JPH03274318A - Burner - Google Patents

Burner

Info

Publication number
JPH03274318A
JPH03274318A JP7416090A JP7416090A JPH03274318A JP H03274318 A JPH03274318 A JP H03274318A JP 7416090 A JP7416090 A JP 7416090A JP 7416090 A JP7416090 A JP 7416090A JP H03274318 A JPH03274318 A JP H03274318A
Authority
JP
Japan
Prior art keywords
wall
fuel
combustor
porous
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7416090A
Other languages
Japanese (ja)
Inventor
Tomoyasu Aihara
相原 智康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7416090A priority Critical patent/JPH03274318A/en
Publication of JPH03274318A publication Critical patent/JPH03274318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)

Abstract

PURPOSE:To lower a wall temperature, and to improve thermal efficiency, antioxidation, thermal impact resistance by superposing a second wall on a first wall made of a porous heat resistant material having a connection hole of a thickness direction in a burner for a rocket engine, etc., providing a fuel supply passage, and forming a wall. CONSTITUTION:The wall of a cylindrical burner is formed in a double structure wall in which a first wall 1 is superposed in contact with the entire inner surface of a second wall 2 made of Hastelloy X. The wall 1 is formed of porous SiC fiber reinforced SiC. Both ends of the walls 1, 2 are coupled by a coupling plate made of Hastelloy X and bolts. Many holes are formed in parallel on the outer surfaces in contact with the walls 1, 2 along longitudinal and circumferential directions to form a fuel supply passage 3, and connected to a fuel cylinder. With this structure, a wall temperature is lowered, and its thermal efficiency, antioxidation and thermal impact resistance can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービンエンジンやロケットエンジン等
に使用される、液体を主燃料とする燃焼器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combustor that uses liquid as a main fuel and is used in gas turbine engines, rocket engines, and the like.

〔従来の技術〕[Conventional technology]

各種ガスタービンエンジンやロケットエンジン等では、
その主要部たる燃焼器において液体燃料をガス状に噴射
させ、空気又は酸素等の酸化剤と混合して燃焼させるが
、燃焼ガスが非常に高湿となるため、燃焼器の壁部及び
燃焼ガスに接する部分はハステロイX (Hastel
loy X)等の耐熱合金で作製されている。
In various gas turbine engines and rocket engines,
In the combustor, which is the main part of the combustor, liquid fuel is injected in gaseous form and mixed with air or an oxidizing agent such as oxygen to burn it. The part in contact with Hastelloy
It is made of heat-resistant alloy such as Loy X).

しかし、ハステロイX等の耐熱金属材料の耐熱湿度にも
限界があり、又高温でのエンジンの耐久時間をのばす目
的から、燃焼器等の壁部内に冷媒を流したり、壁部表面
に冷却用ガスを吹き出す等の方法によって、燃焼器壁部
を構成する金属材料を保護していた。
However, there are limits to the heat and humidity resistance of heat-resistant metal materials such as Hastelloy The metal materials that make up the combustor wall were protected by methods such as blowing out.

ところが燃焼器の壁部を冷却すると壁面湿度が低下し、
ガス化された液体燃料や空気等の湿度が下がるので、燃
焼器及びエンジンの熱効率が低下すると云う問題があっ
た。
However, when the combustor wall is cooled, the wall humidity decreases,
Since the humidity of the gasified liquid fuel, air, etc. decreases, there is a problem in that the thermal efficiency of the combustor and engine decreases.

又、最近ではエンジンの構造材料として、高温下での強
度に優れるSi N  や810¥+のセラミックス、
炭素、あるいはこれらと繊維やウィスカーとの複合材料
、若しくはこれらを金属表面にコーテイングした材料等
を用いることが検討されているが、これらの耐熱性材料
は熱サイクルにより生じる熱応力によって亀裂や破壊が
発生しやすい欠点があった。
In recent years, SiN, which has excellent strength under high temperatures, and ceramics, which cost ¥810+, have been used as structural materials for engines.
The use of carbon, composite materials of these with fibers or whiskers, or materials coated with these on metal surfaces is being considered, but these heat-resistant materials tend to crack or break due to thermal stress caused by thermal cycles. There were drawbacks that could easily occur.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はかかる従来の事情に鑑み、壁部の温度を従来よ
りも低く抑えながら、同時に熱効率を高めることができ
、且つ耐酸化性及び耐熱衝撃性に優れた燃焼器を提供す
ることを目的とする。
In view of such conventional circumstances, an object of the present invention is to provide a combustor that can increase thermal efficiency while keeping the temperature of the wall portion lower than before, and has excellent oxidation resistance and thermal shock resistance. do.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を遠戚するため、本発明の燃焼器においては、
壁部の少なくとも一部が第一壁及び第二壁の二重壁構造
になっており、第一壁が少なくとも厚さ方向に連通した
連通気孔を有する多孔質耐熱性材料からなり、第一壁と
第二壁の一方又は両方若しくはその間に第一壁の連通気
孔に連通した燃料供給路を有することを特徴とする。
In order to achieve the above object, in the combustor of the present invention,
At least a part of the wall has a double wall structure of a first wall and a second wall, the first wall is made of a porous heat-resistant material having at least communicating holes in the thickness direction, and the first wall It is characterized by having a fuel supply passage communicating with a communicating hole in the first wall at or between one or both of the first wall and the second wall.

第一壁を槽底する多孔質耐熱性材料は、ハステロイx等
の耐熱合金、SiN  やSiO等のセラミツ4 クス、又は炭素、あるいは炭素繊維強化炭素複合材料の
ような金属、セラミックス又は炭素と繊維又はウィスカ
ーとの複合材料など従来から知られている耐熱材料であ
って、公知の方法によって穿孔或いは多孔質体によるオ
ーブンボア、ハニカム状、三次元網目構造状あるいは織
布状等の各種形態の連通気孔を有する多孔質に形成され
たものである。従って、第一壁の具体例を挙げれば、例
えば第1図に示すようなハニカム状の連通気孔を有する
多孔質の耐熱合金や、第2図及び第3図に示すオーブン
ボア又は織布状などの連通気孔を有する多孔質のセラミ
ックス若しくはセラミックス複合材料等がある。
The porous heat-resistant material that forms the first wall and the bottom of the tank may be heat-resistant alloys such as Hastelloy Or conventionally known heat-resistant materials such as composite materials with whiskers, which are perforated or porous by known methods to connect various forms such as oven bores, honeycomb shapes, three-dimensional network structures, or woven fabrics. It is porous and has pores. Therefore, specific examples of the first wall include, for example, a porous heat-resistant alloy having honeycomb-shaped continuous holes as shown in FIG. 1, an oven bore or a woven fabric as shown in FIGS. There are porous ceramics or ceramic composite materials having continuous pores.

又、第二壁の材料としては、燃焼時の圧力で破壊せず、
多孔質でなく且つ液体燃料等の流体が漏れない壁構造に
構築できる材料であれば良く、例えば従来から燃焼器や
エンジン部材として使用されている耐熱合金であって良
い。
In addition, as a material for the second wall, it does not break under the pressure of combustion,
Any material may be used as long as it is not porous and can be constructed into a wall structure that does not allow fluid such as liquid fuel to leak. For example, it may be a heat-resistant alloy conventionally used as a combustor or engine member.

上記の材料を用いて第一壁と第二壁の二重壁構造に形成
するには、第一壁が多孔質であることから機械的に第一
壁と第二壁を結合することが好ましく、例えば第一壁と
第二壁の端部同士を耐熱合金製の連結板で連結し、ボル
トやビン等を用いて結合させることが出来る。
In order to form a double wall structure of the first wall and the second wall using the above materials, it is preferable to mechanically connect the first wall and the second wall because the first wall is porous. For example, the ends of the first wall and the second wall can be connected with a connecting plate made of a heat-resistant alloy, and the ends can be connected using bolts, bottles, or the like.

本発明の燃焼器では、燃料として液体燃料、若しくは液
体燃料を含む液体又は気−液混相流体を使用する。燃料
流体は第1図から第3図に示す如く第一壁1の第二壁2
側に加圧して供給され、第一壁1の連通気孔内を通って
第二壁2と反対側の燃焼側表面4から噴射され、別途供
給された空気や酸素等の酸化剤と混合されて燃焼する。
In the combustor of the present invention, liquid fuel, or a liquid or gas-liquid mixed phase fluid containing liquid fuel is used as the fuel. The fuel fluid flows through the first wall 1 and the second wall 2 as shown in FIGS. 1 to 3.
The fuel is supplied under pressure to the combustion side, passes through the communication hole in the first wall 1, and is injected from the combustion side surface 4 on the opposite side to the second wall 2, and is mixed with an oxidizing agent such as air or oxygen that is supplied separately. Burn.

尚、燃焼が第一壁l内で起こらないように、燃料流体は
空気や酸素等の酸化剤を含まない状態で第一壁1に供給
される。
Note that the fuel fluid is supplied to the first wall 1 without containing an oxidizing agent such as air or oxygen so that combustion does not occur within the first wall 1.

燃料流体を第一壁lの第二壁2側に供給する燃料供給路
3の形状は、第一壁1の連通気孔の形態等に応じて定め
れば良い。例えば、第1図のように第一壁1がハニカム
状のように厚さ方向番このみ連通した連通気孔をもつ多
孔質耐熱合金からなる場合は、第一壁1と第二壁2の間
全体に隙間を設けて燃料供給路3としなければ、第一壁
1の燃焼側表面4全体から均一な燃料の噴射が出来ない
The shape of the fuel supply path 3 that supplies the fuel fluid to the second wall 2 side of the first wall 1 may be determined depending on the form of the communicating holes in the first wall 1, etc. For example, if the first wall 1 is made of a porous heat-resistant alloy that has a honeycomb shape with communicating holes throughout the thickness, as shown in Figure 1, the entire space between the first wall 1 and the second wall 2 is Unless a gap is provided to form the fuel supply path 3, fuel cannot be uniformly injected from the entire combustion side surface 4 of the first wall 1.

しかし、第一壁lがオーブンボアや織布状等の三次元状
に連通した連通気孔をもつ多孔質セラミックス等からな
る場合には、第1図の場合と同様に第一壁1と第二壁2
の間全体に隙間状に形成する他、第2図の如く第二壁2
内に複数の長さ方向に貫通した横孔を穿設し、更に第二
壁2内を横孔から多孔質の第一壁1側に貫通した縦孔又
は溝を部分的に形成して燃料供給路3を構成したり、又
は第3図の如く多孔質の第一壁1内に複数の貫通孔状の
燃料供給路3を長さ方向に直接設けることも可能である
However, if the first wall 1 is made of porous ceramics having three-dimensionally communicating pores such as an oven bore or a woven fabric, the first wall 1 and the second wall 1 are wall 2
In addition to forming a gap throughout the gap, as shown in Figure 2, the second wall 2
A plurality of horizontal holes are formed inside the second wall 2 in the longitudinal direction, and vertical holes or grooves are partially formed inside the second wall 2 from the horizontal holes to the porous first wall 1 side. It is also possible to configure the supply passage 3, or to directly provide a plurality of through-hole-shaped fuel supply passages 3 in the porous first wall 1 in the longitudinal direction as shown in FIG.

〔作用〕 本発明の燃焼器においては、燃料流体は液状のまま第一
壁1の連通気孔内を通って第二壁2側から反対側の燃焼
側表面4に向って流れるが、燃焼に伴なう輔射などによ
り燃焼側表面4が加熱されて第一壁1内部へ向かう熱流
束が発生するので、燃料流体が連通気孔内を流れる間に
第一壁1から燃料流体への伝熱が生じ、燃料流体が気化
する。
[Function] In the combustor of the present invention, the fuel fluid passes through the communication holes in the first wall 1 in a liquid state and flows from the second wall 2 side toward the combustion side surface 4 on the opposite side. As the combustion side surface 4 is heated by radiation, a heat flux toward the inside of the first wall 1 is generated, so that heat transfer from the first wall 1 to the fuel fluid occurs while the fuel fluid flows through the communicating holes. occurs and the fuel fluid vaporizes.

この燃料流体が液相から気相に相変態する際に第−壁1
の内部で多量の熱を奪うので、従来のガスのみ又は液体
のみを用いる冷却手段に比較して、本発明の燃焼器はそ
れ自体が大きな冷却能力を有する。
When this fuel fluid undergoes a phase transformation from a liquid phase to a gas phase, the first wall 1
Compared to conventional gas-only or liquid-only cooling means, the combustor of the present invention itself has a large cooling capacity because it removes a large amount of heat inside the combustor.

又、第−壁1内における伝熱の方向と、その熱を奪う燃
料流体の移動方向とは対向しているので、第二壁2側へ
の熱流速は極めて小さくなり、且つ燃料流体は加熱され
て燃焼側に噴出される。その結果、燃焼ガスから燃焼器
へかけての熱損失が小さくなり、焼結温度が上昇して熱
効率が大幅に増大する。
Furthermore, since the direction of heat transfer within the second wall 1 and the direction of movement of the fuel fluid that takes away that heat are opposite, the heat flow rate toward the second wall 2 becomes extremely small, and the fuel fluid is heated. and is ejected to the combustion side. As a result, the heat loss from the combustion gas to the combustor is reduced, the sintering temperature is increased, and the thermal efficiency is significantly increased.

更に、第−壁1内を通る燃料流体は、第−壁1内を流れ
る間に気化した燃料流体が第−壁1の燃焼側表面4から
噴出し、別途燃焼側に供給された酸化剤と混合して燃焼
するので、焼結側表面4の境界層での酸素分圧が低くな
り、第−壁1の酸化が生じ難くなる。又、燃焼器の第−
壁l自体も多孔質であるため、第−壁lの見かけの熱伝
導率が低く、又熱サイクル下における耐熱衝撃性が通常
の緻密な材料よりも優れている。
Further, the fuel fluid passing through the second wall 1 is vaporized while flowing through the second wall 1, and is ejected from the combustion side surface 4 of the second wall 1, and is mixed with an oxidizer separately supplied to the combustion side. Since they are mixed and combusted, the oxygen partial pressure in the boundary layer of the sintered surface 4 becomes low, making it difficult for the third wall 1 to be oxidized. Also, the combustor
Since the wall 1 itself is porous, the apparent thermal conductivity of the first wall 1 is low, and its thermal shock resistance under thermal cycles is superior to that of ordinary dense materials.

第−壁の多孔質耐熱材料が有する連通気孔の平均孔径は
0.1〜20朋の範囲が好ましい。連通気孔の平均孔径
が0.1stllK未満では気孔内を流れる燃料流体の
粘性抵抗が大きくなり、201111を超えると気孔内
で燃料流体の均一な流れを得ることが難しくなるからで
ある。
The average pore diameter of the continuous pores in the porous heat-resistant material of the second wall is preferably in the range of 0.1 to 20 mm. This is because if the average pore diameter of the communicating pores is less than 0.1stllK, the viscous resistance of the fuel fluid flowing through the pores becomes large, and if it exceeds 201111, it becomes difficult to obtain a uniform flow of the fuel fluid within the pores.

又、第−壁の多孔質耐熱材料は、気孔率が10〜95%
程度が好ましい。その理由は、10%未満では燃料流体
による冷却が不充分となり、95%を超えると第−壁の
機械的強度が不充分となるがらである。
In addition, the porous heat-resistant material of the second wall has a porosity of 10 to 95%.
degree is preferred. The reason for this is that if it is less than 10%, cooling by the fuel fluid will be insufficient, and if it exceeds 95%, the mechanical strength of the first wall will be insufficient.

更に、第−壁の厚さは2〜100 fi程度が好ましい
。その理由は、2fi未満では燃料流体による冷却が不
充分となり、100gIsを超えると冷却特性に殆ど変
化がなく重量増加のみが生じるからである。
Furthermore, the thickness of the second wall is preferably about 2 to 100 fi. The reason for this is that if it is less than 2fi, the cooling by the fuel fluid will be insufficient, and if it exceeds 100gIs, there will be little change in the cooling characteristics and only an increase in weight will occur.

(実施例) 円筒形燃焼器の内径79wで厚さ10811のハステロ
イX製の円筒壁(第二壁)の内側全面に接して、内壁(
第−壁)として平均厚さ10tllで内径50 mの円
筒形をなす多孔質のSiO繊維繊維強化Si間置し、第
−壁と第二壁の両端部をハステロイX製の連結板とボル
トを用いて機械的に結合させた。尚、第−壁の第二壁と
接する外側面には、長さ方向及び円周方向に沿い10關
の間隔をおいて多数並列した孔径2m11K及び深さ1
0fiの穿孔を設けてあり、この多数の穿孔を燃料供給
路とし、その入口を液体燃料ボンベに接続した。又、第
−壁を構成する多孔質のSiC繊維強化SiOは、連通
気孔の平均孔径が0.7關であり、気孔率は54%であ
った。又、この多孔質SiO繊維強化SiOの製造は、
SiO繊維からなる円筒形の三次元織布にCV I (
ChemicalVapor Infi7tratio
n)によりstc vトリックスを形成した。CVIの
原料としては、OH、5i(J 。
(Example) The inner wall (
A porous SiO fiber-reinforced Si material having a cylindrical shape with an average thickness of 10 tll and an inner diameter of 50 m was used as the 1st wall), and both ends of the 1st wall and the 2nd wall were connected by connecting plates and bolts made of Hastelloy X. mechanically bonded using In addition, on the outer surface of the first wall in contact with the second wall, there are a number of holes arranged in parallel at intervals of 10 degrees along the length direction and the circumferential direction, with a diameter of 2 m and a depth of 1.
0fi perforations were provided, and these many perforations were used as fuel supply channels, and the inlets thereof were connected to liquid fuel cylinders. Further, the porous SiC fiber-reinforced SiO constituting the second wall had an average pore diameter of 0.7 and a porosity of 54%. In addition, the production of this porous SiO fiber reinforced SiO is as follows:
CVI (
Chemical Vapor Infi7tratio
n) to form stc v trix. Raw materials for CVI include OH, 5i(J.

Hを用い、1400C”及び5〜10 torrの反応
条件で行なった。
The reaction was carried out using H under the reaction conditions of 1400 C" and 5 to 10 torr.

上記円筒形燃焼器の一端から多孔質SiC繊維強化Si
Oの円筒形の第−壁で囲まれた燃焼室内に酸素を供給し
ながら、液体燃料ボンベから燃料供給路に液体水素を加
圧注入し、多孔質SiO繊維強化SiCの円筒形第一壁
内を通してその表面から燃焼室内に噴出させて燃焼させ
、燃焼ガスは他端から排出した。尚、円筒形燃焼器の第
一壁及び第二壁は冷却しなかった。定常燃焼時のハステ
ロイX製の第二壁の外壁湿度は108C”、及び燃焼ガ
ス温度は1310C”であった。又、燃焼終了後に第−
壁を観察したところ、破損や厚さの減少は認められなか
った。
From one end of the cylindrical combustor to porous SiC fiber-reinforced Si
While supplying oxygen into the combustion chamber surrounded by the cylindrical first wall of O, liquid hydrogen is injected under pressure from the liquid fuel cylinder into the fuel supply path, and inside the cylindrical first wall of porous SiO fiber reinforced SiC. The combustion gas was ejected from its surface into the combustion chamber through the tube, and the combustion gas was discharged from the other end. Note that the first and second walls of the cylindrical combustor were not cooled. During steady combustion, the outer wall humidity of the second wall made of Hastelloy X was 108 C'', and the combustion gas temperature was 1310 C''. Also, after the completion of combustion,
When the walls were inspected, no damage or decrease in thickness was observed.

比較例として、上記と同様の円筒形燃焼器を用いたが、
多孔質耐熱材料からなる内壁(第−壁)を設けず、ハス
テロイX製の円筒壁(第二壁)のみとした。但し、燃焼
室の寸法が上記実施例と同じ内径50 mmになるよう
に、内側全面に厚さ0.311111のSiC膜をコー
ティングした厚さ10闘のハステロイX製の円筒壁を用
いた。この円筒壁の外側をウォータージャケットにより
水冷し、酸素と液体水素を円筒形燃焼器の一端から円筒
壁内側の燃焼室に噴射し、上記実施例と同じ燃料消費率
で燃焼させた。定常燃焼時における円筒壁の外壁湿度は
92C1及び燃焼ガス湿度は1060 C”であった。
As a comparative example, a cylindrical combustor similar to the above was used, but
An inner wall (second wall) made of a porous heat-resistant material was not provided, and only a cylindrical wall (second wall) made of Hastelloy X was provided. However, so that the combustion chamber had an inner diameter of 50 mm, which is the same as in the above example, a cylindrical wall made of Hastelloy The outside of this cylindrical wall was water-cooled by a water jacket, and oxygen and liquid hydrogen were injected from one end of the cylindrical combustor into the combustion chamber inside the cylindrical wall, and combustion was performed at the same fuel consumption rate as in the above example. The outer wall humidity of the cylinder wall during steady combustion was 92C1, and the combustion gas humidity was 1060C''.

又、燃焼終了後に円筒壁を観察したところ、内側のSi
Cコーテイング膜に剥離がみられた。
In addition, when the cylinder wall was observed after combustion, it was found that the inner Si
Peeling was observed in the C coating film.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、壁部の湿度を従来よりも低く抑えられ
るので、通常の冷却手段を必要としないか又は従来より
小さい冷却能力で済み、しかも熱効率が高く、且つ耐酸
化性及び耐熱衝撃性に優れた燃焼器を実現することが出
来る。
According to the present invention, the humidity in the wall can be suppressed lower than before, so there is no need for ordinary cooling means or a smaller cooling capacity than before, and it has high thermal efficiency and has good oxidation resistance and thermal shock resistance. It is possible to realize an excellent combustor.

本発明の燃焼器は、ジェット燃料を使用するガスタービ
ンエンジンやラムジェットエンジン等の燃焼器やアフタ
ーバーナー、液体水素やヒドラジン等の液体ロケット燃
料を用いるロケットエンジンやスクラムジェットエンジ
ン等の燃焼器として特に有効である。
The combustor of the present invention is particularly effective as a combustor or afterburner for gas turbine engines or ramjet engines that use jet fuel, or as a combustor for rocket engines or scramjet engines that use liquid rocket fuel such as liquid hydrogen or hydrazine. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第3図は本発明における燃焼器の各
具体例を示す概略の断面図である。 1・・第−壁     2・・第二壁 3・・燃料供給路   4・・燃焼側表面子 続 補 正 量 (自発)
FIGS. 1, 2, and 3 are schematic sectional views showing specific examples of the combustor according to the present invention. 1. Second wall 2. Second wall 3. Fuel supply path 4. Combustion side surface continuation correction amount (spontaneous)

Claims (2)

【特許請求の範囲】[Claims] (1)壁部の少なくとも一部が第一壁及び第二壁の二重
壁構造になつており、第一壁が少なくとも厚さ方向に連
通した連通気孔を有する多孔質耐熱性材料からなり、第
一壁と第二壁の一方又は両方若しくはその間に第一壁の
連通気孔に連通した燃料供給路を有することを特徴とす
る燃焼器。
(1) At least a part of the wall has a double wall structure of a first wall and a second wall, and the first wall is made of a porous heat-resistant material having at least communicating holes in the thickness direction, A combustor comprising a fuel supply passage communicating with a communicating hole in the first wall at or between one or both of the first wall and the second wall.
(2)前記第一壁を構成する多孔質耐熱材料の連通気孔
の平均孔径が0.1〜20mmであることを特徴とする
、請求項(1)記載の燃焼器。
(2) The combustor according to claim (1), wherein the average pore diameter of the communicating holes in the porous heat-resistant material constituting the first wall is 0.1 to 20 mm.
JP7416090A 1990-03-23 1990-03-23 Burner Pending JPH03274318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7416090A JPH03274318A (en) 1990-03-23 1990-03-23 Burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7416090A JPH03274318A (en) 1990-03-23 1990-03-23 Burner

Publications (1)

Publication Number Publication Date
JPH03274318A true JPH03274318A (en) 1991-12-05

Family

ID=13539127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7416090A Pending JPH03274318A (en) 1990-03-23 1990-03-23 Burner

Country Status (1)

Country Link
JP (1) JPH03274318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19804232A1 (en) * 1998-02-04 1999-08-19 Daimler Chrysler Ag Combustion chamber for motors and high power tuyeres

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19804232A1 (en) * 1998-02-04 1999-08-19 Daimler Chrysler Ag Combustion chamber for motors and high power tuyeres
DE19804232C2 (en) * 1998-02-04 2000-06-29 Daimler Chrysler Ag Combustion chamber for high-performance engines and nozzles

Similar Documents

Publication Publication Date Title
US6151887A (en) Combustion chamber for rocket engine
JP4249396B2 (en) Heat exchanger made of composite material and method of manufacturing the same
EP0356737B1 (en) Regenerative heat exchanger system
US4580524A (en) Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition
CA2400705C (en) Stirling engine thermal system improvements
JP2005513270A (en) Composite wall manufacturing method
US6783824B2 (en) Actively-cooled fiber-reinforced ceramic matrix composite rocket propulsion thrust chamber and method of producing the same
US5780157A (en) Composite structure
US6389801B1 (en) Jet propulsion power unit with non-metal components
US6929866B1 (en) Composite foam structures
AU2001251706A1 (en) Stirling engine thermal system improvements
CN109957800A (en) Thermal barrier coating with temperature following layer
US9222438B2 (en) Rocket engine with cryogenic propellants
US5407727A (en) Porous load bearing materials
JP4439267B2 (en) Rocket engine
Popp et al. Rocket engine combustion chamber design concepts for enhanced life
JPH0323834B2 (en)
JPH03274318A (en) Burner
JP4405382B2 (en) Wall structure
JP2890033B2 (en) Gas turbine combustor
JPH0396645A (en) Supersonic combustion rum jet
US3126702A (en) newcomb
CN111237087B (en) Micro-pore plate active and passive composite cooling structure for aerospace power and cooling method
JPH0395308A (en) Combustion chamber of jet engine and method of manufacturing the same
CN117164376B (en) Preparation method of silicon carbide ceramic material and silicon carbide porous ceramic burner