JPH032732A - Polarizing element - Google Patents

Polarizing element

Info

Publication number
JPH032732A
JPH032732A JP1136817A JP13681789A JPH032732A JP H032732 A JPH032732 A JP H032732A JP 1136817 A JP1136817 A JP 1136817A JP 13681789 A JP13681789 A JP 13681789A JP H032732 A JPH032732 A JP H032732A
Authority
JP
Japan
Prior art keywords
light
polarization
liquid crystal
polarizing element
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1136817A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ito
嘉高 伊藤
Shoichi Uchiyama
正一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1136817A priority Critical patent/JPH032732A/en
Publication of JPH032732A publication Critical patent/JPH032732A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of conversion to light polarized in one direction to make a polarizing element compact and low-cost by constituting the element of a means, which condenses only one of two linearly polarized components whose planes of polarization are orthogonal to each other, and a polarization plane rotating means where twisted nematic liquid crystal to rotate the plane of polarization at 90 deg. is arranged. CONSTITUTION:Ordinary ray components of light 101 made incident on the polarizing element go straightly as shown by an arrow 104 without refraction on the boundary surface between a double reflection layer 102 and an isotropic layer 103, but extraordinary ray components are refracted in accordance with the change of the refractive index on the boundary surface and are spatially collected and are focused on TN type liquid crystal elements 107 and 108 which give a phase difference. Since the direction of polarization of extraordinary ray components is rotated at 90 deg. when they are transmitted through the liquid crystal element part 107 to which an electric field is applied, this direction of polarization is equalized to that of ordinary ray components. Consequently, incident rays are scarcely absorbed, and exit light 110 whose direction of polarization is satisfactorily equalized is obtained. Thus, the compact and inexpensive polarizing element is obtained which efficiently converts light to light polarized in one direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はランダムな光の偏光特性を一方向の直線偏光に
変える偏光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polarizing element that changes the polarization characteristics of random light into unidirectional linearly polarized light.

〔従来の技術〕[Conventional technology]

従来、通常の光源が発する自然光から直線偏光を得る場
合には、ウオラストン形、ローション形などの複屈折性
プリズム、あるいは光吸収の二色性を利用した一方向延
伸配向フィルム等が利用されてきた。
Conventionally, to obtain linearly polarized light from natural light emitted by a normal light source, birefringent prisms such as Wollaston-type and lotion-type prisms, or unidirectionally stretched oriented films that utilize the dichroism of light absorption have been used. .

(発明が解決しようとする課題〕 しかし、通常の複屈折性プリズムを用いた場合には、プ
リズムにより分離された2つの光束の光軸が重ならず、
入射光に対しである角度をもって分離されるため、その
後の光束の処理が複雑になり全体の寸法が大きくなると
いう問題を有していた。一方、延伸配向フィルムは有機
重合体物質により形成されているため、量産性に優れ安
価である反面、光吸収の二色性を利用しているため、フ
ィルム自体が入射光の一部を吸収することになり光透過
率が低い。さらに、強い光に対しては光吸収に伴う発熱
作用により、フィルム自身が自己破壊を生じる場合があ
るなどの問題を有していた。
(Problem to be solved by the invention) However, when a normal birefringent prism is used, the optical axes of the two light beams separated by the prism do not overlap,
Since the light beam is separated at a certain angle with respect to the incident light, the subsequent processing of the light beam becomes complicated and the overall size becomes large. On the other hand, stretched oriented films are made of organic polymer materials, making them easy to mass produce and being inexpensive. However, since they utilize dichroism in light absorption, the film itself absorbs a portion of the incident light. As a result, the light transmittance is low. Furthermore, there is a problem in that the film itself may self-destruct in response to strong light due to the heat generation effect associated with light absorption.

そこで、本発明は以上のような問題点を解決するもので
、その目的とするところは、光吸収が少ない、つまり、
光の一方向偏光への変換効率の高い、コンパクトかつ安
価な偏光素子を提供することにある。
Therefore, the present invention is intended to solve the above-mentioned problems, and its purpose is to reduce light absorption, that is, to
An object of the present invention is to provide a compact and inexpensive polarizing element that has high efficiency in converting light into unidirectionally polarized light.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために本発明の偏光素子は、偏光面
が互いに直交する2つの直線偏光成分のうち、どちらか
片方の偏光成分のみを集光する手段と、片方の偏光成分
の偏光面が他方の偏光成分の偏光面と同一になるように
変換するための手段であるところの、偏光面を90°回
転させるツイステッド・ネマチック液晶を配置した偏光
面回転手段とから成ることを特徴とする。また、前記偏
光素子を入射光束に垂直な面内に複数構成してアレイ化
したことを特徴とする。
In order to solve the above problems, the polarizing element of the present invention has a means for condensing only one polarized light component out of two linearly polarized light components whose polarization planes are orthogonal to each other, and It is characterized by comprising a polarization plane rotating means arranged with a twisted nematic liquid crystal that rotates the polarization plane by 90 degrees, which is a means for converting the plane of polarization to be the same as the plane of polarization of the other polarization component. Further, the present invention is characterized in that a plurality of the polarizing elements are arranged in an array in a plane perpendicular to the incident light beam.

〔作用〕[Effect]

方解石や一軸配向性高分子重合体などの光学的異方性媒
体に、通常の光源が発する自然光を入射すると、媒質中
の光学的異方軸に相応した振動面を有する2つの光束(
常光及び異常光)に分離される。この現象は媒質の屈折
能が2つの光線軸間で異なるために生じる。つまり、−
軸性複屈折性材料においては常光成分に対しno、異常
光成分に対してはneなる2つの屈折率を有することに
なる。
When natural light emitted from a normal light source is incident on an optically anisotropic medium such as calcite or a uniaxially oriented polymer, two light beams (
It is separated into ordinary light and extraordinary light). This phenomenon occurs because the refractive power of the medium is different between the two beam axes. In other words, -
An axial birefringent material has two refractive indices: no for the ordinary light component and ne for the extraordinary light component.

第1図は本発明の偏光素子の構成断面図であり、この第
1図に基づいて本発明の詳細な説明する。
FIG. 1 is a cross-sectional view of the structure of a polarizing element of the present invention, and the present invention will be explained in detail based on this FIG.

複屈折性を示す光学的異方性材料により形成された複屈
折層(102)の片面は平板状に、また相対する面はレ
ンズ形状に加工され、さらに、上記複屈折層と隙間なく
密接するように、等方性材料からなる等方層(103)
が形成されている。ここで、等方層の屈折率niは複屈
折層の有する2つの屈折率(n o、 n e)  の
うち小さい方と同じ値となっている。第1図ではno<
neと仮定した場合(したがってn i= n o) 
 を示す。
One side of the birefringent layer (102) formed of an optically anisotropic material exhibiting birefringence is processed into a flat plate shape, and the opposing side is processed into a lens shape, and further, the birefringent layer (102) is formed in close contact with the birefringent layer without any gaps. , an isotropic layer (103) made of an isotropic material
is formed. Here, the refractive index ni of the isotropic layer is the same value as the smaller of the two refractive indices (no, ne) of the birefringent layer. In Figure 1, no<
Assuming ne (therefore n i=no)
shows.

いま、入射光線中の常光成分(104)に注目すると複
屈折層(102)、等方層(103)間においては屈折
率差がないため、常光成分に対しては2つの層は光学的
に同質な一体層と見なすことが出来る。
Now, focusing on the ordinary light component (104) in the incident light beam, there is no difference in refractive index between the birefringent layer (102) and the isotropic layer (103), so the two layers are optically different for the ordinary light component. It can be regarded as a homogeneous monolithic layer.

つまり、常光成分に対しては回答屈折作用を受けない。In other words, the ordinary light component is not affected by the refraction effect.

他方、異常光成分(105)に注゛目すると複屈折層(
102)、等方層(103)間においてはne>niな
る屈折率差が存在するため、2つの層の境界面において
光は屈折作用を受け、複屈折層(102)のレンズ形状
に応じて焦点を形成する。
On the other hand, if we pay attention to the extraordinary light component (105), we can see that the birefringent layer (
102), there is a refractive index difference of ne>ni between the isotropic layers (103), so light is refracted at the interface between the two layers, and depending on the lens shape of the birefringent layer (102), Form a focal point.

次に、ツイステッド・ネマチック液晶を用いてどちらか
片方の偏光成分の偏光面を90°回転させて他方の偏光
成分の偏光面と合わせてやることにより、入射光線はほ
とんど吸収されることなく、偏光方向がよく揃った出射
光(110)を得ることが出来る。
Next, by using a twisted nematic liquid crystal to rotate the polarization plane of one polarization component by 90 degrees and aligning it with the polarization plane of the other polarization component, the incident light is hardly absorbed and the polarization is Emitted light (110) whose directions are well aligned can be obtained.

〔実施例〕〔Example〕

以下、実施例に基づき本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on Examples.

但し、本発明は以下の実施例に限定されるものではない
However, the present invention is not limited to the following examples.

[実施例1] 高複屈折能を有するポリイミド化合物(ポリ〔2,2′
−ビス(トリフルオロメチル)−4,4−ビフェニレン
〕−2“、2“−ジメトキシ−4,4“−ビフェニレン
ジカルボキシアミド、no=1.5、n e= 2.0
)を一方向延伸配向した後、プレス成形して片方の面に
レンズ形状を持たせた複屈折層(102)を形成した。
[Example 1] Polyimide compound (poly[2,2'
-Bis(trifluoromethyl)-4,4-biphenylene]-2",2"-dimethoxy-4,4"-biphenylenedicarboxamide, no=1.5, ne=2.0
) was stretched in one direction and then press-molded to form a birefringent layer (102) having a lens shape on one surface.

このレンズ体はがまぼこ状のレンチキュラーレンズであ
り、一方向にのみ集光が可能である。レンズ体の概要は
レンズ幅及びレンズピッチが共に150μm、レンズの
曲率半径が0.5關である。境界面における屈折率差が
0.5の場合にレンズの焦点距離(バックフォーカス距
離)が1.41a+*になるように設計した。つぎに、
複屈折層のレンズが形成されている側に、アクリル系の
プラスチック層(等方層(103)、no=1.5)を
注型により形成した後、厚さ1゜41關のガラス板(液
晶素子基板、 106 )と密着接合させ、先のレンズ
によりガラス板の裏面に片方の偏光成分のみが合焦する
ようにした。この部分にギャップ厚7μm1  幅30
μmのストライプ状の液晶(ツイステッド・ネマチック
液晶)素子を構成した。ストライプ状の液晶素子のうち
レンズによる合焦位置にある液晶素子部分(107)だ
けに電界をかけ、この液晶素子を透過した光のみがその
偏光方向を90″回転させる作用を受けるように構成し
た。
This lens body is a hollow-shaped lenticular lens, and is capable of condensing light in only one direction. The outline of the lens body is that the lens width and lens pitch are both 150 μm, and the radius of curvature of the lens is 0.5 μm. It was designed so that the focal length (back focus distance) of the lens would be 1.41a++ when the refractive index difference at the interface was 0.5. next,
After forming an acrylic plastic layer (isotropic layer (103), no=1.5) on the side of the birefringent layer where the lens is formed by casting, a glass plate with a thickness of 1°41° ( It was closely bonded to a liquid crystal element substrate (106), and only one polarized light component was focused on the back surface of the glass plate using the previous lens. Gap thickness in this part: 7μm1 Width: 30
A μm striped liquid crystal (twisted nematic liquid crystal) element was constructed. Of the striped liquid crystal elements, an electric field is applied only to the liquid crystal element part (107) at the focus position by the lens, and only the light transmitted through this liquid crystal element is configured to have its polarization direction rotated by 90''. .

いま、第1図において常光成分(偏光方向が紙面に平行
)を実線で、異常光成分(偏光方向が紙面に垂直)を破
線で示すと、上記構成をとることにより、偏光素子に入
射した光のうち常光成分は複屈折層(102)と等方層
(103)の界面において、回答屈折作用を受けず直進
(104)するのに対して、異常光成分は界面での屈折
率変化にともなう光の屈折作用を受は光が空間的に集め
られ、位相差を与えるTN型液晶素子(107,108
)上に焦点を結ぶ。
Now, in Figure 1, if the ordinary light component (polarization direction is parallel to the page) is shown by a solid line and the extraordinary light component (polarization direction is perpendicular to the page) is shown by a broken line, by adopting the above configuration, the light incident on the polarizing element Of these, the ordinary light component is not affected by the refraction effect and travels straight (104) at the interface between the birefringent layer (102) and the isotropic layer (103), whereas the extraordinary light component is caused by a change in refractive index at the interface. TN-type liquid crystal elements (107, 108
) Focus on the top.

電界をかけられた液晶素子部分(107,以後位相差肩
部と呼ぶ)を透過することにより異常光成分の偏光方向
は90°回転するため、常光成分の偏光方向と同一とな
る。なお、位相差肩部に入射した常光成分も同様に偏光
方向の回転作用を受けるが、全光透過面積(つまり、電
界をかけられていない液晶素子部分(ioa、以後透明
開口部と呼ぶ)と位相差肩部(107)の和)に対する
位相差肩部の占める割合が小さければ、偏光方向が充分
に揃った出射光を得ることが可能である。ちなみに、本
実施例の場合透明開口部と位相差肩部の面積比を4:1
としたため、全出射光に対して偏光方向が揃っている光
の割合は約90%と非常に高い。
The polarization direction of the extraordinary light component is rotated by 90 degrees by passing through the liquid crystal element portion (107, hereinafter referred to as a phase difference shoulder) to which an electric field is applied, so that it becomes the same as the polarization direction of the ordinary light component. Note that the ordinary light component incident on the retardation shoulder is also subject to the rotation of the polarization direction, but the total light transmission area (i.e., the portion of the liquid crystal element to which no electric field is applied (ioa, hereinafter referred to as transparent aperture)) If the ratio of the phase difference shoulder to the sum of the phase difference shoulders (107) is small, it is possible to obtain emitted light with sufficiently uniform polarization directions. By the way, in this example, the area ratio of the transparent opening and the phase difference shoulder is 4:1.
Therefore, the proportion of light with the same polarization direction among all the emitted light is very high, about 90%.

従来の偏光板は光吸収の二色性を利用して特定の偏光成
分のみを取り出していたため、光吸収にともなう発熱作
用により、強い光に対しては熱破壊の危険性を有してい
た。それに対して、本発明の偏光素子は、はとんど光吸
収作用を生じないため、強い光を入射した場合にも熱破
壊を生じることなく、高効率で偏光方向の変換を行なう
ことが可能である。
Conventional polarizing plates utilize dichroism of light absorption to extract only specific polarized light components, so there is a risk of thermal destruction from strong light due to the heat generation effect that accompanies light absorption. On the other hand, the polarizing element of the present invention hardly causes any light absorption effect, so it can convert the polarization direction with high efficiency without causing thermal damage even when strong light is incident. It is.

従来の偏光板を用いた方法では光透過率が最大45%程
度であったのに対して、本発明の偏光素子を用いた方法
では100%に近い光透過率が得られる。焦点を通過し
た光は集光時と同じ角度を持って広がるが、以上の構成
をある程度微小なサイズ(本実施例では集光レンズ径が
150μm)で、しかも焦点距離をある程度長゛<(つ
まり光の広がり角が小さい)とった構成とすれば、光線
の発散性はそれほど問題とはならず、光の吸収を伴わず
に入射光のほとんど全てを、偏光方向の揃った出射光と
することが可能である。
While the conventional method using a polarizing plate resulted in a maximum light transmittance of about 45%, the method using the polarizing element of the present invention provides a light transmittance close to 100%. The light that passes through the focal point spreads out at the same angle as when it was focused, but the above configuration can be made to a fairly small size (in this example, the diameter of the condensing lens is 150 μm), and the focal length is relatively long (i.e., If the configuration is such that the divergence angle of the light is small), the divergence of the light rays will not be much of a problem, and almost all of the incident light will be output light with the same polarization direction without any light absorption. is possible.

[実施例2] 第2図は本発明の偏光素子の応用例を示したもので、偏
光素子と従来の光吸収の二色性を利用した偏光板を組み
合わせて構成した偏光素子を示す構成断面図である。本
発明の偏光素子を単独で使用しても、かなり偏光方向の
揃った光束を得ることができるが、第2図に示すように
λ/2の位相差を与えるTN型液晶素子による位相差肩
部(107)の後方に、透過光の偏光方向に揃えて従来
の偏光板(201,偏光方向が紙面に対して平行である
光のみが透過できる)を配置すれば、極めて偏光方向の
揃った出射光を得ることができる。光吸収の二色性を利
用した偏光板は光吸収に伴い発熱作用を示すが、本発明
の偏光素子と組み合わせて使えば吸収される光の割合は
入射光量の1710程度であるため、強い光を入射した
場合にもほとんど熱破壊を生じることはない。本発明の
偏光素子を液晶表示素子、照明装置や光学測定機器など
に組み込む場合には上記のような構成とすることが理想
的である。
[Example 2] Figure 2 shows an application example of the polarizing element of the present invention, and is a cross section showing a polarizing element constructed by combining a polarizing element and a conventional polarizing plate that utilizes dichroism of light absorption. It is a diagram. Even if the polarizing element of the present invention is used alone, it is possible to obtain a luminous flux with fairly uniform polarization directions, but as shown in FIG. If a conventional polarizing plate (201, which can only transmit light whose polarization direction is parallel to the plane of the paper) is placed behind the section (107) in alignment with the polarization direction of the transmitted light, the polarization direction can be extremely aligned. Output light can be obtained. A polarizing plate that utilizes dichroism of light absorption exhibits a heat-generating effect as it absorbs light, but when used in combination with the polarizing element of the present invention, the proportion of light absorbed is about 1710 of the amount of incident light, so strong light There is almost no thermal damage even when it is incident. When the polarizing element of the present invention is incorporated into a liquid crystal display element, a lighting device, an optical measuring instrument, etc., it is ideal to have the above structure.

上記実施例では、何れも集光レンズ体として一方向集光
性のリニアレンチキュラーレンズアレイを用いたが、も
ちろん他の一般的な円形、楕円形レンズでもよい。しか
し、光の一方向偏光への変換効率を高めるためには、レ
ンズ体を二次元的に最密充填し非レンズ部分(つまり集
光に関与しない部分)が生じないようにすることが重要
であり、そのことを考慮するとレンズ形状をリニアレン
チキュラー形状とすることが最も理想的であるといえる
。なお、集光レンズの形状を円形にした場合にはレンズ
による集光スポット形状を考慮して、液晶素子の一つの
画素形状も集光スポット形状に近い、例えば正方形とす
ることが望ましいことは言うまでもない。また、液晶と
してはツイステッド・ネマチック液晶を用いたが、その
他にもカイラルスメクティック液晶などが使用可能であ
る。
In the above embodiments, a linear lenticular lens array with unidirectional light condensing properties is used as the condensing lens body, but other general circular or elliptical lenses may of course be used. However, in order to increase the efficiency of converting light into unidirectionally polarized light, it is important to close-pack the lens body two-dimensionally so that there are no non-lens parts (that is, parts that do not participate in light collection). Considering this, it can be said that the most ideal lens shape is a linear lenticular shape. In addition, when the shape of the condensing lens is circular, it goes without saying that it is desirable that the shape of one pixel of the liquid crystal element be close to the condensed spot shape, for example, square, in consideration of the condensed spot shape by the lens. stomach. Furthermore, although twisted nematic liquid crystal was used as the liquid crystal, other types such as chiral smectic liquid crystal can also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の偏光素子は、偏光面が互い
に直交する2つの直線偏光成分のうち、どちらか片方の
偏光成分のみを集光する手段と、該集光された直線偏光
成分の偏光面を回転させる手段より成ることにより、入
射した光のほとんど全てを偏光面が揃った出射光に、高
効率で変換することが可能である。
As explained above, the polarizing element of the present invention includes a means for condensing only one polarized light component out of two linearly polarized light components whose polarization planes are orthogonal to each other, and a polarization of the condensed linearly polarized light component. By comprising means for rotating the surface, it is possible to convert almost all of the incident light into output light with a uniform plane of polarization with high efficiency.

特に、偏光方向を回転させる手段としてTN型の液晶素
子を用いているため、例えば液晶素子の最小駆動単位を
寸法的に細分化しておくことにより、光軸に対して大き
な角度をもって入射した光束に対しても光の一方向偏光
への変換効率を低下させることなく対応することが可能
である。つまり、光軸に対して大きな角度で光が入射し
た場合、レンズによる合焦位置も大きく変化するが、そ
の場合にも液晶素子の電界付与部分の位置を変えるだけ
で、位相差層部の面積を変えることなく合焦位置に位相
差層部を最適配置できることがわかる。
In particular, since a TN type liquid crystal element is used as a means for rotating the polarization direction, for example, by dividing the minimum drive unit of the liquid crystal element into smaller dimensions, it is possible to It is possible to cope with this problem without reducing the conversion efficiency of light into unidirectionally polarized light. In other words, when light is incident at a large angle to the optical axis, the focusing position by the lens changes greatly, but even in that case, by simply changing the position of the electric field applying part of the liquid crystal element, the area of the retardation layer part can be changed. It can be seen that the retardation layer portion can be optimally placed at the in-focus position without changing the angle.

つまり、全光透過面積に対する位相差層部の割合を高め
ることなく(この割合を高めることは光の一方向偏光へ
の変換効率を低下させることを意味する)、入射光束の
光軸ずれに対しても柔軟に対応できることがわかる。
In other words, without increasing the ratio of the retardation layer to the total light transmission area (increasing this ratio means lowering the conversion efficiency of light into unidirectionally polarized light), It is clear that you can respond flexibly.

同様の目的で使用される従来の偏光板とは異なり、本発
明の偏光素子は本質的に光吸収が無いため、強い光線を
入射させた場合にも、発熱による自己破壊をまねくこと
なく安定的に機能する。
Unlike conventional polarizing plates used for similar purposes, the polarizing element of the present invention essentially has no light absorption, so even when strong light is incident, it remains stable without self-destruction due to heat generation. functions.

本発明の偏光素子は上記の特性を活かして、偏光を必要
とする各種表示体、特に液晶表示体、光アイソレータ、
光スィッチ、光学フィルタや、それらを構成要素とする
各種光学測定機器等、広範囲の応用が可能である。
The polarizing element of the present invention takes advantage of the above characteristics to be used for various displays that require polarized light, especially liquid crystal displays, optical isolators, etc.
A wide range of applications are possible, including optical switches, optical filters, and various optical measuring instruments that use them as components.

108・・・液晶素子(非電界付与部分、透明開口部) 109・・・透明電極 110・・・出射光束108...Liquid crystal element (non-electric field application part, transparent opening) 109...Transparent electrode 110...Outgoing light flux

【図面の簡単な説明】[Brief explanation of the drawing]

201・・・偏光板 第1図は本発明の偏光素子の原理構造を説明するための
構成断面図。 第2図は本発明の偏光素子に従来の偏光板を組み合わせ
て構成した偏光素子の構成断面図。 入射光束 複屈折層 等方層 常光線 異常光線 液晶素子基板 液晶素子(電界付与部分、 位相差層部) 第1図及び第2図に於て各々共通する部分には同じ番号
を用いた。 以  上 出願人 セイコーエプソン 株式会社 代理人 弁理士 銘木 喜三部(他1名)第2図
201...Polarizing plate FIG. 1 is a structural sectional view for explaining the principle structure of the polarizing element of the present invention. FIG. 2 is a cross-sectional view of a polarizing element constructed by combining the polarizing element of the present invention with a conventional polarizing plate. Incident light beam birefringent layer Isotropic layer Ordinary rays Extraordinary rays Liquid crystal element substrate Liquid crystal element (electric field applying part, retardation layer part) The same numbers are used for common parts in FIGS. 1 and 2. Applicant Seiko Epson Co., Ltd. Agent Patent Attorney Kisanbe Meiki (and 1 other person) Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)偏光面が互いに直交する2つの直線偏光成分のう
ち、どちらか片方の偏光成分のみを集光する手段と、片
方の偏光成分の偏光面が他方の偏光成分の偏光面と同一
になるように変換するための手段であるところの、偏光
面を90°回転させるツイステッド・ネマチック液晶を
配置した偏光面回転手段とから成ることを特徴とする偏
光素子。
(1) A means for focusing only one of two linearly polarized light components whose polarization planes are orthogonal to each other, and the polarization plane of one polarization component is the same as the polarization plane of the other polarization component. 1. A polarizing element comprising a polarizing plane rotating means in which a twisted nematic liquid crystal for rotating a polarizing plane by 90° is arranged.
(2)前記偏光素子を入射光束に垂直な面内に複数構成
してアレイ化したことを特徴とする請求項1記載の偏光
素子。
(2) The polarizing element according to claim 1, wherein a plurality of the polarizing elements are arranged in an array in a plane perpendicular to the incident light beam.
JP1136817A 1989-05-30 1989-05-30 Polarizing element Pending JPH032732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1136817A JPH032732A (en) 1989-05-30 1989-05-30 Polarizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1136817A JPH032732A (en) 1989-05-30 1989-05-30 Polarizing element

Publications (1)

Publication Number Publication Date
JPH032732A true JPH032732A (en) 1991-01-09

Family

ID=15184201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1136817A Pending JPH032732A (en) 1989-05-30 1989-05-30 Polarizing element

Country Status (1)

Country Link
JP (1) JPH032732A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346566A (en) * 1992-06-12 1993-12-27 Sharp Corp Projection type color image display device
JP2016519327A (en) * 2013-03-13 2016-06-30 ノース・キャロライナ・ステイト・ユニヴァーシティ Polarization conversion system using geometric phase hologram
JP2018159857A (en) * 2017-03-23 2018-10-11 株式会社ジャパンディスプレイ Lighting unit and display
JP2018173531A (en) * 2017-03-31 2018-11-08 株式会社ジャパンディスプレイ Optical device and display
JP2019082502A (en) * 2017-10-27 2019-05-30 株式会社ジャパンディスプレイ Optical element
JP2022024166A (en) * 2017-03-14 2022-02-08 株式会社ジャパンディスプレイ Light detection device and display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346566A (en) * 1992-06-12 1993-12-27 Sharp Corp Projection type color image display device
JP2016519327A (en) * 2013-03-13 2016-06-30 ノース・キャロライナ・ステイト・ユニヴァーシティ Polarization conversion system using geometric phase hologram
US10386558B2 (en) 2013-03-13 2019-08-20 Imagineoptix Corporation Polarization conversion systems with geometric phase holograms
JP2022024166A (en) * 2017-03-14 2022-02-08 株式会社ジャパンディスプレイ Light detection device and display device
JP2018159857A (en) * 2017-03-23 2018-10-11 株式会社ジャパンディスプレイ Lighting unit and display
JP2018173531A (en) * 2017-03-31 2018-11-08 株式会社ジャパンディスプレイ Optical device and display
JP2019082502A (en) * 2017-10-27 2019-05-30 株式会社ジャパンディスプレイ Optical element

Similar Documents

Publication Publication Date Title
US6104536A (en) High efficiency polarization converter including input and output lenslet arrays
US9563073B2 (en) Combined splitter, isolator and spot-size converter
JPH03132603A (en) Polarizer
JPH032732A (en) Polarizing element
Nersisyan et al. Axial polarizers based on dichroic liquid crystals
US5440424A (en) Prism optical device and polarizing optical device
JPH09243806A (en) Optical characteristic variable optical element
WO2005121876A1 (en) Optical device using polarized variable element
JP2718057B2 (en) Polarizing element
JP2023516558A (en) Achromatic optical devices based on birefringent materials with positive and negative birefringence dispersion
JPH035706A (en) Polarizing element
JPH01277203A (en) Polarizing element
JP2893769B2 (en) Polarizing element
JP2900896B2 (en) Polarizing element and lighting device
RU2143128C1 (en) Polarizer
JPH01265228A (en) Liquid crystal display element
JP3799756B2 (en) Optical head device
JPH04240804A (en) Polarizing element
JPH02308204A (en) Optical element
WO2008071823A2 (en) Achromatic polarisation converter and focusing device based on said converter
JP2008292965A (en) Multiple functional lens and optical device using multiple functional lens
JP2913823B2 (en) Liquid crystal display device and driving method thereof
JPH01281425A (en) Optical element
JP2003066450A (en) Liquid crystal element and optical attenuator
JP2671376B2 (en) Polarizing element