JPH03274513A - Optical coupling device - Google Patents

Optical coupling device

Info

Publication number
JPH03274513A
JPH03274513A JP2076030A JP7603090A JPH03274513A JP H03274513 A JPH03274513 A JP H03274513A JP 2076030 A JP2076030 A JP 2076030A JP 7603090 A JP7603090 A JP 7603090A JP H03274513 A JPH03274513 A JP H03274513A
Authority
JP
Japan
Prior art keywords
light
optical coupling
coupling means
light source
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2076030A
Other languages
Japanese (ja)
Other versions
JP2517147B2 (en
Inventor
Seiji Nishiwaki
青児 西脇
Shinji Uchida
真司 内田
Junichi Asada
潤一 麻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2076030A priority Critical patent/JP2517147B2/en
Priority to KR1019910004668A priority patent/KR940008672B1/en
Priority to EP91104743A priority patent/EP0449193A1/en
Priority to US07/675,527 priority patent/US5181265A/en
Publication of JPH03274513A publication Critical patent/JPH03274513A/en
Application granted granted Critical
Publication of JP2517147B2 publication Critical patent/JP2517147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily diminish the spreading of input light and to widen the allowance for errors by providing and optical coupling means before or behind a condensing point by a condensing means. CONSTITUTION:The light emitted from a semiconductor laser 1 is made to the convergent light which has a point F as a convergent point by a condenser lens 2. This light is passed through a polarized light converting element 3 and is thereby polarized to the concentrically and circularly polarized light, the electric field vector of which exists in a concentrical circle tangent direction. The polarized light is then made incident on a circular coupler 5 which has a concentrical circular grating formed on a waveguide layer 4 orthogonal with the optical axis. The coupler 5 is provided before or behind the point F. Since the input light is made into the convergent light or divergent light, the optical coupling means can be provided in the position of sufficiently small spreading of the input light. In addition, the standard deviation of the wave front aberration of the input light is compressed by adjusting a laser beam source or the optical coupling means or condensing means along the optical axis of the laser beam by a sliding means. The deterioration in the coupling efficiency is sufficiently suppressed to small level in this way and the allowance to the errors is widened.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光を導波路内に入力結合させる装で関するもの
であa 従来の技術 本願発明(よ 本願と同一の出願人によって出願され六
ス 例えば国際出願88−01344号 あるいは特願
平1−246808号に記載のグレーティング結合法に
よる光結合装置を更に発展させたものであム そこで、本願出願人による上記の光結合装置を先行例と
して以下に説明すも 第7図に先行例における光結合装置の断面構成図を示す
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a device for coupling light into a waveguide. This is a further development of the optical coupling device using the grating coupling method described in International Application No. 88-01344 or Japanese Patent Application No. 1-246808. To explain, FIG. 7 shows a cross-sectional configuration diagram of an optical coupling device in a prior example.

半導体レーザー1から出射する光は集光1ノンズ2によ
って平行光となり、偏光変換素子3を経て電界ベクトル
が同心円接線方向にある同心円偏光となり、光軸に直交
する導波層4上に形成された同心円状のグレーティング
を持つ円形(半径a)のカプラ5に入射すも 入射光6
 (入力光)はカプラ5により入力結合して、カプラ5
の中心○から外周側に伝搬する導波光7となム な耘 
導波層4はこれよりも低屈折率の透明基板8上に構成さ
れていも 第8図は特願平1−246808号に示された偏光変換
素子3の構成図であ翫 偏光変換素子3は液晶偏光素子
と位相差膜14からなム 液晶偏光素子は表面をラビン
グ処理した2枚の透明基板15A、15Bの間にネマテ
ィック液晶16を充填することで形成され 各透明基板
表面のポリイミド膜のラビング処理(15A側において
は一方向に 15B側においては同心円状にラビング処
理)により、液晶層が15A側で一方向に配回15B側
で同心円接線方向に配向し 円周上で液晶ツイスト角の
大きさが連続的に変化1−ていム 一般にTN構造液晶
層に直線偏光の光6Lが入射すると、TN構造のねじれ
に沿って光の偏波面が回転すム 従って15A側から入
射した直線偏光17Aの光は素子の各位置での液晶ツイ
スト角にほぼ等しい角度だけ旋光し 出射側(15B側
)液晶分子の配向方向にほぼ等;、い振動面を持つ同心
円偏光17Bの光(振動面が同心円接線方向の偏光状態
)となるが 素子の中心から伸びた2本の半直線18(
はぼ15A側の一方向配向方向に一致)を境に液晶のツ
イスト角が反転し 光の偏波面の回転方向も反転するの
で、前記線18を挟んで一方の領域で変換された同心円
偏光の光は他方の偏光の光に対し位相がπだけ遅れる。
The light emitted from the semiconductor laser 1 is converted into parallel light by the converging lens 1 and the non-condenser 2, and then becomes concentric circularly polarized light whose electric field vector is in the tangential direction of the concentric circle through the polarization conversion element 3, which is formed on the waveguide layer 4 perpendicular to the optical axis. Incident light 6 enters a circular (radius a) coupler 5 with a concentric grating.
(input light) is input coupled by the coupler 5, and the coupler 5
The guided light 7 propagates from the center ○ to the outer circumference.
Although the waveguide layer 4 is constructed on a transparent substrate 8 having a lower refractive index than this, FIG. 8 is a block diagram of the polarization conversion element 3 shown in Japanese Patent Application No. 1-246808. consists of a liquid crystal polarizing element and a retardation film 14. The liquid crystal polarizing element is formed by filling a nematic liquid crystal 16 between two transparent substrates 15A and 15B whose surfaces have been subjected to rubbing treatment. By the rubbing process (rubbing process in one direction on the 15A side and concentrically on the 15B side), the liquid crystal layer is aligned in one direction on the 15A side and in the concentric tangential direction on the 15B side. In general, when linearly polarized light 6L is incident on a TN structure liquid crystal layer, the plane of polarization of the light is rotated along the twist of the TN structure. Therefore, the linearly polarized light 17A incident from the 15A side The light is rotated by an angle approximately equal to the liquid crystal twist angle at each position of the element, and the concentrically polarized light 17B with a vibration plane approximately equal to the alignment direction of the liquid crystal molecules on the exit side (15B side) (the vibration plane is a concentric circle). tangential polarization state), but the two half-lines 18 extending from the center of the element (
The twist angle of the liquid crystal is reversed at the boundary (coinciding with the unidirectional alignment direction on the side 15A), and the rotation direction of the plane of polarization of the light is also reversed. The phase of the light is delayed by π with respect to the light of the other polarization.

この位相遅れを補正するために 透明基板15Bの出射
側表面にλ/2位相差膜14を形成すも この位相差膜
14の境界線19を前記線18に一致させることで、上
記ツイスト角の反転に伴う2つの領域での同心円偏光の
位相が揃しく はぼ完全な(無収差の)同心円偏光17
Cへの変換が実現できも なお偏光変換素子3は直線偏
光を放射偏光(振動面が動径方向の偏光状態)に変換す
る素子や1/4波長板であってもよく、この時入力光6
はそれぞれ放射偏光円偏光の状態で入力結合すも ここで第7図に示すように導波光7と同一モードで点○
を中心とする円周上で同位相である逆進導波光9 (外
周側から中心0に伝搬する導波光)を考えも この導波
光9からの放射光の波面を参照にした入力光6の波面収
差ΦR(r)を(1)式で定義すa Φ*(r>= r [β+−(にN+2yrq/A))
/に−−−(1)ただLrは点○を原点とするカブラ面
上の極座標の動態 には波数(−2π/λ、λ: 波長
)、Aはカブラのグレーティングピッチ、β1は入力光
の伝搬定数r方向成QNは導波層の等偏屈折Jqは結合
次数(≦−1)で2ビ一ム結合の場合にはq=−1であ
も Aを極座標上の点(r、φ)での入力光振幅と放射光振
幅との積とし 波面収差Φにの標準偏差ΦGカを式(2
)で定復すも Φso=[JoAΦR’rdrdφ/、IJ+Ardr
dφ−(ff、AΦRrdrdφ/ E o Ardr
dφ)pl+′a−一〜(2) ただLrJoはカブラ領域内(O≦r≦a、0≦ψ≦2
π)での定積分を意味す4 波面収差ΦRがλ/2πよりも小さく回転対称の場合に
4表 一般に入力光6の導波光7への入力結合効率ηは
次式で与えられも η=η・(1−に2Φsb’ )         −
−−(3)ただし η・はΦ5O=Oの場合の入力結合
効率であム 従って位相整合条件(ΦR(r)= 0 )か収 平行
の入力光(β1=0)ではピッチ八が次式を満たすこと
が結合の条件となる。
In order to correct this phase delay, a λ/2 retardation film 14 is formed on the output side surface of the transparent substrate 15B. By aligning the boundary line 19 of this retardation film 14 with the line 18, the twist angle can be adjusted. Due to inversion, the phases of the concentric circularly polarized light in the two regions are aligned, resulting in almost perfect (aberration-free) concentric circularly polarized light 17
In addition, the polarization conversion element 3 may be an element that converts linearly polarized light into radiation polarized light (a polarized state in which the vibration plane is in the radial direction) or a quarter-wave plate; in this case, the input light 6
are respectively input and coupled in the state of radiation polarization and circular polarization. Here, as shown in Figure 7, the point ○ is in the same mode as the guided light 7.
Consider a backward guided wave 9 (waveguide light propagating from the outer circumferential side to the center 0) that has the same phase on the circumference centered at . Wavefront aberration ΦR(r) is defined by equation (1) a Φ*(r>= r [β+-(to N+2yrq/A))
/---(1) However, Lr is the wave number (-2π/λ, λ: wavelength) of the polar coordinates on the Kabra surface with point ○ as the origin, A is the grating pitch of the Kabra, and β1 is the input light. The propagation constant r-direction component QN is the equipolarized refraction Jq of the waveguide layer, which is the coupling order (≦-1), and in the case of two-beam coupling, q=-1. ) is the product of the input light amplitude and the emitted light amplitude, and the standard deviation ΦG of the wavefront aberration Φ is calculated using the formula (2
), but Φso=[JoAΦR'rdrdφ/, IJ+Ardr
dφ−(ff, AΦRrdrdφ/ E o Ardr
dφ) pl+'a-1~(2) However, LrJo is within the Kabra region (O≦r≦a, 0≦ψ≦2
In general, the input coupling efficiency η of the input light 6 to the guided light 7 is given by the following equation, and η= η・(1− to 2Φsb') −
--(3) However, η is the input coupling efficiency when Φ5O=O. Therefore, under the phase matching condition (ΦR(r)=0) or convergence, the pitch 8 is the following equation for parallel input light (β1=0). Satisfying the following is a condition for joining.

A=λ/N                  −−
−(4)カブラへの入力光6をガウシアンとニ その半
径rの位でおける振幅分布を次式で表す。
A=λ/N --
-(4) The amplitude distribution of the input light 6 to the cobra at the Gaussian and its radius r is expressed by the following equation.

A = expf−(r /βa)”)       
−−−(5)βをガウシアン人射光の蹴られ率(Tru
ncation Factor) と呼本 グレーティングが対称な断面形状の場合、 2ビ一ム結
合の入力結合効率η嘗は次式で表されもη―=4αI’
(1)/βe         −−−(6)αは標準
化された放射損失係数であり、カブラの放射損失係数α
・を使ってα=α「aで定義されも第9図はηeの計算
結果を座標(α、β)に対して等高線的に示していも 
第9図より効率η−は稜線A上で最大値0.417をな
し α、βが次式を満たすことが最大効率の条件となム β= o、 sa/α (ただL β≦0.50 ) 
 −−−(8)発明が解決しようとする課題 このような先行例の光結合装で於て以下の問題点があっ
た すなわぢ 最大効率の条件(8)式は放射損失係数α2
を固定(例えばa 、 = 10.0(1/m+n))
するとaβ= 0.086mmとなり、仮にβ−0,3
とするとa=0.29■であり、カブラ5の大きさは小
さく、入力光6の広がりもこれに合わせて小さくしなけ
ればならな(Xoシかしながら、先行例に於ける入力光
6は平行光であり、その広がりを小さくするためには焦
点距離の十分に小さな集光レンズ2を必要としその製造
が簡単ではなかっす(第一の問題点)一方、波長変動に
伴う等偏屈折率変動は小さいとして、dAの波長誤i 
 dNの等偏屈折率誤差、dAのピッチ誤差がある場合
、波面収差ΦRはゼロからずれ次式で表される。
A = expf-(r/βa)”)
−−−(5) Let β be the kicking rate of Gaussian radiation (Tru
When the grating has a symmetrical cross-sectional shape, the input coupling efficiency η of the two-beam coupling can be expressed as the following equation: η−=4αI'
(1)/βe --- (6) α is the standardized radiation loss coefficient, and Cabra's radiation loss coefficient α
Using
From FIG. 9, the efficiency η- has a maximum value of 0.417 on the ridge A, and the condition for maximum efficiency is that α and β satisfy the following formula: β=o, sa/α (where L β≦0. 50)
---(8) Problems to be Solved by the Invention The following problems were encountered in the optical coupling device of the prior art.The maximum efficiency condition (8) is based on the radiation loss coefficient α2.
fixed (e.g. a = 10.0(1/m+n))
Then, aβ = 0.086mm, and if β-0.3
Then, a=0.29■, the size of the doubler 5 is small, and the spread of the input light 6 must be made small accordingly. is parallel light, and in order to reduce its spread, a condensing lens 2 with a sufficiently small focal length is required, which is not easy to manufacture (first problem).On the other hand, equipolarized refraction due to wavelength variation is required. Assuming that the rate fluctuation is small, the wavelength error i of dA
When there is a uniform refractive index error of dN and a pitch error of dA, the wavefront aberration ΦR deviates from zero and is expressed by the following equation.

ΦR(r)= r Nε          −(9)
ただし ε=dλ/λ十dN/N−dA/Δ     −−〜(
10)したがって(2)式からr/ a= tとして標
準偏差ΦSDは次式で与えられも Φ5o=aN l t IIs””         
−−−(II)ただし Is= H5)/I(1)−I”(3)/I”(1) 
    −−−(12)で、■−は誤差による結合効率
の劣化しやすさの度合を示し 効率劣化係数と呼も 第10図は劣化係数1・の計算結果を座標(α、β)に
対し等肩線的に示すものであa 第9、10図から稜線A上(αβ= 0.86)ではΦ
sDとβとの間に次の関係が近似的に成り立つ。
ΦR(r)=rNε−(9)
However, ε=dλ/λ0dN/N-dA/Δ −−〜(
10) Therefore, from equation (2), assuming r/a=t, the standard deviation ΦSD is given by the following equation: Φ5o=aN l t IIs""
---(II) However, Is=H5)/I(1)-I"(3)/I"(1)
--- In (12), ■- indicates the degree to which the coupling efficiency deteriorates due to errors. It is also called the efficiency deterioration coefficient. Figure 10 shows the calculation result of the deterioration coefficient 1. with respect to the coordinates (α, β). It is shown as an isocapsular line.a From Figures 9 and 10, on the ridge line A (αβ = 0.86), Φ
The following relationship approximately holds true between sD and β.

ΦIID=0.327Nlε1/αF(ただしβ≦0.
50)−−−(13) −X  (3)式から効率劣化を20%以内に抑える条
件は次式で与えられも Φso<λ/14           −−−(14
)従って、(13)、 (14)式より ε くλa r/4.58N       −−−(1
5)仮にN=1.7.  αr==50゜0(1/nm
)、λ= 780nmとすると、lεl<5xlO−”
となム 一般に半導体レーザーを光源とした場合 レー
ザーによって±0.5%程度の波長ばらつきがあり、ま
た導波層4の膜厚誤差や屈折率誤差により±0.5%程
度の等偏屈折率誤差が生じるので、これらのランダムな
組合せを考えると全体で±1%程度の誤差が見込まれも
 即\ IE+<5X10−”なる条件が常に十分に満
足されるという状況ではな(ち この様な状況にあって
、現実問題として如何にして誤差に対する許容度を広げ
結合効率を高めるかと言う課題が残されていた(第二の
問題点)。
ΦIID=0.327Nlε1/αF (However, β≦0.
50) ---(13) -X From equation (3), the condition for suppressing efficiency deterioration to within 20% is given by the following equation: Φso<λ/14 ---(14
) Therefore, from equations (13) and (14), ε λa r/4.58N ---(1
5) Suppose N=1.7. αr==50゜0(1/nm
), λ=780nm, lεl<5xlO−”
Generally, when a semiconductor laser is used as a light source, there is a wavelength variation of about ±0.5% depending on the laser, and a uniform refractive index of about ±0.5% due to film thickness error and refractive index error of the waveguide layer 4. Errors will occur, so if we consider these random combinations, we can expect a total error of about ±1%, but this is not a situation where the condition ``IE+<5X10-'' is always fully satisfied (such as this). Given the current situation, the problem remains as a practical matter of how to widen the tolerance for errors and increase the coupling efficiency (second problem).

本発明はかかる問題点に鑑へ 入力光の広がりを容易に
小さくでき、また誤差に対する許容度を広げられる光結
合装置を提供することを目的とすも 課題を解決するための手段 本発明は上記問題点を解決するた敷 以下の手段を用い
も すなわ板 レーザー光源と、光源から出射するレーザー
光を1点に集光する集光手段と、 レーザー光の偏光状
態を変換する偏光変換手段と、光軸と直交する面内に構
成された導波層と、導波層上に形成され光軸を中心とす
る同心円状の周期構造を持つ光結合手段とからなり、光
結合手段が集光手段による集光点の手前または奥に設け
られ 光結合手段と集光手段との間に介在するものがな
い場合の集光点から見て光結合手段が2の距離にある場
合、レーザー光の波長をλ、導波層の等価屈折率をN、
集光手段と光結合手段の間に介在する透明平板の屈折率
をn、板厚をtとして、同心円中心からの半径rに於け
る周期構造のピッチハが次の連立方程式 %式%) () )) (ただLqは一1以下の整数 複号十、−は光結合手段
の位置(それぞれ集光点の手府 奥)に対応) の解として与えられることを特徴とし レーザー光源ま
たは光結合手段または集光手段を光軸に沿って動かす摺
動手段を有する光結合装置であムまた 光源からの出射
光が集光手段開口面上で楕円の等強度線をなし 光結合
手段の表面での等強度線が遠軸部で前記楕円と平行な長
楕円をなし近軸部でこれと直交する長楕円を描く光軸上
の位で前記光結合手段を設けることを特徴とすムま?、
  レーザー光源と、レーザー光の偏光状態を変換する
偏光変換手段と、光軸と直交する面内に構成された導波
層と、導波層上に形成され前記光軸を中心とする同心円
状の周期構造を持つ光結合手段とからなり、光結合手段
が光源から2の距離にある場合、レーザー光の波長をλ
、導波層の等価屈折率をN、光源と光結合手段の間に介
在する透明平板の屈折率をn、板厚をtとして、同心円
中心からの半径rに於ける周期構造のピッチAが次の連
立方程式 %式%) () ) (ただし qは−l以下の整数) の解として与えられることを特徴とLlノーサー光源ま
たは光結合手段を光軸に沿って動かす摺動手段を有する
光結合装置であってもよ1.%  この線光源からの出
射光へ 光結合手段の表面での等強度線が遠軸部で楕円
をなし 近軸部で前記楕円と直交する長楕円を描く光軸
上の位で光結合手段を設けることが好ましt〜 また レーザー光源の波長が基準値λよりdAだけ大き
く (または小さく)、導波層の等偏屈折率が基準値N
よりもdNだけ大きく (または小さく)、周期構造の
ピッチが基準値AよりもdAだけ大きい(または小さい
)場合、 1dλ/λ+dN/N−dA/AIの値がゼ
ロに等しいことを特徴とし 偏光変換手段には1/4波
長板を用いる力\ レーザー光の偏光面を同心円接線方
向または動径方向にある偏光状態に変換する手段を用い
ることを特徴とすム 作用 上記の様な構成により、入力光は集束光または発散光と
なるから光結合手段を入力光の広がりの十分小さい位で
設けることができ、また摺動手段によってレーザー光源
または光結合手段または集光手段をレーザー光の光軸に
沿って調整することで入力光波面収差の標準偏差を圧縮
でき、誤差に対する許容度を広げることができも また
光結合手段上での光分布はほぼ円形の等強度線をなすか
収 入力光をほぼ等方向な強度分布で導波させることが
できも またレーザー光源と導波層とのベアリングによ
り入力光の結合効率と歩留りの向上を図れも 実施例 (第1実施例) 以下本発明の第1実施例を第1図から第5図に基づいて
説明すも 以下本発明の第1実施例を第1図から第5図に基づいて
説明すも 第1図は第1実施例における光結合装置の断
面構成を示す。な耘 先行例と同じ構成は同一番号を付
してその説明を省略すも半導体レーザー1から出射する
光は集光レンズ2によって点Fを集光点にする集束光と
なり、偏光変換素子3を経て電界ベクトルが同心円接線
方向にある同心円偏光となり、光軸に直交する導波層4
上に形成された同心円状のグレーティングを持つ円形(
半径a)のカブラ5に入射すも 本実施例ではカブラ5
は点Fの手前にある力叉 奥にあってもよt〜 入射光
6 (入力光)はカブラ5により入力結合して、カブラ
5の中心Oから外周側に伝搬する導波光7となム な耘
 導波層4はこれよりも低屈折率の透明基板8上に構成
されており、透明基板8は円筒管形状のホルダー9の中
空部に同軸して固定されていも ホルダー9は円筒形状
の穴の空いたガイド10の中空部をその中心軸に沿って
摺動でき、ストッパー11でこれを固定できも な抵 
ガイド10の中空部中心軸は集束光の光軸に一致してい
も 偏光変換素子3は第8図に示した先行例での構成と同じ
であり、その具体的な説明を省略すもまた 偏光変換素
子3は直線偏光を放射偏光(振動面が動径方向の偏光状
態)に変換する素子や1/4波長板であってもよく、こ
の時入力光6はそれぞれ放射偏光 円偏光の状態で入力
結合すも (以下の発明の実施例にあっても同様であム
 )さて、本実施例では 第1図に示すようにカブラ5
は集光点Fから2だけ手前の像平面上に配置されている
(カブラ5が集光点Fから2だけ奥の像平面上に配置さ
れる場合は 原理が後述の第2実施例と同一であるので
、ここではその説明を省略する。)。そしてカブラ5の
グレーティングピッチAは次式を満たす様になされてい
る。
In view of these problems, the present invention aims to provide an optical coupling device that can easily reduce the spread of input light and widen the tolerance for errors. A board that uses the following means to solve the problem: A laser light source, a focusing means that focuses the laser light emitted from the light source onto one point, and a polarization conversion means that converts the polarization state of the laser light. , consists of a waveguide layer configured in a plane perpendicular to the optical axis, and an optical coupling means formed on the waveguide layer and having a concentric periodic structure centered on the optical axis, and the optical coupling means focuses light. If the optical coupling means is located at a distance of 2 from the focal point when there is nothing intervening between the optical coupling means and the optical condensing means, the laser beam The wavelength is λ, the equivalent refractive index of the waveguide layer is N,
The pitch of the periodic structure at radius r from the center of the concentric circle is expressed by the following simultaneous equations, where n is the refractive index and t is the plate thickness of the transparent flat plate interposed between the condensing means and the optical coupling means. )) (where Lq is an integer less than or equal to 11, and the sign 10 and - corresponds to the position of the optical coupling means (respectively, to the back of the light condensing point)). or an optical coupling device having a sliding means for moving the light condensing means along the optical axis; The optical coupling means is provided at a position on the optical axis where the iso-intensity line forms an elongated ellipse parallel to the ellipse at the distal axis and an elongated ellipse orthogonal to the ellipse at the paraxial area. ,
a laser light source, a polarization conversion means for converting the polarization state of the laser beam, a waveguide layer formed in a plane orthogonal to the optical axis, and a concentric ring formed on the waveguide layer and centered on the optical axis. When the optical coupling means is located at a distance of 2 from the light source, the wavelength of the laser light is λ.
, where the equivalent refractive index of the waveguide layer is N, the refractive index of the transparent flat plate interposed between the light source and the optical coupling means is n, and the plate thickness is t, and the pitch A of the periodic structure at radius r from the center of the concentric circle is It is characterized by being given as a solution to the following simultaneous equations (%) () ) (where q is an integer less than or equal to -l). It may be a coupling device.1. % To the light emitted from this line light source, the isointensity lines on the surface of the optical coupling means form an ellipse at the distal axis, and form a long ellipse orthogonal to the ellipse at the paraxial section. It is preferable to provide t~ Also, the wavelength of the laser light source is larger (or smaller) than the reference value λ by dA, and the equipolarized refractive index of the waveguide layer is the reference value N.
is larger (or smaller) than the reference value A by dN, and when the pitch of the periodic structure is larger (or smaller) than the reference value A by dA, the value of 1dλ/λ+dN/N-dA/AI is equal to zero. The above-mentioned configuration allows the input Since the light becomes convergent light or diverging light, the light coupling means can be provided at a position where the spread of the input light is sufficiently small, and the laser light source, the light coupling means, or the light condensing means can be placed on the optical axis of the laser light by the sliding means. The standard deviation of the wavefront aberration of the input light can be compressed and the tolerance for errors can be increased by adjusting the input light along the optical axis.Also, the light distribution on the optical coupling means forms a nearly circular line of equal intensity, or the input light is It is possible to guide the wave with an almost isodirectional intensity distribution, and also to improve the coupling efficiency and yield of the input light by bearing between the laser light source and the waveguide layer. The first embodiment of the present invention will be explained based on FIGS. 1 to 5. The first embodiment of the present invention will be explained below based on FIGS. 1 to 5. FIG. 1 shows the optical coupling in the first embodiment. The cross-sectional configuration of the device is shown. Although the same configuration as the previous example is given the same number and the explanation thereof is omitted, the light emitted from the semiconductor laser 1 is focused by the condensing lens 2 to the point F, and the polarization conversion element 3 is As a result, the electric field vector becomes concentrically polarized light in the tangential direction of the concentric circle, and the waveguide layer 4 is perpendicular to the optical axis.
A circular shape with concentric gratings formed on top (
In this example, the incident light enters the turntable 5 with radius a).
is the force fork in front of the point F. It can be in the back. The incident light 6 (input light) is coupled into the coupler 5 and becomes the guided light 7 that propagates from the center O of the coupler 5 to the outer circumference. The waveguide layer 4 is formed on a transparent substrate 8 having a refractive index lower than this, and even though the transparent substrate 8 is fixed coaxially to the hollow part of a cylindrical tube-shaped holder 9, the holder 9 has a cylindrical shape. The hollow part of the guide 10 with a hole in it can be slid along its central axis, and the stopper 11 can be used to fix it.
Even though the center axis of the hollow part of the guide 10 coincides with the optical axis of the focused light, the polarization conversion element 3 has the same configuration as the previous example shown in FIG. 8, so a detailed explanation thereof will be omitted. The conversion element 3 may be an element that converts linearly polarized light into radiation polarized light (a state of polarization in which the plane of vibration is in the radial direction) or a quarter-wave plate, and in this case, the input light 6 is in the state of radiation polarization and circular polarization, respectively. (The same applies to the following embodiments of the invention.) In this embodiment, as shown in FIG.
is placed on the image plane two distances in front of the focal point F (if the cover 5 is placed on the image plane two distances back from the focal point F, the principle is the same as the second embodiment described later). Therefore, we omit the explanation here.) The grating pitch A of the converter 5 is set to satisfy the following formula.

A=λ/(N+r/(r’+z2)”’)   −−−
(16)像平面上でのr方向伝搬定数はβt=−にr/
(r’+zlりI/2となるか収(1)式より波面収差
ΦRは次式で表されも ΦR(r)−r’/(r2+ z2)”” −rN +
rλ/A  −(17)本実施例のピッチAは(16)
式を満たすようになされているので、本実施例では位相
整合条件(Φ代(r)= 0 )を満足し 入力光6は
効率よく入力結合することとなも 次に本実施例において(よ カブラ5を光軸に沿って光
源方向に移動させることで、波長等の誤差に対する許容
度を向上させることができるものであり、以下にその説
明を行なう。
A=λ/(N+r/(r'+z2)"') ---
(16) The propagation constant in the r direction on the image plane is r/
(r'+zl becomes I/2) From equation (1), the wavefront aberration ΦR can be expressed as the following equation: ΦR(r)-r'/(r2+z2)"" -rN +
rλ/A − (17) The pitch A of this example is (16)
Therefore, in this embodiment, the phase matching condition (Φ term (r) = 0) is satisfied, and the input light 6 is efficiently coupled. By moving the fogger 5 toward the light source along the optical axis, tolerance to errors in wavelength and the like can be improved, and this will be explained below.

先ず、カブラ5を光軸に沿って光源方向にδだけ移動さ
せた場合に1よ カプラ5上の入力光r方向伝搬定数が
変化するので波面収差ΦRはゼロからずれ次式で表され
る値をと4 Φ1I(r)−−r”/(rlI+(z+δ )Il)
)I zm +rl /(ra+zl)l ′1l−−
−(18) 現実にはδ<z、r<zとしてよいか社 上式は次式で
近似できも ΦR<r)=δr Il/ z 1l−−−(19)従
って、dλの波長誤基 dNの等偏屈折率誤基dA、の
ピッチ誤差があり、これを補正するためカブラ5を光軸
に沿って光源方向へδ移動させた場合、式(9)、(1
9)からその波面収差ΦRは次式で表されもΦR(r)
=δr 2/z 9+ r N s    −−−(2
0)従って、r/a−tとして波面収差ΦRの標準偏差
ΦSt)は次式で与えられも Φ5o−((a/z)’I+(δ+lez″Nt /a
)”Il5(aNε2す;長チ)ただし h = I(9)/I(1)−I”(5)/I”(1)
      −−−(23)b= (I(7)/I(1
)−1(5)I(3)/l2(1))/ II  −(
24)Is = II−II 122−−−(25)■
8は位置調整によって最適化された結合効率の劣化しや
すさの度合を示す。工3〉0であるのでΦs11はδ=
 −l2ZllN ε/a(7) 啄  最小値a N
l εIIs”’をとも この最小値はδ−〇の時の値
に比べ(Is/Is)””倍の大きさであり第2図に効
率劣化係数比I3/IIの計算結果を座標(α、β)に
対し等肩線的に示す。
First, when the coupler 5 is moved by δ along the optical axis toward the light source, the propagation constant of the input light on the coupler 5 in the r direction changes by 1, so the wavefront aberration ΦR deviates from zero and is a value expressed by the following equation. 4 Φ1I(r)−−r”/(rlI+(z+δ)Il)
)I zm +rl /(ra+zl)l '1l--
-(18) In reality, is it okay to set δ<z, r<z? The above equation can be approximated by the following equation, but ΦR<r)=δr Il/z 1l---(19) Therefore, the wavelength error of dλ There is a pitch error of the equipolarized refractive index error base dA of dN, and when the fogger 5 is moved δ along the optical axis toward the light source in order to correct this, Equations (9) and (1
9), the wavefront aberration ΦR can be expressed as the following formula: ΦR(r)
= δr 2/z 9+ r N s ---(2
0) Therefore, the standard deviation ΦSt) of the wavefront aberration ΦR as r/a-t is given by the following formula: Φ5o-((a/z)'I+(δ+lez″Nt/a
)"Il5(aNε2su; long chi) where h = I(9)/I(1)-I"(5)/I"(1)
---(23)b= (I(7)/I(1
)-1(5)I(3)/l2(1))/II-(
24) Is = II-II 122---(25)■
8 indicates the degree of susceptibility to deterioration of the coupling efficiency optimized by position adjustment. Since engineering3〉0, Φs11 is δ=
-l2ZllN ε/a(7) Minimum value a N
This minimum value is (Is/Is)"" times larger than the value when δ-〇. Figure 2 shows the calculation result of the efficiency deterioration coefficient ratio I3/II at the coordinate (α , β).

第2図において稜線Aに対応する位置ではIs/b= 
0.10〜0.11であり、カブラ5の移動調整によっ
て結合効率の劣化をIl10程度に抑えことができ、I
s/I・= 0.10と考えると誤差に対する余裕度は
10’72倍に広かも 従って(14)式より効率劣化
を20%以内に抑える条件は次式で与えられも Isl<0,69λcx r/N       −−−
(26)仮にN = 1.7.  a r = 50.
0(1/nm)、λ= 780nmとすると、1εl<
16XIO−3となり、光源の波長ばらつきや導波層の
等偏屈折率誤差等で生じる±1%程度の誤差を許容し得
も すなわち本実施例においては 透明基板8(すなわちカ
ブラ5)を光軸に沿って移動調整することで、結合効率
の高い組合せを歩留りよく得ることが出来るものであム な牡 本実施例ではホルダー9、ガイド10等の摺動手
段を透明基板8 (すなわちカブラ5)に設けたが、同
一手段を半導体レーザーlまたは集光1ノンズ2に設け
これを摺動させても全く同一の効果が得られも 更に 本実施例では以下の効果が得られも一般に半導体
レーザー1からの出射光は光軸に直交する像平面上での
等強度線は楕円となるので、入力光6を中心Oに対し等
方的な強度分布で導波させるためには 第3図に示すよ
うに 光源1と集光レンズ2の間にコリメートレンズ1
2と三角プリズム13とを挟へ 楕円ビーム2OAを円
形ビーム20Bへど整形する複雑な構成を必要とするも
のであム これに対し本実施例の光結合装置では この様な複雑な
構成を全く用いる事なく等方的な強度分布の入力光6を
得ることが出来も すなわ板 本実施例でζよ 半導体レーザー1からの出
射光をビーム整形することなしに集光レンズ2で絞って
おり、第4図に示すように集光レンズ開口面上で楕円の
等強度線の光6A(よ 集光点の位置で長袖が90度回
転した楕円の等強度線の光6Bになり、開口面と集光点
との間でほぼ円形の(i密には遠軸部で開口面上と相似
な楕円 近軸部で無事面上と相似な攬円の)等強度線の
光6Cが必ず存在する。従って、カブラ5を光6Cの様
な円形の等強度線分布をなす領域に設定することでビー
ム整形することなく入力光6をほぼ等方的な強度分布で
導波させることができるのである。
In Figure 2, at the position corresponding to ridgeline A, Is/b=
0.10 to 0.11, and by adjusting the movement of the coupler 5, the deterioration of the coupling efficiency can be suppressed to about Il10, and I
Considering s/I = 0.10, the margin for error may be 10'72 times wider. Therefore, from equation (14), the condition for suppressing efficiency deterioration to within 20% is given by the following equation: Isl<0,69λcx r/N ---
(26) Suppose N = 1.7. a r = 50.
0(1/nm) and λ=780nm, 1εl<
16XIO-3, and can tolerate an error of about ±1% caused by variations in the wavelength of the light source, errors in the equipolarized refractive index of the waveguide layer, etc. In other words, in this embodiment, the transparent substrate 8 (i.e., the coupler 5) is placed on the optical axis. In this embodiment, the sliding means of the holder 9, guide 10, etc. are connected to the transparent substrate 8 (i.e., the cover 5). However, the same effect can be obtained even if the same means is provided in the semiconductor laser 1 or the condenser 1 and the non-condenser 2 is slid. Since the iso-intensity lines of the emitted light on the image plane perpendicular to the optical axis are ellipsoids, in order to guide the input light 6 with an isotropic intensity distribution to the center O, as shown in Fig. 3. Collimating lens 1 is placed between light source 1 and condensing lens 2.
2 and triangular prism 13 to shape the elliptical beam 2OA into a circular beam 20B.In contrast, the optical coupling device of this embodiment does not require such a complicated configuration. In this embodiment, the light emitted from the semiconductor laser 1 is focused by the condenser lens 2 without beam shaping. , as shown in Figure 4, the light 6A forms an elliptical iso-intensity line on the aperture surface of the condenser lens (at the position of the condensing point, the light 6B forms an elliptical iso-intensity line when the long sleeve is rotated 90 degrees, and the aperture surface There is always light 6C with an almost circular (in the i-density, an ellipse similar to that on the aperture surface at the distal axis and an ellipse similar to the surface on the aperture surface in the paraxial area) isointensity line between the and the focal point. Therefore, by setting the coupler 5 in a region with a circular iso-intensity distribution like the light 6C, the input light 6 can be guided with an almost isotropic intensity distribution without beam shaping. be.

(第2実施例) 第5図は本発明の第2実施例における光結合装置の断面
構成図を示す。第1実施例と同じ構成は同一番号を付し
てその説明を省略する。
(Second Embodiment) FIG. 5 shows a cross-sectional configuration diagram of an optical coupling device in a second embodiment of the present invention. Components that are the same as those in the first embodiment are given the same numbers and their explanations will be omitted.

半導体レーザーlから出射する光は偏光変換素子3を経
て電界ベクトルが同心円接線方向にある同心円偏光とな
り、光軸に直交する導波層4上に形成された同心円状の
グレーティングを持つ円形(半径a)のカブラ5に入射
すも 入射光6(入力光)はカブラ5により入力結合し
て、カブラ5の中心Oから外周側に伝搬する導波光7と
なaな麩 導波層4はこれよりも低屈折率の透明基板8
上に構成されており、透明基板8は円筒管形状のホルダ
ー9の中空部に同軸して固定されていもホルダー9は円
筒形状の穴の空いたガイド10の中空部をその中心軸に
沿って摺動でき、ストッパー11でこれを固定でき谷 
な抵 ガイド10の中空部中心軸は光軸に一致していも カプラ5は光源の発光点から2だけ離れた像平面上に配
置されていも そして本実施例ではカブラ5のグレーテ
ィングピッチAは次式を満たしていも A=λ/(N −r/(r”+z″)””]   −−
−(27)カブラ5上でのr方向伝搬定数はβ1=にr
/(r”+zit)j/11となるか収(1)式より波
面収差Φには次式で表されも Φ*(r)−r’/(r’+z”)””−rN +rλ
/A −−−(28)本実施例ではピッチAは(27)
式で与えているので位相整合条件(ΦR(r)= O)
を満足し 入力光6は効率よく入力結合するものであも また本実施例では 誤差に対する許容度の拡大が以下の
様にして可能であム 本実施例においてカブラ5が光軸に沿って光源方向にδ
だけ移動したとき、カプラ5上の入力光r方向伝搬定数
が変化するので波面収差ΦRはゼロからずれ次式で表さ
れる値をと4 Φ* (r)−r” /(r” +(z−δ )2))
l/l!   、I!/(r2+zJlz2−−−(2
9) 現実には δ(2、r<zとしてよいか技 上式は(1
9)式で近位できも 従って、dλの波長誤i  dHの等偏屈折率誤基dA
のピッチ誤差があり、これを補正するためカプラ5を光
軸に沿って光源方向へδ移動させた場合の波面収差Φ穴
は(20)式で表され その標準偏差Φ8Dは(22)
式で与えられム すなわ敷 第1実施例と同様にカブラ
5の移動調整によって結合効率の劣化を1710程度に
抑えことができ、Is/I・= 0.10と考えると誤
差に対する余裕度はIQl 711倍に広がa本実施例
は第1実施例に比べ集光レンズ2を必要とせず、より簡
単でコンパクトな構成となム更&−本実施例においても
入力光6をほぼ等法的な強度分布で導波させることが可
能であムすなわち第4図を用いて説明すると、本実施例
において、半導体レーザー1からの出射光は出射直後の
楕円の等強度線の光6B6t  光源から十分離れたフ
ァーフィールド位置で長軸が90度回転した楕円の等強
度線の光6Aになり、発光点とファーフィールド位置と
の間でほぼ円形の(厳密には遠軸部でファーフィールド
位置と相似な楕R近軸部で発光点と相似な楕円の)等強
度線の光6Cが必ず存在すム 従って、カプラ5を光6
Cの様な円形の等強度線分布をなす領域に設定すること
でビーム整形することなく人力光6をほぼ等方向な強度
分布で導波させることができるのであムな耘 第1実施
代 第2実施例及び先行例に限らず言えることである力
(波長誤基 等偏屈折率誤基 ピッチ誤差が生じてもそ
れらの間にある関係が成り克てE  (10)式で与え
られる全体の誤差εを小さくすることができも 例えば
 波長が基準値λよりdλだけ大きい光源には等偏屈折
率が基準値NよりもNdλ/λだけ小さい導波層と組み
合わせることで、またはグレーティングピッチが基準値
AよりもAdλ/λだけ大きいカブラと組み合わせるこ
とで、誤差εをゼロにすることができる。
The light emitted from the semiconductor laser l passes through the polarization conversion element 3 and becomes concentrically polarized light whose electric field vector is tangential to the concentric circle. ) The incident light 6 (input light) is coupled into the coupler 5 and becomes the guided light 7 which propagates from the center O of the coupler 5 to the outer periphery.The waveguide layer 4 starts from this. A transparent substrate 8 with a low refractive index
Although the transparent substrate 8 is coaxially fixed to the hollow part of the cylindrical tube-shaped holder 9, the holder 9 is fixed along the central axis of the hollow part of the cylindrical-shaped guide 10 with a hole. It can be slid and fixed with stopper 11.
Even if the central axis of the hollow part of the guide 10 coincides with the optical axis, and even if the coupler 5 is placed on the image plane that is 2 points away from the light emitting point of the light source, the grating pitch A of the coupler 5 in this embodiment is as follows. Even if the formula is satisfied, A=λ/(N −r/(r”+z″)””] −−
−(27) The propagation constant in the r direction on the coupler 5 is r
/(r"+zit)j/11 From equation (1), the wavefront aberration Φ can be expressed as the following equation: Φ*(r)-r'/(r'+z")""-rN +rλ
/A---(28) In this example, pitch A is (27)
Since it is given by the formula, the phase matching condition (ΦR(r) = O)
In this embodiment, the input light 6 can be input and coupled efficiently.In this embodiment, the tolerance for errors can be expanded as follows.In this embodiment, the fogger 5 connects the light source along the optical axis. δ in the direction
When the input light r-direction propagation constant on the coupler 5 changes when the coupler moves by z−δ)2))
l/l! , I! /(r2+zJlz2---(2
9) In reality, is it okay to set δ(2, r<z? Technically, the above formula is (1
9) Therefore, the wavelength error i of dλ, the equipolarized refractive index error base dA of dH
There is a pitch error of
As in the first embodiment, the deterioration of the coupling efficiency can be suppressed to about 1710 by adjusting the movement of the cover 5, and considering Is/I = 0.10, the margin for error is IQl 711 times widerA This embodiment does not require the condenser lens 2 compared to the first embodiment, and has a simpler and more compact structure. In other words, to explain using FIG. 4, in this embodiment, the emitted light from the semiconductor laser 1 is the light 6B6t of the elliptical isointensity line immediately after the emission from the light source. At a far-field position that is far enough away, the light 6A becomes an elliptical iso-intensity line with its long axis rotated by 90 degrees, and the distance between the light emitting point and the far-field position is almost circular (strictly speaking, the far-axis part is the same as the far-field position). At the paraxial part of the similar ellipse R, there is always light 6C of isointensity line (of the emitting point and the similar ellipse).Therefore, coupler 5 can be replaced by light 6
By setting the area in a region with a circular iso-intensity line distribution like C, it is possible to guide the human-powered light 6 with an almost iso-directional intensity distribution without beam shaping. This can be said not only for the second embodiment and the previous examples, but even if there are wavelength errors, equal polarized refractive index errors, and pitch errors, the relationship between them holds true, and the overall equation given by equation (10) is It is possible to reduce the error ε, for example, by combining a light source whose wavelength is dλ larger than the reference value λ with a waveguide layer whose equipolarized refractive index is smaller than the reference value N by Ndλ/λ, or by setting the grating pitch to the reference value. By combining with a cobra larger than the value A by Adλ/λ, the error ε can be made zero.

すなわ板 予め半導体レーサーの波長と導波層の等偏屈
折率を測定しておき、全体の誤差εを小さくする様なベ
アリングを行うことで、更に結合効率の高い組合せを歩
留りよく得ることが出来4ま?、  組み合わせられた
半導体レーザーと導波層の波長、等偏屈折率のデータに
基づいてグレーティングピッチを調整し 全体の誤差ε
をより小さくすることもできも な壮 第1実施侭 第2実施例の何れも集束光が平行平
板(透明基板15A、15B等)を透過するので、実際
のグレーティングピッチは(16)、 (27)式に適
宜、補正項を加え 上記透過に伴う球面収差を補正する
必要がある。
In other words, by measuring the wavelength of the semiconductor laser and the equipolarized refractive index of the waveguide layer in advance, and performing bearings that reduce the overall error ε, it is possible to obtain combinations with even higher coupling efficiency with a higher yield. Is it possible? , the grating pitch is adjusted based on the wavelength and equipolarized refractive index data of the combined semiconductor laser and waveguide layer, and the overall error ε
In both of the first and second embodiments, the focused light passes through parallel flat plates (transparent substrates 15A, 15B, etc.), so the actual grating pitches are (16), (27) ) It is necessary to add a correction term to the equation as appropriate to correct the spherical aberration caused by the above transmission.

第6図は球面収差の補正量を示すための説明図であり、
第6図(a)は第1実施例で示したカプラが集光点の手
前にある場合、第6図(b)はカブラが集光点の奥にあ
る場合や第2実施例で示した光源からの発散光を入力結
合させる場合に相当すム第6図(a)に於てカプラ5上
の中心からの半径rの位置を通過する集束光は 屈折率
n、板厚tの平行平板20を透過することで、平行平板
20がない場合の集光点Fからδだけ奥に結像すムこの
啄 平行平板20への入射角θは集光点Fとカプラ5の
距離を2として次式で与えられムtanθ=r/(z+
δ)       −−−(30)また スネルの法則
よりδは次式で与えられムδ= t (1−(1−si
n2θ)”l′/(n” −sin”θ)””)−−−
(31) カプラ上でのr方向伝搬定数はβ!=−にsinθとな
るか技(1)式よりピッチAが次式を満たせば位相整合
条件を満足すも A=−qλ/(N+sinθ)      −−−(3
2)(ただLqは一1以下の整数) −X!6図(b)に於てカプラ5上の中心からの半径r
の位置を通過する発散光1友 屈折率n、板厚tの平行
平板20を透過することで、カプラ5側から見た集光点
(または発光点)が実際の集光点(または発光点)Fか
らδだけカブラ5側にずれも この時、平行平板20へ
の入射角θは点Fとカプラ5の距離を2として次式で与
えられる。
FIG. 6 is an explanatory diagram showing the amount of correction for spherical aberration,
Fig. 6(a) shows the case where the coupler shown in the first embodiment is located in front of the condensing point, and Fig. 6(b) shows the case where the coupler shown in the second embodiment is located behind the condensing point. In Fig. 6(a), which corresponds to the case where diverging light from a light source is input and coupled, the convergent light passing through a position with a radius r from the center on the coupler 5 is a parallel plate with a refractive index n and a plate thickness t. By transmitting the light through the parallel plate 20, the image is formed a distance δ from the focal point F when the parallel plate 20 is not present. Given by the following formula, tanθ=r/(z+
δ) ---(30) Also, according to Snell's law, δ is given by the following formula: δ=t (1-(1-si
n2θ)"l'/(n"-sin"θ)"")---
(31) The r-direction propagation constant on the coupler is β! If pitch A satisfies the following formula, the phase matching condition is satisfied, but A=-qλ/(N+sinθ) ---(3
2) (Lq is an integer less than or equal to 1) -X! In Figure 6(b), the radius r from the center on the coupler 5
By passing through the parallel flat plate 20 with refractive index n and plate thickness t, the light converging point (or light emitting point) seen from the coupler 5 side becomes the actual light focusing point (or light emitting point). ) The angle of incidence θ on the parallel plate 20 is given by the following equation, assuming that the distance between the point F and the coupler 5 is 2.

tanθ=r/(z−δ)        −−−(3
3)また スネルの法則よりδは(31)式で与えられ
もカプラ上でのr方向伝搬定数はβ1=にSinθとな
るか収(1)式よりピッチAが次式を漬たせば位相整合
条件を満足すも A=−qλ/(N−sinθ)     −−−(34
)(ただLqは一1以下の整数) 従って、実際のグレーティングピッチは(32)または
(34)式で与えられも 発明の効果 辺土 本発明によれは 結合効率の劣化を十分に小さく
抑えことができ、また誤差に対する余裕度を広げること
のでき、結合効率の高い光結合装置を歩留りよく得るこ
とが8来る。
tanθ=r/(z−δ) ---(3
3) Also, according to Snell's law, δ is given by equation (31), but the r-direction propagation constant on the coupler becomes β1=Sinθ, or convergence From equation (1), if pitch A subtracts the following equation, phase matching is achieved. Although the condition is satisfied, A=-qλ/(N-sinθ) ---(34
) (where Lq is an integer less than or equal to 1) Therefore, the actual grating pitch can be given by equation (32) or (34). In addition, it is possible to widen the margin for error, and to obtain an optical coupling device with high coupling efficiency at a high yield.

また ファーフィールド位置と集光点くまたは発光点)
との間のほぼ円形の等強度線分布をなす位でカプラを設
定するので、 ビーム整形手段を必要としない簡単な構
成で入力光を等方向な強度分布で導波させることができ
る。
Also, far field position and focal point (or light emitting point)
Since the coupler is set to form a substantially circular iso-intensity distribution between

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例における光結合装置の要部
断面図 第2図は効率劣化係数比13/I・の座標(α
、β)に対する等肩線は 第3図はビーム整形法の説明
は 第4図は本発明の第1実施例または第2実施例にお
ける入力光等強度縁分布の変化を示す説明@ 第5図は
本発明の第2実施例における光結合装置の要部断面図 
第6図は本発明の第1実施例または第2実施例における
球面収差の補正量を示すための説明図 第7図は先行例
の光結合装置の要部断面図 第8図は偏光変換素子の構
成@ 第9図は入力結合効率η口の座標(α、β)に対
する等肩線文 第10図は劣化係数Isの座標(α1β
)に対する等高線図であも 1・・・半導体レーザー、 2・・・集光レンχ 3・
・・偏光変換素子、4・・・導波凰 5・・・グレーテ
ィングカプラ、 6・・・入力光 7・・・導波光 8
・・・透明基板 9・・・ホルダー、 トラバー 10・・・ガイド、 11・・・ス 1の氏名 弁理士 粟 野 1孝 ほか二名゛、/ ピ1−−ノ !2 図 A 図 #II停し一す 微光しンス 帰1′Ift換1子 聯5II4 りし−ティンクカブラ λ 711  党 導潰究 透aB IE伝 ホル9− ! キ瑯伜し−ザ ん 放酊j失移散ざ 第 7 図 第 図 5−/ 第 図 bり=itvwり(ブ駁 較 σ
FIG. 1 is a sectional view of a main part of an optical coupling device according to a first embodiment of the present invention. FIG. 2 is a coordinate (α) of the efficiency deterioration coefficient ratio 13/I.
, β). Figure 3 is an explanation of the beam shaping method. Figure 4 is an explanation of changes in the input light equal intensity edge distribution in the first or second embodiment of the present invention @ Figure 5. is a sectional view of a main part of an optical coupling device according to a second embodiment of the present invention.
FIG. 6 is an explanatory diagram showing the amount of correction of spherical aberration in the first or second embodiment of the present invention. FIG. 7 is a sectional view of a main part of the optical coupling device of the prior example. FIG. 8 is a polarization conversion element. The structure of Figure 9 is the isocapsular statement for the input coupling efficiency η coordinates (α, β). Figure 10 is the coordinates of the deterioration coefficient Is (α1β
), 1...semiconductor laser, 2...condensing lens χ3.
...Polarization conversion element, 4... Waveguide 5... Grating coupler, 6... Input light 7... Waveguide light 8
...Transparent substrate 9...Holder, Traver 10...Guide, 11...Name of Su1 Patent attorney Kazutaka Awano and two others ゛, / Pi1--no! 2 Figure A Figure #II Stops and Faint Light Returns 1' Ift Exchange 1 Conjunction 5 II 4 Rishi - Tinku Kabura λ 711 Party Guide Destruction Study aB IE Den Hol 9 - ! Figure 5 - / Figure b = itvw (b comparison σ

Claims (9)

【特許請求の範囲】[Claims] (1)レーザー光源と、光源から出射するレーザー光を
集光する集光手段と、前記レーザー光の偏光状態を変換
する偏光変換手段と、光軸と直交する面内に構成された
導波層と、前記導波層上に形成され前記光軸を中心とす
る同心円状の周期構造を持つ光結合手段とからなり、前
記光結合手段が前記集光手段による集光点の手前または
奥に設けられることを特徴とする光結合装置。
(1) A laser light source, a condensing means for condensing the laser light emitted from the light source, a polarization conversion means for converting the polarization state of the laser light, and a waveguide layer configured in a plane orthogonal to the optical axis. and an optical coupling means formed on the waveguide layer and having a concentric periodic structure centered on the optical axis, and the optical coupling means is provided in front of or behind a light converging point by the light condensing means. An optical coupling device characterized in that:
(2)前記光結合手段と前記集光手段との間に介在する
ものがない場合の集光点から見て前記光結合手段がzの
距離にある場合、レーザー光の波長をλ、導波層の等価
屈折率をN、前記集光手段と前記光結合手段の間に介在
する透明平板の屈折率をn、板厚をtとして、同心円中
心からの半径rに於ける前記周期構造のピッチΛが次の
連立方程式 Λ=−qλ/(N±sinθ) tanθ=r/(2±δ) δ=t{1−(1−sin^2θ)^1^/^2/(n
^2−sin^2θ)^1^/^2)(ただし、qは−
1以下の整数、複号+、−は光結合手段の位置(それぞ
れ集光点の手前、奥)に対応) の解として与えられることを特徴とする請求項1記載の
光結合装置。
(2) If there is nothing intervening between the optical coupling means and the light condensing means, and the optical coupling means is at a distance z from the focal point, the wavelength of the laser beam is λ, and the waveguide is The pitch of the periodic structure at a radius r from the center of the concentric circle, where the equivalent refractive index of the layer is N, the refractive index of the transparent flat plate interposed between the light condensing means and the light coupling means is n, and the plate thickness is t. Λ is the following simultaneous equation Λ=-qλ/(N±sinθ) tanθ=r/(2±δ) δ=t{1-(1-sin^2θ)^1^/^2/(n
^2-sin^2θ)^1^/^2) (However, q is -
2. The optical coupling device according to claim 1, wherein the integers less than or equal to 1 and the sign + and - are given as a solution to the position of the optical coupling means (corresponding to the front and rear of the light condensing point, respectively).
(3)前記光源からの出射光が集光手段開口面上で楕円
の等強度線をなし、前記光結合手段の表面での等強度線
が遠軸部で前記楕円と平行な長楕円をなし、近軸部で前
記楕円と直交する長楕円を描く光軸上の位置に前記光結
合手段を設けることを特徴とする請求項1記載の光結合
装置
(3) The light emitted from the light source forms an elliptical iso-intensity line on the aperture surface of the condensing means, and the iso-intensity line on the surface of the light coupling means forms an elongated ellipse parallel to the ellipse at the far axis. 2. The optical coupling device according to claim 1, wherein the optical coupling means is provided at a position on an optical axis that forms a long ellipse perpendicular to the ellipse at a paraxial portion.
(4)レーザー光源と、前記レーザー光の偏光状態を変
換する偏光変換手段と、光軸と直交する面内に構成され
た導波層と、前記導波層上に形成され前記光軸を中心と
する同心円状の周期構造を持つ光結合手段とからなり、
前記光結合手段が前記光源からzの距離にある場合、レ
ーザー光の波長をλ、導波層の等価屈折率をN、前記光
源と前記光結合手段の間に介在する透明平板の屈折率を
n、板厚をtとして、同心円中心からの半径rに於ける
前記周期構造のピッチΛが次の連立方程式Λ=−qλ/
(N−sinθ) tanθ=r/(z−δ) δ=t{1−(1−sin^2θ)^1^/^2/(n
^2−sin^2θ)^1^/^2}(ただし、qは−
1以下の整数) の解として与えられることを特徴とする請求項1記載の
光結合装置。
(4) a laser light source, a polarization conversion means for converting the polarization state of the laser beam, a waveguide layer configured in a plane orthogonal to the optical axis, and a waveguide layer formed on the waveguide layer and centered about the optical axis. and an optical coupling means having a concentric periodic structure,
When the optical coupling means is located at a distance z from the light source, the wavelength of the laser beam is λ, the equivalent refractive index of the waveguide layer is N, and the refractive index of the transparent flat plate interposed between the light source and the optical coupling means is The pitch Λ of the periodic structure at the radius r from the center of the concentric circle is expressed by the following simultaneous equation Λ=-qλ/
(N-sinθ) tanθ=r/(z-δ) δ=t{1-(1-sin^2θ)^1^/^2/(n
^2−sin^2θ)^1^/^2=(However, q is −
2. The optical coupling device according to claim 1, wherein the optical coupling device is given as a solution of (an integer less than or equal to 1).
(5)前記光源からの出射光の、前記光結合手段の表面
での等強度線が遠軸部で楕円をなし、近軸部で前記楕円
と直交する長楕円を描く光軸上の位置に前記光結合手段
を設けることを特徴とする請求項4記載の光結合装置。
(5) At a position on the optical axis where the isointensity lines of the light emitted from the light source on the surface of the optical coupling means form an ellipse at the distal axis and an elongated ellipse orthogonal to the ellipse at the paraxial area. 5. The optical coupling device according to claim 4, further comprising the optical coupling means.
(6)前記レーザー光源または前記光結合手段または前
記集光手段をレーザー光の光軸に沿って動かす摺動手段
を有することを特徴とする請求項1または4記載の光結
合装置。
(6) The optical coupling device according to claim 1 or 4, further comprising a sliding means for moving the laser light source, the optical coupling means, or the condensing means along the optical axis of the laser beam.
(7)前記レーザー光源の波長が基準値λよりdλだけ
大きく(または小さく)、前記導波層の等価屈折率が基
準値NよりもdNだけ大きく(または小さく)、前記周
期構造のピッチが基準値ΛよりもdΛだけ大きい(また
は小さい)場合|dλ/λ+dN/N−dΛ/Λ|の値
がゼロに等しいことを特徴とする請求項1または4記載
の光結合装置。
(7) The wavelength of the laser light source is larger (or smaller) than the reference value λ by dλ, the equivalent refractive index of the waveguide layer is larger (or smaller) than the reference value N by dN, and the pitch of the periodic structure is the reference value. 5. The optical coupling device according to claim 1, wherein the value of |dλ/λ+dN/N−dΛ/Λ| is equal to zero when it is larger (or smaller) than the value Λ by dΛ.
(8)偏光変換手段に1/4波長板を用いることを特徴
とする請求項1または4記載の光結合装置。
(8) The optical coupling device according to claim 1 or 4, wherein a quarter wavelength plate is used as the polarization conversion means.
(9)前記偏光変換手段によってレーザー光の偏光面が
同心円接線方向または動径方向にある偏光状態に変換さ
れることを特徴とする請求項1または4記載の光結合装
置。
(9) The optical coupling device according to claim 1 or 4, wherein the polarization conversion means converts the polarization plane of the laser beam into a polarization state in a concentric tangential direction or a radial direction.
JP2076030A 1990-03-26 1990-03-26 Optical coupling device Expired - Fee Related JP2517147B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2076030A JP2517147B2 (en) 1990-03-26 1990-03-26 Optical coupling device
KR1019910004668A KR940008672B1 (en) 1990-03-26 1991-03-25 Optical coupling apparatus for coupling light into a waveguide
EP91104743A EP0449193A1 (en) 1990-03-26 1991-03-26 Optical coupling apparatus for coupling light into a waveguide
US07/675,527 US5181265A (en) 1990-03-26 1991-03-26 Optical coupling apparatus for introducing and coupling an incident light into a wave guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076030A JP2517147B2 (en) 1990-03-26 1990-03-26 Optical coupling device

Publications (2)

Publication Number Publication Date
JPH03274513A true JPH03274513A (en) 1991-12-05
JP2517147B2 JP2517147B2 (en) 1996-07-24

Family

ID=13593424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076030A Expired - Fee Related JP2517147B2 (en) 1990-03-26 1990-03-26 Optical coupling device

Country Status (1)

Country Link
JP (1) JP2517147B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129501A1 (en) * 2005-05-31 2006-12-07 Nippon Sheet Glass Company, Limited Waveguide element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577716A (en) * 1978-12-06 1980-06-11 Canon Inc Light deflector
JPH0246536A (en) * 1988-08-05 1990-02-15 Matsushita Electric Ind Co Ltd Optical pickup device
JPH0246412A (en) * 1988-08-05 1990-02-15 Matsushita Electric Ind Co Ltd Optical head device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577716A (en) * 1978-12-06 1980-06-11 Canon Inc Light deflector
JPH0246536A (en) * 1988-08-05 1990-02-15 Matsushita Electric Ind Co Ltd Optical pickup device
JPH0246412A (en) * 1988-08-05 1990-02-15 Matsushita Electric Ind Co Ltd Optical head device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129501A1 (en) * 2005-05-31 2006-12-07 Nippon Sheet Glass Company, Limited Waveguide element

Also Published As

Publication number Publication date
JP2517147B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US11119257B2 (en) Methods of diffractive lens and mirror fabrication
JP4937325B2 (en) Optical waveguide device
JP4740994B2 (en) Light modulator
JP6237691B2 (en) Optical module and optical fiber assembly
JPH08271942A (en) Wavelength conversion method, wavelength conversion device using it, and non-diffraction luminous flux generation device
JPH03179320A (en) Polarizing element and optical head device
US5377291A (en) Wavelength converting optical device
JPH0281035A (en) Secondary higher harmonic generator and information processor using the same
KR940008672B1 (en) Optical coupling apparatus for coupling light into a waveguide
JPH11271823A (en) Wavelength converter
JPH03274513A (en) Optical coupling device
JPH1083555A (en) Optical pickup device
US6424449B1 (en) Optical information processing apparatus for image processing using a reflection type spatial light modulator
JP3545008B2 (en) Optical pickup device
US10969599B1 (en) Polarization conversion using geometric phase and polarization volume hologram optical elements
JPH04174404A (en) Polarized beam splitter
JP4024260B2 (en) Wavelength converter
JPH0467107A (en) Optical coupler
JP3250346B2 (en) Optical waveguide device
CN201017129Y (en) High efficient polarization converting device
US5233466A (en) Astigmatism generating device
JP3536031B2 (en) Variable group delay unit and variable group delay module
JPH0816727B2 (en) Optical head device
JP2005331992A (en) Wavelength conversion device
JPH02183433A (en) Optical head device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees