum well structure; The energy at the lower end of the conduction band of the second quantum well layer is greater than the energy at the lower end of the conduction band of the first quantum well layer, and the bandgap energy of the second quantum well layer is higher than that of the first quantum well layer. The energy is higher than the band gap energy of the layer, and the energy of the ground level of the electrons in the first quantum well layer is smaller than the energy of the ground level of the electrons in the second quantum well layer.
In addition, when a voltage is applied to the double quantum well structure, light is transmitted from the semiconductor light modulation device by utilizing a difference in wavelength dependence of a light absorption coefficient due to resonance / non-resonance of an electron quantum level. The ratio is controlled.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, first, the principle (operation) of the present invention will be described with reference to FIGS. FIG. 5 is a diagram for explaining the relationship between the energy levels of electrons and holes in the double quantum well structure, and FIG. 6 is a diagram showing the double quantum well structure in which the electron levels are in resonance and non-resonance. FIG. 7 is a diagram for explaining a difference in light absorption coefficient of the light.
5, reference numeral 4 denotes a barrier layer, 5 denotes a first quantum well layer, 6 denotes a second quantum well layer, 11 denotes a lower end of the conduction band of the first quantum well layer 5, and 12 denotes a second quantum well layer. 6, 13 is the bandgap energy of the first quantum well layer 5, 14 is the bandgap energy of the second quantum well layer 6, 15 is the ground level of electrons in the first quantum well layer 5. , 16 are the ground levels of the electrons in the second quantum well layer 6, 17 are the ground levels of the holes in the first quantum well layer 5, 18 are the ground levels of the holes in the second quantum well layer 6. , Eg are the transition energies between the ground level 15 of electrons in the first quantum well layer 5 and the ground level 17 of holes, and E1 is the ground level 16 of electrons in the second quantum well layer 6 and the ground level of holes. This is the transition energy between positions 18.
[0007]
In the semiconductor superlattice structure (double quantum well structure) in the semiconductor light modulation device according to the present invention, electrons and holes are formed in the first quantum well layer 5 and the second quantum well layer 6 as shown in FIG. A level is formed. Accordingly, when no voltage is applied to the double quantum well structure, the ground level 15 of electrons and the ground level 17 of holes are formed in the first quantum well layer 5 and the second quantum well layer 6 is formed. A ground level 16 of electrons and a ground level 18 of holes are formed therein. The transition energy between the ground level 15 of electrons in the first quantum well layer 5 and the ground level 17 of holes is Eg, and the ground level 16 of electrons in the second quantum well layer 6 is Assuming that the transition energy between the ground levels 18 is E1, the light absorption coefficient of the superlattice structure has a characteristic that increases stepwise at the transition energies Eg and E1, as indicated by the dashed line in FIG. The superlattice structure absorbs light having an energy larger than the transition energy Eg.
In this structure, the ground level 15 of the electrons formed in the first quantum well layer 5 is the lowest energy level among the quantum levels of the electrons formed in the second quantum well layer 6. The electric field strength at which resonance occurs is defined as Fres. In this case, when the electric field strength Fres is applied to the superlattice structure, the wave function of the ground level 15 of the electrons formed in the first quantum well layer 5 is equal to that of the first quantum well layer 5 and the second quantum well layer 5. , The overlap integral of the wave function of the electron of the ground level 15 of the electron and the hole of the hole of the ground level 17 of the hole becomes small, and the energy larger than the transition energy E1 is obtained. The light absorptivity of the superlattice structure with respect to the light of the above decreases. The light absorption characteristics of the superlattice structure at this time are plotted in FIG.
When the electric field intensity applied to the superlattice structure becomes larger than the electric field intensity Fres, the wave function of the electrons does not seep into the adjacent well beyond the barrier, and the wave function is localized in one of the wells. That is, the light absorptance at each level recovers to the same value as when no electric field is applied to the superlattice structure. That is, the state returns to the state shown by the one-dot chain line in FIG.
Here, when the difference between the light absorption coefficients at F = Fres and F ≠ Fres is plotted on the abscissa, the energy is plotted as shown in FIG. 6B, which corresponds to the light having the energy larger than the transition energy Eg, that is, the transition energy Eg. A change in the absorption coefficient is obtained for light in a wide wavelength region on the short wavelength side of the wavelength to be emitted. Therefore, by employing the proposed superlattice structure, it becomes possible to realize an optical modulation element capable of modulating over a wide wavelength range as compared with a conventional electro-absorption optical modulator. Further, since the wavelength range in which modulation can be performed is widened, even if the element temperature changes and the transition energy Eg shifts, the wavelength does not deviate from the wavelength range in which modulation is possible, and a device for keeping the element temperature constant becomes unnecessary. In addition, cost reduction and high integration can be achieved.
[0008]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings described below, those having the same functions are denoted by the same reference numerals, and repeated description thereof will be omitted.
Embodiment 1
FIG. 1A is a schematic cross-sectional view showing an example of the structure of a semiconductor light modulation device having a semiconductor superlattice structure according to the first embodiment of the present invention. In FIG. 1A, a cladding layer 2 made of p-type Al 0.35 Ga 0.65 As, a double quantum well structure 3 which is a superlattice structure, and an n-type Al . A cladding layer 7 made of 35 Ga 0.65 As is formed, and ohmic electrodes 8 and 9 are formed on the cladding layers 2 and 7, respectively. FIG. 1B is an enlarged cross-sectional detailed view of the double quantum well structure 3 of FIG. 1A. The barrier layer 4 is made of Al 0.35 Ga 0.65 As and has a thickness of 5 nm. First quantum well layer 5 made of Ga 0.68 In 0.32 N 0.01 As 0.99 , Al 0.35 Ga 0.65 As barrier layer 4 having a thickness of 5 nm, and GaN 0 having a thickness of 14 nm as one cycle of the second quantum well layer 6 made of .008 as 0.992, which became Al 0.35 Ga 0.65 as barrier layer 4 was formed structure having a thickness of 3nm on overlaid 20 cycles ing. In this structure, the input light 41 travels in a direction parallel to the hetero interface of the double quantum well structure 3 and becomes an output light 42.
In FIG. 2, 11 is the lower end of the conduction band of the first quantum well layer 5, 12 is the lower end of the conduction band of the second quantum well layer 6, 13 is the band gap energy of the first quantum well layer 5, and 14 is The band gap energy of the second quantum well layer 6, 15 is the ground level of the electrons of the first quantum well layer 5, 16 is the ground level of the electrons of the second quantum well layer 6, and 17 is the first quantum level. The ground level of holes in the well layer 5, 18 is the ground level of holes in the second quantum well layer 6, 19 is the first excitation level of electrons in the first quantum well layer 5, and 20 is the first excited level. , The first excitation level of holes in the quantum well layer 5, Eg is the transition energy between the ground level 15 of electrons and the ground level 17 of holes in the first quantum well layer 5, and E1 is the second quantum level. The transition energy E2 between the ground level 16 of the electrons in the well layer 6 and the ground level 18 of the holes is the first excitation level 19 of the electrons in the first quantum well layer 5. A transition energy between the first excited level 20 of the hole.
[0009]
As shown in FIG. 2A, the quantum levels in the double quantum well structure 3 are such that electron and hole levels are formed in the first quantum well layer 5 and the second quantum well layer 6. Is done. Thus, when no voltage is applied to the double quantum well structure 3, the light absorption coefficients of the wavelengths 1.31, 1.09, and 0.95 μm are stepped, respectively, as shown by the dashed line in FIG. It shows characteristics that increase likewise.
A voltage is applied to the electrodes 8 and 9 of this device so that the electrode 9 becomes positive, and an electric field of 108 kV / cm is formed in the double quantum well structure 3. In this case, in the double quantum well structure 3, the ground level 15 of the electrons in the first quantum well layer 5 and the ground level 16 of the electrons in the second quantum well layer 6 cause resonance. For the reason described in the explanation of the principle, the light absorption coefficient decreases as shown by the solid line in FIG.
In this state, when the voltage applied between the electrodes 8 and 9 is further increased, the ground level 15 of the electrons in the first quantum well layer 5 and the ground level 16 of the electrons in the second quantum well layer 6 are changed. The resonance state is canceled, and the light absorption coefficient recovers as indicated by the dashed line in FIG.
As described above, the semiconductor light modulation device of the first embodiment is provided on the first cladding layer 2 of the first conductivity type (here, p-type) provided on the GaAs substrate 1 and on the two cladding layers, A double quantum well structure 3 in which a first quantum well layer 5 and a second quantum well layer 6 are alternately stacked via a barrier layer 4, and a second quantum well structure 3 provided on the double quantum well structure 3; A second cladding layer 7 of two conductivity type (here, n-type), and (1) the energy at the lower end 12 of the conduction band of the second quantum well layer 6 (2) the bandgap energy 14 of the second quantum well layer 6 is larger than the bandgap energy 13 of the first quantum well layer 5, and (3) the bandgap energy 13 of the first quantum well layer 5. The energy of the ground level 15 of the electron 5 is equal to the energy of the ground level 16 of the electron in the second quantum well layer 6. It has become-saving smaller configuration.
Further, when a voltage is applied to the double quantum well structure 3, the semiconductor is utilized by utilizing the difference in the wavelength dependence of the light absorption coefficient due to the exudation of the wave derivative due to resonance / non-resonance of the electron quantum level. The light modulation element is configured to control the light transmission ratio (transmittance).
The double quantum well structure 3 is determined by selecting a material that satisfies the above requirements (1) and (2), and then selecting the materials of the first quantum well layer 5 and the second quantum well layer 6. By adjusting the layer thickness, the above requirement (3) can be easily satisfied.
[0010]
In this element, a large change in the light absorption coefficient can be obtained by controlling the electric field intensity over a very wide wavelength range from 1.31 to 1.09 μm in wavelength. An optical modulator having a wavelength range that can be modulated by one digit or more can be realized. Further, since the wavelength range in which modulation can be performed is widened, even if the element temperature changes and the transition energy Eg shifts, the wavelength does not deviate from the wavelength range in which modulation is possible, and a device for keeping the element temperature constant becomes unnecessary. In addition, cost reduction and high integration can be achieved.
In the first embodiment, an optical modulator having a wavelength shorter than 1.31 μm is described. However, the wavelength range in which modulation is possible is not limited to the value proposed in the first embodiment. It is obvious that the wavelength can be shifted by changing the well width of the first quantum well layer 5 and adjusting the transition energy Eg. In the first embodiment, GaAs and Al 0.35 Ga 0.65 As, Ga 0.68 In 0.32 N 0.01 As 0.99 , and GaN 0.008 As 0.992 are used as semiconductor materials. was used but, InP, in x Ga 1- x As y P 1-y, in 0.52 Al 0.48 As, in other group III-V semiconductors and its mixed crystal, such as, the present invention Obviously, a semiconductor light modulation device can be realized.
[0011]
Embodiment 2
Hereinafter, another example different from the first embodiment will be described. FIG. 3A is a schematic cross-sectional view showing an example of the structure of a semiconductor light modulation device having a semiconductor superlattice structure according to the second embodiment of the present invention. 3A, a cladding layer 32 made of p-type Al 0.45 Ga 0.55 As, a double quantum well structure 33 having a superlattice structure, and an n-type Al . A cladding layer 37 made of 45 Ga 0.55 As is formed, and ohmic electrodes 38 and 39 are formed on the cladding layers 32 and 34, respectively. FIG. 3B is an enlarged cross-sectional detailed view of the double quantum well structure 33 shown in FIG. 3A. The barrier layer 34 is made of Al 0.45 Ga 0.55 As and has a thickness of 5 nm. A first quantum well layer 35 of Al 0.45 Ga 0.55 As barrier layer 34 having a thickness of 5 nm, and a second quantum well layer 36 of Ga 0.51 In 0.49 P having a thickness of 15 nm. As one cycle, this is a structure in which 20 cycles are superposed and an Al 0.45 Ga 0.55 As barrier layer 34 having a thickness of 5 nm is formed. In this structure, the input light 41 travels in a direction parallel to the hetero interface of the double quantum well structure 33 and becomes the output light 42.
4, reference numeral 11 denotes the lower end of the conduction band of the first quantum well layer 35, 12 denotes the lower end of the conduction band of the second quantum well layer 36, 13 denotes the band gap energy of the first quantum well layer 35, and 14 denotes the band gap energy of the first quantum well layer 35. The band gap energy of the second quantum well layer 36, 15 is the ground level of the electrons of the first quantum well layer 35, 16 is the ground level of the electrons of the second quantum well layer 36, and 17 is the first quantum level. The ground level of holes in the well layer 35, 20 is the first excitation level of holes in the first quantum well layer 35, and Eg is the ground level 15 of electrons in the first quantum well layer 5 and the first level. The transition energy between the ground level 17 of holes in the quantum well layer 5, E1 is the transition energy between the first excitation level 18 of electrons and the first excitation level 21 of holes, and Eb is the band gap of the barrier layer 34. Energy.
[0012]
As shown in FIG. 4A, the levels of electrons and holes are formed in the first quantum well layer 35 and the second quantum well layer 36 in the double quantum well structure 33. Is done. As a result, when no voltage is applied to the double quantum well structure 33, the light absorption coefficient increases stepwise at a wavelength of 0.805 μm, as shown by the dashed line in FIG. 4B.
Note that, in this structure, at around 0.727 μm corresponding to the transition between the ground level 16 of electrons in the second quantum well layer 36 and the first excitation level 20 of holes in the first quantum well layer 35. The reason why the light absorption coefficient does not increase is that electrons and holes at this level exist separately in the first quantum well layer 35 and the second quantum well layer 36, and almost no transition occurs.
A voltage is applied to the electrodes 38 and 39 of this device so that the electrode 39 becomes positive, and an electric field of 80 kV / cm is formed in the double quantum well structure 33. In this case, the ground level 15 of electrons and the ground level 16 of electrons cause resonance in the double quantum well structure 33, and therefore, for the reason described in the above description of the principle, FIG. As shown by the solid line, the light absorption coefficient decreases.
Further, if the voltage applied between the electrodes 38 and 39 is further increased from this state, the resonance state of the electron ground level 15 and the electron ground level 16 is canceled, and the dashed line in FIG. Then, the light absorption coefficient recovers.
In this device, a large change in the light absorption coefficient can be obtained by controlling the electric field intensity over a very wide wavelength range from 0.805 μm in wavelength to about 0.623 μm where light absorption in the barrier layer 34 starts. Thus, an optical modulator having a wavelength range that can be modulated by one digit or more compared to the conventional electro-absorption type optical modulator can be realized.
In the above-described second embodiment, an optical modulator having a wavelength shorter than 0.805 μm has been described. However, the wavelength range that can be modulated is not limited to the value proposed in the second embodiment. It is obvious that the wavelength can be shifted by changing the well width of the first quantum well layer 35 and adjusting the transition energy Eg. Although GaAs, Al 0.45 Ga 0.55 As, and Ga 0.51 In 0.49 P are used in the second embodiment, In 0.58 Ga 0.42 As 0. The semiconductor light modulation device of the present invention is applicable to other III-V semiconductors such as 9 P 0.1 , In 0.53 Ga 0.47 As, In 0.52 Al 0.48 As, and mixed crystal systems thereof. It is clear that it can be achieved.
[0013]
Although the present invention has been specifically described based on the embodiments, the present invention is not limited to the above-described embodiments, and it is needless to say that various modifications can be made without departing from the gist of the present invention.
[0014]
【The invention's effect】
As described above, according to the present invention, since the intensity of light can be modulated over a wide wavelength range as compared with a conventional electro-absorption type optical modulation element, it is possible to prevent the modulation efficiency from deteriorating due to a change in element temperature, An optical modulation element that does not require an element temperature adjustment mechanism can be realized, and low cost or high integration can be realized.
[Brief description of the drawings]
FIG. 1A is a schematic diagram showing a structure of a light modulation element according to a first embodiment of the present invention, and FIG. 1B is an enlarged detailed view of a super lattice structure of the light modulation element shown in FIG.
2A is a schematic diagram illustrating a band structure of a superlattice structure according to the first embodiment of the present invention, and FIG. 2B is a diagram illustrating light absorption characteristics of the superlattice structure according to the first embodiment of the present invention. FIG.
FIG. 3A is a schematic diagram illustrating a structure of a light modulation element according to a second embodiment of the present invention, and FIG. 3B is an enlarged detailed view of a superlattice structure of the light modulation element of FIG.
FIG. 4A is a schematic diagram illustrating a band structure of a superlattice structure according to the second embodiment of the present invention, and FIG. 4B is a diagram illustrating light absorption characteristics of the superlattice structure according to the second embodiment of the present invention. FIG.
FIG. 5 is an explanatory diagram showing the relationship between the energy levels of electrons and holes in a double quantum well structure.
FIG. 6 is an explanatory diagram showing a difference in light absorption coefficient between a state where an electron level resonates and a state where it does not resonate in a double quantum well structure.
FIG. 7 is a perspective view showing a structure of a conventional electro-absorption light modulation element.
FIG. 8 is an explanatory diagram showing a relationship between a wavelength and an absorption coefficient of a conventional electro-absorption light modulation element.
[Explanation of symbols]
1. Insulating GaAs substrate 2 p-type Al 0.35 Ga 0.65 As cladding layer 3 double quantum well structure 4 Al 0.35 Ga 0.65 As barrier layer 5 Ga 0.68 In 0. 32 N 0.01 As 0.99 First quantum well layer 6 GaN 0.008 As 0.992 Second quantum well layer 7 n-type Al 0.35 Ga 0.65 As cladding layers 8, 9. Ohmic electrode 11: lower end of conduction band of first quantum well layer 12: lower end of conduction band of second quantum well layer 13: band gap energy of first quantum well layer 14: band of second quantum well layer Gap energy 15: Ground level of electrons in first quantum well layer 16: Ground level of electrons 17 in second quantum well layer 17: Ground level of holes 18 in first quantum well layer 18: Second Ground level 19 of holes in the quantum well layer. The first excitation level 20 of the element 20 The first excitation level 31 of the hole of the first quantum well layer 31 The insulating GaAs substrate 32 The p-type Al 0.45 Ga 0.55 As cladding layer 33 The double quantum Well structure 34 Al 0.45 Ga 0.55 As barrier layer 35 GaAs first quantum well layer 36 Ga 0.51 In 0.49 P second quantum well layer 37 n-type Al 0.45 Ga 0.55 As cladding layers 38 and 39 ohmic electrode 41 input light 42 output light 71 InP substrate 72 n-type cladding layer 73 In 0.55 Ga 0.45 As 0.97 P 0.03 quantum well Layer 74 InP barrier layer 75 P-type clad layer 76 Loading clad part 77 p-type In 0.53 Ga 0.47 As cap layer 78, 79 electrode 81 input light 82 output light Eg first Ground level of electrons in quantum well layer Transition energy E1 between the ground level of the electron and the hole: the transition energy E2 between the ground level of the electron in the second quantum well layer and the ground energy of the hole: the first excitation of the electron in the first quantum well layer Transition energy Eb between the level and the first excited level of holes: Band gap energy of barrier layer

Claims (2)

基板上に設けた第1伝導型の第1のクラッド層と、
前記第1のクラッド層上に設けられ、第1の量子井戸層と、第2の量子井戸層とを障壁層を介して交互に積層してなる二重量子井戸構造と、
前記二重量子井戸構造上に設けた第2伝導型の第2のクラッド層とを有し、
前記第2の量子井戸層の伝導帯の下端のエネルギが、前記第1の量子井戸層の伝導帯の下端のエネルギより大きく、
前記第2の量子井戸層のバンドギャップエネルギが、前記第1の量子井戸層のバンドギャップエネルギより大きく、
前記第1の量子井戸層の電子の基底準位のエネルギが、前記第2の量子井戸層の電子の基底準位のエネルギより小さいことを特徴とする半導体光変調素子。
A first cladding layer of a first conductivity type provided on a substrate;
A double quantum well structure provided on the first cladding layer, wherein a first quantum well layer and a second quantum well layer are alternately stacked via a barrier layer;
A second conductivity type second cladding layer provided on the double quantum well structure,
The energy at the lower end of the conduction band of the second quantum well layer is larger than the energy at the lower end of the conduction band of the first quantum well layer;
A band gap energy of the second quantum well layer is larger than a band gap energy of the first quantum well layer;
A semiconductor light modulation device, wherein the energy of the ground level of electrons in the first quantum well layer is smaller than the energy of the ground level of electrons in the second quantum well layer.
前記二重量子井戸構造に電圧を印加した際の、電子の量子準位の共鳴/非共鳴による光吸収係数の波長依存性の差を利用して当該半導体光変調素子の光の透過する割合を制御することを特徴とする請求項1記載の半導体光変調素子。When a voltage is applied to the double quantum well structure, the ratio of light transmission of the semiconductor light modulation element is determined by utilizing the wavelength dependence of the light absorption coefficient due to resonance / non-resonance of the quantum level of electrons. The semiconductor light modulation device according to claim 1, wherein the semiconductor light modulation device is controlled.
JP2003141418A 2003-05-20 2003-05-20 Semiconductor optical modulator Pending JP2004347650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141418A JP2004347650A (en) 2003-05-20 2003-05-20 Semiconductor optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141418A JP2004347650A (en) 2003-05-20 2003-05-20 Semiconductor optical modulator

Publications (1)

Publication Number Publication Date
JP2004347650A true JP2004347650A (en) 2004-12-09

Family

ID=33529775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141418A Pending JP2004347650A (en) 2003-05-20 2003-05-20 Semiconductor optical modulator

Country Status (1)

Country Link
JP (1) JP2004347650A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135671A (en) * 2010-01-22 2011-07-27 三星电子株式会社 Optical modulator
US9904078B2 (en) 2013-08-21 2018-02-27 Samsung Electronics Co., Ltd. Optical modulator including multiple quantum well and carrier blocks and 3D image acquisition apparatus including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135671A (en) * 2010-01-22 2011-07-27 三星电子株式会社 Optical modulator
US9904078B2 (en) 2013-08-21 2018-02-27 Samsung Electronics Co., Ltd. Optical modulator including multiple quantum well and carrier blocks and 3D image acquisition apparatus including the same
US10698237B2 (en) 2013-08-21 2020-06-30 Samsung Electronics Co., Ltd. Optical modulator including multiple quantum well and carrier blocks and 3D image acquisition apparatus including the same

Similar Documents

Publication Publication Date Title
JP2003248204A (en) Semiconductor optical element, semiconductor optical modulation element and semiconductor optical photodetector
JP5207381B2 (en) Coupled quantum well structure
JPH0715093A (en) Optical semiconductor element
KR100192926B1 (en) Quantum well structures
CA2006680C (en) Self electrooptic effect device employing asymmetric quantum wells
JPH0713110A (en) Semiconductor optical modulator
US6633425B2 (en) Electro-absorption typed optical modulator
US5521397A (en) Optical device having quantum well structure and barrier layers
JP2004347650A (en) Semiconductor optical modulator
US5249075A (en) Quantum well wave modulator and optical detector
JPH08262381A (en) Semiconductor device
JP4616885B2 (en) Semiconductor quantum well device
JP4585171B2 (en) Light modulator
JPH10228005A (en) Electric field absorption type optical modulator and optical modulator integrating type semiconductor laser diode
JP7444290B2 (en) semiconductor optical device
JP2000305055A (en) Electric field absorption optical modulator
JP2670051B2 (en) Quantum well type optical modulator
JP4103490B2 (en) Light modulator
JPH07234389A (en) Semiconductor optical element
JPH07321414A (en) Field absorption-type multiple quantum well optical control element
JP2591445B2 (en) Light modulation element
JPH0743490B2 (en) Semiconductor device
JPH06103774B2 (en) Semiconductor optical functional light emitting device
JP2908511B2 (en) Driving method of semiconductor optical device
JPH11212036A (en) Multiple quantum well light modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408