JPH03273877A - Friction material for supersonic motor and supersonic motor using it - Google Patents

Friction material for supersonic motor and supersonic motor using it

Info

Publication number
JPH03273877A
JPH03273877A JP2075204A JP7520490A JPH03273877A JP H03273877 A JPH03273877 A JP H03273877A JP 2075204 A JP2075204 A JP 2075204A JP 7520490 A JP7520490 A JP 7520490A JP H03273877 A JPH03273877 A JP H03273877A
Authority
JP
Japan
Prior art keywords
friction material
motor
porous ceramic
ceramic sintered
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2075204A
Other languages
Japanese (ja)
Inventor
Masanori Sumihara
正則 住原
Katsu Takeda
克 武田
Takahiro Nishikura
西倉 孝弘
Osamu Kawasaki
修 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2075204A priority Critical patent/JPH03273877A/en
Publication of JPH03273877A publication Critical patent/JPH03273877A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable stable motor characteristics to be maintained for a long time by using a porous ceramic sintered body as a main constituent in a friction material for a supersonic motor and by dipping at least a lubrication agent into a pore part of the above porous ceramic sintered body. CONSTITUTION:A piezoelectric body 2 is adhered and fixed to a lower surface of a vibrating body 1. Further, a friction material 4 where a porous ceramic sintered body is a main constituent and at least a lubricating agent is dipped at a pore part of this porous ceramic sintered body is included between a moving body 3 and the vibrating body 1, thus enabling a constantly stable friction contact state to be maintained even if there is change in environmental temperature and press force of motor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電体等の振動子による超音波振動によって
駆動される超音波モータに用いられる摩擦材及びその摩
擦材を用いた超音波モータに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a friction material used in an ultrasonic motor driven by ultrasonic vibrations caused by a vibrator such as a piezoelectric body, and an ultrasonic motor using the friction material.

従来の技術 超音波モータの一例として、圧電体により進行波を発生
する振動体と動体とを加圧接触した構成のものがあり、
加圧接触状態での振動体と動体との摩擦力を介して、動
体が駆動される。従って、振動体と動体との摩擦接触状
態が、このような構成の超音波モータの出力、効率、信
頼性なとの緒特性を決定ずける極めて重要な要因の一つ
となる。
Conventional technology An example of an ultrasonic motor is one in which a vibrating body that generates traveling waves using a piezoelectric body is brought into pressure contact with a moving body.
The moving body is driven through the frictional force between the vibrating body and the moving body in a pressurized contact state. Therefore, the state of frictional contact between the vibrating body and the moving body is one of the extremely important factors that determines the output, efficiency, reliability, and other characteristics of an ultrasonic motor having such a configuration.

従来の超音波モータは、振動体と動体との間の摩擦接触
面の摩耗を減少させ、かつ大きなモータ出力を得るため
に、比較的摩擦係数の大きな摩擦材を介在させる方法が
とられ、梓々の材料が検討されている。このような材料
としては、例えは硬質ゴムや各種充填材を添加した強化
プラスチックよりなる摩擦材が提案されている。
Conventional ultrasonic motors use a method of interposing a friction material with a relatively large friction coefficient in order to reduce wear on the frictional contact surface between the vibrating body and the moving body and to obtain a large motor output. Various materials are being considered. As such materials, friction materials made of, for example, hard rubber or reinforced plastics containing various fillers have been proposed.

発明が解決しようとする課題 従来から提案されている様な各種充填材を添加した強化
プラスチックよりなる摩擦材を超音波モータ用摩擦材と
して用いた場合には以下に述べる様な課題があった。
Problems to be Solved by the Invention When friction materials made of reinforced plastics to which various fillers have been added, as proposed in the past, were used as friction materials for ultrasonic motors, there were problems as described below.

超音波モータにおいて、より大きなトルクを得るために
は、摩擦接触面の摩擦抵抗を増大させる方法、あるいは
モータの加圧力を増大させる方法が取られている。
In order to obtain larger torque in an ultrasonic motor, methods are used to increase the frictional resistance of the frictional contact surface or to increase the pressing force of the motor.

まず、摩擦接触面の摩擦抵抗を増大させるためには、硬
質ゴム等の摩擦係数の大きな材料を用いるか、あるいは
、ガラス繊維等の相手攻撃性のある充填材を添加したプ
ラスチック材を用いる等の方法が取られている。
First, in order to increase the frictional resistance of the frictional contact surface, it is necessary to use a material with a high coefficient of friction such as hard rubber, or to use a plastic material containing a filler that is aggressive to the opponent, such as glass fiber. A method is being taken.

しかし、硬質ゴノ、等、高摩擦の材料を用いた場合には
、摩擦接触面の高摩擦性がゆえに極めて摩耗が早いこと
、及び摩擦熱に伴って材料が弾性変形を起こし、モータ
の起動トルク、回転数、モータ効率等の諸特性の劣化を
引き起こし、モータの寿命が非常に短くなるという課題
を有していた。
However, when using a high-friction material such as a hard gono, the high-friction nature of the friction contact surface causes extremely rapid wear, and the material undergoes elastic deformation due to frictional heat, making it difficult to start the motor. This causes deterioration of various characteristics such as torque, rotation speed, and motor efficiency, resulting in a problem that the life of the motor becomes extremely short.

一方、ガラス繊維等の相手攻撃性のある充填材を添加し
たプラスチック材を用いた場合には、モタを駆動させた
際、時間の経過と共に振動体表面を傷つけるため、モー
タの起動トルク、回転数、モータ効率等の諸特性の経時
変化を引き起こし、安定したモータ特性が得られないと
いう課題を有していた。
On the other hand, when plastic materials containing aggressive fillers such as glass fibers are used, when the motor is driven, the surface of the vibrating body is damaged over time, so the starting torque and rotational speed of the motor are However, this has had the problem of causing changes in various characteristics such as motor efficiency over time, making it impossible to obtain stable motor characteristics.

さらに、より大きなトルクを得るために、モタの加圧力
を増大させた場合には、以下の様な課題を有していた。
Furthermore, when the pressing force of the motor is increased in order to obtain a larger torque, the following problems arise.

(1)ある定常値に達すると、それ以上加圧力を増大さ
せても、加圧力に比例して、モータのトルクが増大しな
い。
(1) Once a certain steady-state value is reached, the motor torque will not increase in proportion to the pressing force even if the pressing force is increased further.

(2)ある一定時間駆動後、長時間放置した後、再起動
させた際、モータがロックした状態になることがあり、
再起動性に問題がある。
(2) After being driven for a certain period of time, the motor may become locked when restarted after being left unused for a long time.
There is a problem with restartability.

(3)回転数が5Or pm以下特に10.rpmpm
以下回転11うがあり、低速安定性にかける。
(3) The rotation speed is 5 Or pm or less, especially 10. rpmpm
There are 11 rotations below, and it is used for low speed stability.

(4)加圧力が増大した分だけ摩擦材の摩耗が増大し、
耐摩耗性が問題になり、長門信頼性(寿命)に欠ける。
(4) The wear of the friction material increases by the amount of pressure applied.
Wear resistance becomes a problem, and Nagato reliability (life) is lacking.

本発明はかかる。E記従来の課題に鑑みてなされたもの
で、環境温度の変化、モータの加圧力の変化が生じても
、起動トルク、回転数、モータ効率等のモータ諸特性の
変化が少なく、安定したモータ特性を長時間維持できる
超音波モータ用摩擦材、及びこの摩擦材を用いた長期信
頼性に優れた超音波モータを提供することを目的とする
ものである。
The present invention takes this. Article E: This was done in view of the conventional problems, and even if there are changes in the environmental temperature or the motor pressurizing force, there is little change in motor characteristics such as starting torque, rotation speed, motor efficiency, etc., and the motor is stable. The object of the present invention is to provide a friction material for an ultrasonic motor that can maintain its characteristics for a long time, and an ultrasonic motor that uses this friction material and has excellent long-term reliability.

課題を解決するための手段 請求項J、2の本発明は、圧電体等の振動子による超音
波振動によりて駆動される超音波モータに用いられる超
音波モータ用摩擦材において、多孔質セラミック焼結体
を主成分とし、前記多孔質セラミック焼結体の気孔部に
少なくとも潤滑剤が含浸されているものである。又、多
孔質セラミック焼結体の前記気孔部の気孔径が1001
t m以下である。
Means for Solving the Problems The present invention in claims J and 2 provides a friction material for an ultrasonic motor that is driven by ultrasonic vibrations from a vibrator such as a piezoelectric body. The porous ceramic sintered body is mainly composed of a solid body, and the pores of the porous ceramic sintered body are impregnated with at least a lubricant. Further, the pore diameter of the pore portion of the porous ceramic sintered body is 1001
t m or less.

請求項3.4の本発明は、圧電体等の振動子による超音
波振動によって駆動される超音波モータにおいて、前記
圧電体等の振動子が振動体の一方の面に接着固定され、
前記振動体の他方の面には、多孔質セラミック焼結体を
主成分とし、前記多孔質セラミック焼結体の気孔部に、
少なくとも潤滑剤が含浸されている摩擦材を介して、動
体が加圧接触されている。又、摩擦材の多孔質セラミッ
ク焼結体の前記気孔部の気孔径が100μm以下である
The present invention according to claim 3.4 provides an ultrasonic motor driven by ultrasonic vibrations caused by a vibrator such as a piezoelectric body, wherein the vibrator such as the piezoelectric body is adhesively fixed to one surface of the vibrating body,
The other surface of the vibrating body contains a porous ceramic sintered body as a main component, and the pores of the porous ceramic sintered body have:
The moving body is brought into pressure contact through a friction material impregnated with at least a lubricant. Further, the pore diameter of the pore portion of the porous ceramic sintered body of the friction material is 100 μm or less.

作用 請求項1.20本発明では、多孔質セラミック焼結体を
主成分とし、多孔質セラミック焼結体の気孔部に少なく
とも潤滑剤が含浸されており、又、多孔質セラミック焼
結体の気孔部の気孔径が100μm以下とすることによ
り、安定したモータ特性の超音波モータ用摩擦材が得ら
れる。
Effect claim 1.20 In the present invention, the main component is a porous ceramic sintered body, the pores of the porous ceramic sintered body are impregnated with at least a lubricant, and the pores of the porous ceramic sintered body are impregnated with at least a lubricant. By setting the pore diameter of the part to 100 μm or less, a friction material for an ultrasonic motor with stable motor characteristics can be obtained.

請求項3.4の本発明では、圧電体等の振動子が振動体
の一方の面に接着固定され、振動体の他方の面には、多
孔質セラミック焼結体を主成分とし、多孔質セラミック
焼結体の気孔部に、少なくとも潤滑剤が含浸されている
摩擦材を介して、動体が加圧接触されており、又、摩擦
材の多孔質セラミック焼結体の気孔部の気孔径が100
71m以下であることにより、長期信頼性に優れた超音
波モータが得られる。
In the present invention of claim 3.4, a vibrator such as a piezoelectric body is adhesively fixed to one surface of the vibrating body, and a porous ceramic body mainly composed of a porous ceramic sintered body is attached to the other surface of the vibrating body. A moving body is brought into pressure contact with the pores of the ceramic sintered body through a friction material impregnated with at least a lubricant, and the pore diameter of the pores of the porous ceramic sintered body of the friction material is 100
By being 71 m or less, an ultrasonic motor with excellent long-term reliability can be obtained.

実施例 本発明の超音波モータ用摩擦材を超音波モータに用いた
実施例の主要構成部の断面図を第1図に示す。ここで、
1は振動体であり、この振動体1の下面に圧電体2が接
着固定されている。さらに、3は動体てあり、この動体
3と振動体1との間に、多孔質セラミック焼結体を主成
分とし、この多孔質セラミック焼結体の気孔部に、少な
くとも潤滑剤を含浸させた摩擦材4を介在させている。
Embodiment FIG. 1 shows a sectional view of the main components of an embodiment in which the friction material for an ultrasonic motor of the present invention is used in an ultrasonic motor. here,
1 is a vibrating body, and a piezoelectric body 2 is adhesively fixed to the lower surface of this vibrating body 1. Furthermore, 3 is a moving body, and between this moving body 3 and the vibrating body 1, a porous ceramic sintered body is the main component, and the pores of this porous ceramic sintered body are impregnated with at least a lubricant. A friction material 4 is interposed.

なお、本実施例においては、振動体1と動体3との間に
、多孔質セラミック複合体のy!1.Wl材4を介在さ
せる方法としては、便宜上、動体3の表面に摩擦材4を
接着固定したものを、バネ圧により振動体lに押しつけ
る方法を用いたが、この方法に限定されるものではない
。また、撮動体1の材質としてはステンレス材を用いた
が、これに限定されるものではなく、振動体lの材質は
圧電体の振動を吸収せず、効率よく振動を励振できる材
料であればよい。
In addition, in this embodiment, between the vibrating body 1 and the moving body 3, the y! 1. As a method for interposing the Wl material 4, for convenience, a method was used in which the friction material 4 was adhesively fixed to the surface of the moving body 3 and pressed against the vibrating body l using spring pressure, but the present invention is not limited to this method. . Furthermore, although stainless steel is used as the material of the imaging body 1, the material is not limited to this, and the material of the vibrating body 1 can be any material that does not absorb the vibrations of the piezoelectric body and can efficiently excite the vibrations. good.

本発明は、上記構成の超音波モータにおいて、振動体1
と動体3との加圧接触面即ち摩擦材4の構成が重要であ
ることを見いだしたもので、環境温度の変化、モータの
加圧力の変化が生じても、常に安定した摩擦接触状態を
保つことができる様に、摩擦材を多孔質セラミック焼結
体を主成分とし、この多孔質セラミック焼結体の気孔部
に、少なくとも潤滑剤を含浸させた構成とする。
The present invention provides an ultrasonic motor having the above configuration, in which the vibrating body 1
It was discovered that the configuration of the pressurized contact surface between the body 3 and the moving body 3, that is, the structure of the friction material 4, is important, so that a stable frictional contact state can always be maintained even when changes occur in the environmental temperature or the pressurizing force of the motor. In order to achieve this, the friction material is composed mainly of a porous ceramic sintered body, and the pores of the porous ceramic sintered body are impregnated with at least a lubricant.

潤滑剤としては、特に制限はないが、パーフルオロアル
キルポリエーテル、アルキルシリコーンオイル、ポリア
ルキルグリコール、高級脂肪族アルコール等の液体潤滑
剤及び、二硫化モリブデン、グラファイト、フッ化黒鉛
、窒化はう素等の固体潤滑剤を用いることができる。
There are no particular restrictions on the lubricant, but liquid lubricants such as perfluoroalkyl polyether, alkyl silicone oil, polyalkyl glycol, higher aliphatic alcohol, molybdenum disulfide, graphite, graphite fluoride, boron nitride, etc. A solid lubricant such as can be used.

次に、本発明を具体的実施例によって、更に詳しく説明
する。
Next, the present invention will be explained in more detail with reference to specific examples.

(実施例1) 気孔径5〜10μmの気孔部を有し、気孔率が40%で
ある多孔質炭化けい素焼結体の気孔部に、アルキルシリ
コーンオイルを含浸させることにより、セラミック複合
体の摩擦材Aを得た。
(Example 1) By impregnating the pores of a porous silicon carbide sintered body having pores with a pore diameter of 5 to 10 μm and a porosity of 40% with alkyl silicone oil, the friction of the ceramic composite was reduced. Material A was obtained.

(実施例2) 気孔径30〜60μInの気孔部を有し、気孔率が55
%である多孔質炭化けい素焼結体の気孔部に、窒化はう
素を均一分散させたポリイミド樹脂を含浸させることに
より、セラミック複合体の摩擦材Bを得た。
(Example 2) It has pores with a pore diameter of 30 to 60 μIn and a porosity of 55
A ceramic composite friction material B was obtained by impregnating the pores of a porous silicon carbide sintered body with a polyimide resin in which boron nitride was uniformly dispersed.

(実施例3) 気孔径30〜60 B mの気孔部を有し、気孔率が5
5%である多孔質炭化けい素焼結体の気孔部に、グラフ
ァイトを均一分散させたビスマレイミド・トリアジン樹
脂を含浸させることにより、セラミック複合体の摩擦材
Cを得た。
(Example 3) It has pores with a pore diameter of 30 to 60 Bm and a porosity of 5.
A ceramic composite friction material C was obtained by impregnating the pores of a 5% porous silicon carbide sintered body with a bismaleimide triazine resin in which graphite was uniformly dispersed.

なお、上記実施例1.2.3においては、多孔質セラミ
ック焼結体として、炭化けい索を用いたが、これに限定
されるものではなく、また上記多孔質セラミック焼結体
の気孔径としては、セラミック焼結体の強度及び複合体
にした際の摩擦抵抗の均一性という観点より、100 
t1m以下が望ましい。
In Example 1.2.3 above, a carbonized sintered cord was used as the porous ceramic sintered body, but the pore diameter of the porous ceramic sintered body was not limited to this. is 100% from the viewpoint of the strength of the ceramic sintered body and the uniformity of frictional resistance when made into a composite body.
It is desirable that the distance is t1m or less.

さらに、気孔部への含浸材料としては、潤滑剤単体ある
いは、樹脂と潤滑剤とを任意の割合で混合したもの等を
用いることができ、樹脂としては、多孔質セラミックの
気孔部に含浸可能な高耐熱性を有するポリイミド樹脂、
ポリアミドイミド樹脂、ビスマレイミド・トリアジン樹
脂等を用いることができろ。
Furthermore, as a material for impregnating the pores, a lubricant alone or a mixture of resin and lubricant in any ratio can be used. Polyimide resin with high heat resistance,
Polyamideimide resin, bismaleimide triazine resin, etc. can be used.

上記のようにして得られたセラミック複合体の摩擦材A
−Cを超音波モータ用摩擦材として使用する際には、超
音波モータの動体部に接着固定した後、表面部を表面研
磨し、この摩擦材5を、第2図に示す様に、皿バネ(図
示省略)を用いて、下面に圧電体8を接着した振動体7
と動体6との間に圧接して、直径80mmの円板型超音
波モータを構成した。
Friction material A of ceramic composite obtained as above
When using -C as a friction material for an ultrasonic motor, after adhesively fixing it to the moving body part of the ultrasonic motor, the surface part is polished, and the friction material 5 is plated as shown in FIG. Vibrating body 7 with piezoelectric body 8 bonded to the bottom surface using a spring (not shown)
and the moving body 6 to form a disc-type ultrasonic motor with a diameter of 80 mm.

また、比較のために、ガラス繊維を均一分散させた四フ
ッ化エチレン樹脂製の摩擦材りを用いて同様に円板型超
音波モータを構成した。
For comparison, a disk-type ultrasonic motor was similarly constructed using a friction material made of polytetrafluoroethylene resin in which glass fibers were uniformly dispersed.

上記の様に摩擦材A−Dを用いて構成した超音波モータ
のバネ圧を変化させた際のモータの起動トルクを表1に
示す。
Table 1 shows the motor starting torque when the spring pressure of the ultrasonic motor constructed using friction materials A to D as described above is varied.

表1 これより、実施例1〜3の摩擦材A−Cを用いた場合に
は、加圧力を増大させると加圧力にほぼ比例して起動ト
ルクは増えるが、比較例の摩擦材りを用いた場合には、
加圧力に比例して起動トルクは増えなかった。この要因
としては、大きなモータ出力を取り出すために、モータ
の加圧力を増大させた際には、比較例の摩擦材りにおい
ては、摩擦材の弾性変形により接触面の接触状態が変化
し、出力伝達の効率低下を引き起こすものと考えられる
Table 1 From this, it can be seen that when the friction materials A-C of Examples 1 to 3 are used, when the pressing force is increased, the starting torque increases almost in proportion to the pressing force, but when the friction materials of Comparative Examples are used, the starting torque increases. If there is,
The starting torque did not increase in proportion to the applied force. The reason for this is that when the pressurizing force of the motor is increased in order to obtain a large motor output, the contact state of the contact surface changes due to the elastic deformation of the friction material in the comparative example friction material, and the output This is thought to cause a decrease in transmission efficiency.

しかし、摩擦材A、  B、  Cの場合は、多孔質セ
ラミックを主成分とすることにより、モータの加圧力を
増大させても、プラスチック材料はどの弾性変形は起こ
さず、しかもプラスチ・ンク材料のように環境温度の上
昇により、材料が変形を起こし摩擦接触状態が初期状態
と変化することもない。
However, in the case of friction materials A, B, and C, because the main component is porous ceramic, the plastic material does not undergo any elastic deformation even if the motor's pressurizing force is increased, and moreover, the plastic material does not undergo any elastic deformation. As the environmental temperature increases, the material does not deform and the frictional contact state does not change from its initial state.

上記の観点より、多孔質セラミック焼結体を主成分とし
、この多孔質セラミック焼結体の気孔部に、少なくとも
潤滑剤を含浸させたセラミック複合体を用いることによ
り、大出力の超音波モータの実現が可能となることが明
かになった。
From the above point of view, by using a ceramic composite whose main component is a porous ceramic sintered body and whose pores are impregnated with at least a lubricant, it is possible to generate a high-output ultrasonic motor. It has become clear that this can be achieved.

次に、摩擦材A−Dを用いて構成した超音波モータを駆
動させた結果を表2に示す。
Next, Table 2 shows the results of driving an ultrasonic motor constructed using friction materials A-D.

表2 ここて、モータの再起動性とは、モータを一定時閏駆動
した後、モータ停止状態で長時間放置後に再起動するか
否かの測定結果である。また、低速安定性とは、10r
pmの回転での回転ムラを測定した結果であり、ワウ・
フラッタ−5%以上の場合は、×判定とした。さらに、
耐摩耗性は、モータを50 kgFの皿バネを用いて加
圧し、回転方向とは逆方向にlOkgf−ciIの負荷
をかけ、4Orpmの回転数で1000時間駆動させた
後の摩擦材の摩耗減少厚さを測定した結果である。
Table 2 Here, the restartability of a motor is a measurement result of whether or not the motor restarts after being left in a stopped state for a long time after being driven for a certain period of time. Also, low speed stability means 10r
This is the result of measuring the rotational unevenness at pm rotation.
If the flutter was 5% or more, it was judged as x. moreover,
Wear resistance is the reduction in wear of the friction material after the motor is pressurized using a disc spring of 50 kgF, a load of 10 kgf-ciI is applied in the opposite direction to the rotation direction, and the motor is driven at a rotation speed of 4 Orpm for 1000 hours. This is the result of measuring the thickness.

これより、実施例1〜3の摩擦材A−Cを用いた場合に
は、再起動性に問題はなく、低速安定性にも優れ、10
00時間後も摩擦材の摩耗量は非常に少なかった。
From this, when friction materials A-C of Examples 1 to 3 were used, there was no problem in restartability, excellent low-speed stability, and 10
Even after 00 hours, the amount of wear of the friction material was very small.

多孔質セラミックの気孔部に潤滑剤を含浸させることに
より、摩擦材の摩耗が進行しても、摩擦接触面には常に
潤滑剤が存在することになり、振動体と動体との接触面
における加圧力の不均一性に依存する摩擦抵抗の不均一
性を緩和する作用があり、摩擦接触状態を常に安定に保
つことができた。更に、摩擦材として多孔質セラミック
に少なくとも潤滑剤を含浸した複合体を用いることによ
リ、長時間駆動後も摩擦材の摩耗を著しく少なくするこ
とができた。
By impregnating the pores of the porous ceramic with lubricant, even if the friction material wears out, the lubricant will always be present on the friction contact surface, reducing the stress on the contact surface between the vibrating body and the moving body. It had the effect of alleviating unevenness in frictional resistance that depends on unevenness in pressure, and was able to maintain a stable frictional contact state at all times. Furthermore, by using a composite of porous ceramic impregnated with at least a lubricant as the friction material, wear of the friction material could be significantly reduced even after long-term operation.

これに対して、比較例の摩擦材りを用いた場合には、モ
ータ停止状態で長時間放置すると再起動しない場合があ
り、低速安定性にも問題があった。
On the other hand, when the friction material of the comparative example was used, if the motor was left in a stopped state for a long time, it may not restart, and there were also problems with low-speed stability.

さらに、時間の経過とともに起動トルクの低下、回転数
の変動が起こり、モータ特性の劣化を起こし、実用上問
題となった。
Furthermore, over time, the starting torque decreases and the rotational speed fluctuates, causing deterioration of motor characteristics, which poses a practical problem.

以上説明してきた様に、上記実施例は円板型超音波モー
タに関しての実施例であったが、本発明の超音波モータ
用摩擦材及びモータ構成を第3図に示す様な円環型超音
波モータに適応しても同等の効果が得られる。
As explained above, the above-mentioned embodiment was an example regarding a disk-type ultrasonic motor, but the friction material for an ultrasonic motor of the present invention and the motor configuration are as shown in FIG. The same effect can be obtained even if it is applied to a sonic motor.

発明の効果 本発明によれば、下記の効果が得られる。Effect of the invention According to the present invention, the following effects can be obtained.

(1)モータの加圧力を増大させても、加圧力にほぼ比
例した起動トルクが得られ、耐荷重性に優れた超音波モ
ータ用摩擦材及び、この摩擦材を用いた超音波モータを
得ることができる。
(1) Obtain a friction material for an ultrasonic motor that can obtain a starting torque almost proportional to the pressure force even when the pressure force of the motor is increased and has excellent load resistance, and an ultrasonic motor using this friction material. be able to.

(2)加圧状態で長時間放置しても、再起動性に優れた
超音波モータ用摩擦材及び、この摩擦材を用いた超音波
モータを得ることができる。
(2) It is possible to obtain a friction material for an ultrasonic motor that has excellent restartability even when left in a pressurized state for a long time, and an ultrasonic motor using this friction material.

(3)低速回転時の回転ムラがほとんどなく、低速安定
性に優れた超音波モータ用摩擦材及び、この摩擦材を用
いた超音波モータを得ることができる。
(3) It is possible to obtain a friction material for an ultrasonic motor with almost no rotational unevenness during low-speed rotation and excellent low-speed stability, and an ultrasonic motor using this friction material.

(4)長時間モータを駆動させても、摩擦材の摩耗量は
非常に少なく、長期信頼性に優れた超音波モータ用摩擦
材及び、この摩擦材を用いた超音波モータを得ることが
できる。
(4) Even when the motor is driven for a long time, the amount of wear on the friction material is very small, making it possible to obtain a friction material for ultrasonic motors with excellent long-term reliability and an ultrasonic motor using this friction material. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超音波モータ用摩擦材を超音波モータ
に用いた実施例の主要構成部の断面図、第2図は本発明
の一実施例における円板型超音波モータの主要構成部を
一部断面で示した分解斜視図、第3図は本発明の他の実
施例における円環型超音波モータの主要構成部を一部断
面で示した分解斜視図である。 l、7.11・・・振動体、2.8.12・・・圧電体
、 3、6、10・・・動体、 4、5、9・・・摩擦
材。 第1図 第3図
Fig. 1 is a cross-sectional view of the main components of an embodiment in which the friction material for ultrasonic motors of the present invention is used in an ultrasonic motor, and Fig. 2 is a main configuration of a disc type ultrasonic motor in an embodiment of the present invention. FIG. 3 is an exploded perspective view partially showing the main components of an annular ultrasonic motor in another embodiment of the present invention. l, 7.11... Vibrating body, 2.8.12... Piezoelectric body, 3, 6, 10... Moving body, 4, 5, 9... Friction material. Figure 1 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)圧電体等の振動子による超音波振動によって駆動
される超音波モータに用いられる超音波モータ用摩擦材
において、 多孔質セラミック焼結体を主成分とし、前記多孔質セラ
ミック焼結体の気孔部に少なくとも潤滑剤が含浸されて
いることを特徴とする超音波モータ用摩擦材。
(1) A friction material for an ultrasonic motor used in an ultrasonic motor driven by ultrasonic vibrations from a vibrator such as a piezoelectric body, the main component being a porous ceramic sintered body, A friction material for an ultrasonic motor, characterized in that the pores are impregnated with at least a lubricant.
(2)多孔質セラミック焼結体の前記気孔部の気孔径が
100μm以下であること特徴とする請求項1項記載の
超音波モータ用摩擦材。
(2) The friction material for an ultrasonic motor according to claim 1, wherein the pores of the porous ceramic sintered body have a pore diameter of 100 μm or less.
(3)圧電体等の振動子による超音波振動によって駆動
される超音波モータにおいて、 前記圧電体等の振動子が振動体の一方の面に接着固定さ
れ、前記振動体の他方の面には、多孔質セラミック焼結
体を主成分とし、前記多孔質セラミック焼結体の気孔部
に、少なくとも潤滑剤が含浸されている摩擦材を介して
、動体が加圧接触されていることを特徴とする超音波モ
ータ。
(3) In an ultrasonic motor driven by ultrasonic vibrations caused by a vibrator such as a piezoelectric body, the vibrator such as the piezoelectric body is adhesively fixed to one surface of the vibrating body, and the other surface of the vibrating body is , characterized in that the main component is a porous ceramic sintered body, and a moving body is brought into pressure contact with the pores of the porous ceramic sintered body through a friction material impregnated with at least a lubricant. ultrasonic motor.
(4)摩擦材の多孔質セラミック焼結体の前記気孔部の
気孔径が100μm以下であること特徴とする請求項3
記載の超音波モータ。
(4) The porous ceramic sintered body of the friction material has a pore diameter of 100 μm or less.
Ultrasonic motor as described.
JP2075204A 1990-03-22 1990-03-22 Friction material for supersonic motor and supersonic motor using it Pending JPH03273877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075204A JPH03273877A (en) 1990-03-22 1990-03-22 Friction material for supersonic motor and supersonic motor using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075204A JPH03273877A (en) 1990-03-22 1990-03-22 Friction material for supersonic motor and supersonic motor using it

Publications (1)

Publication Number Publication Date
JPH03273877A true JPH03273877A (en) 1991-12-05

Family

ID=13569432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075204A Pending JPH03273877A (en) 1990-03-22 1990-03-22 Friction material for supersonic motor and supersonic motor using it

Country Status (1)

Country Link
JP (1) JPH03273877A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843062A (en) * 2011-06-22 2012-12-26 株式会社尼康 Vibration actuator, lens barrel, and camera
EP3255300A1 (en) * 2016-06-10 2017-12-13 Canon Kabushiki Kaisha Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
JP2017225333A (en) * 2016-06-10 2017-12-21 キヤノン株式会社 Friction material, method for producing friction material, vibration type actuator and electronic equipment
CN109217713A (en) * 2017-07-05 2019-01-15 佳能株式会社 Use the vibrating driver, electronic device and movable body of sintered body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843062A (en) * 2011-06-22 2012-12-26 株式会社尼康 Vibration actuator, lens barrel, and camera
JP2013009448A (en) * 2011-06-22 2013-01-10 Nikon Corp Vibration actuator, lens barrel, and camera
US9417424B2 (en) 2011-06-22 2016-08-16 Nikon Corporation Vibration actuator, lens barrel, and camera
CN102843062B (en) * 2011-06-22 2016-12-07 株式会社尼康 Vibration actuator, lens barrel and photographing unit
JP2017225333A (en) * 2016-06-10 2017-12-21 キヤノン株式会社 Friction material, method for producing friction material, vibration type actuator and electronic equipment
CN107493032A (en) * 2016-06-10 2017-12-19 佳能株式会社 Contact the friction member of opposed member, the method for manufacture friction members, vibration-type actuator and electronic installation
EP3255300A1 (en) * 2016-06-10 2017-12-13 Canon Kabushiki Kaisha Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
US10530277B2 (en) 2016-06-10 2020-01-07 Canon Kabushiki Kaisha Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
CN107493032B (en) * 2016-06-10 2020-01-14 佳能株式会社 Friction member contacting opposing member, method of manufacturing friction member, vibration-type actuator, and electronic device
US11664746B2 (en) 2016-06-10 2023-05-30 Canon Kabushiki Kaisha Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
CN109217713A (en) * 2017-07-05 2019-01-15 佳能株式会社 Use the vibrating driver, electronic device and movable body of sintered body
JP2019017238A (en) * 2017-07-05 2019-01-31 キヤノン株式会社 Vibration type drive device, electronic equipment and mobile
US11108342B2 (en) 2017-07-05 2021-08-31 Canon Kabushikikaisha Vibration-type driving apparatus using sintered body impregnated with resin, electronic apparatus, and movable body

Similar Documents

Publication Publication Date Title
KR910003669B1 (en) Ultrasonic motor
US5917269A (en) Vibration wave driving device
JPH03273877A (en) Friction material for supersonic motor and supersonic motor using it
TW201225508A (en) Vibration actuator
US6320299B1 (en) Friction member used in vibration wave driving apparatus, and device using the vibration wave driving apparatus as driving source
JP2774613B2 (en) Ultrasonic motor
US5818147A (en) Vibration actuator with improved contact surface
JP2925192B2 (en) Vibration wave drive
JPH11318090A (en) Oscillatory driver, its manufacture, and apparatus equipped with the same
JPS6258888A (en) Ultrasonic motor
JP2926600B2 (en) Ultrasonic motor and method of manufacturing the same
JPH09327183A (en) Oscillatory wave drive unit and equipment provided with this unit
WO2013089023A1 (en) Vibration actuator
JPH0442787A (en) Oscillatory wave motor
JP2548253B2 (en) Ultrasonic motor
JP2575028B2 (en) Ultrasonic motor
JPH02217380A (en) Sliding part
JPH10191665A (en) Vibration motor
JPH01110067A (en) Supersonic motor
JPH01311879A (en) Ultrasonic motor
JP2000166266A (en) Vibration-type driving device and equipment therewith
JPH09191672A (en) Oscillation wave driver
JPH11122958A (en) Vibrating-type motor and manufacture of vibrating-type motor
JPS6244080A (en) Ultrasonic motor
JPH0217873A (en) Ultrasonic motor