JPH035706A - Polarizing element - Google Patents

Polarizing element

Info

Publication number
JPH035706A
JPH035706A JP13971289A JP13971289A JPH035706A JP H035706 A JPH035706 A JP H035706A JP 13971289 A JP13971289 A JP 13971289A JP 13971289 A JP13971289 A JP 13971289A JP H035706 A JPH035706 A JP H035706A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
isotropic
polarizing element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13971289A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ito
嘉高 伊藤
Shoichi Uchiyama
正一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP13971289A priority Critical patent/JPH035706A/en
Publication of JPH035706A publication Critical patent/JPH035706A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate a linear polarized component from random polarized light by using a liquid crystal material which is birefringent as a means which converges polarized components. CONSTITUTION:The liquid crystal material which is birefringent is sandwiched in an oriented state between isotropic parts (12 and 14) formed of two optically isotropic transparent materials (with a refractive index ni). An anomalous light component (17) shown by a broken line is refracted by the border surface (15) between a liquid crystal layer (13) and the isotropic layer (12) because there is a difference ne>ni in refractive index between both the layers and then focused according to the lens shape formed of the border surface between the isotropic layer and liquid crystal layer. Then the polarizing direction of the anomalous light component is rotated by 90 deg. by using a phase difference plate (18) such as a lambda/2 plate to the polarization direction of an ordinary light component and then the incident light beam is hardly absorbed and projection light (2) having a uniform polarization direction is obtained. Consequently, the compact, inexpensive polarizing element which has small light absorption, nemely, has high efficiency of conversion to unidirectionally polarized light is obtained.

Description

【発明の詳細な説明】 〔従来の技術〕 従来の前記光学素子としては偏光板が代表的である。こ
れはお互いに直交する偏光成分を持つ入射光のうち、片
方の直線偏光成分のみを選択的に吸収し、他方の直線偏
光成分のみを透過させることにより、一方向の偏光成分
のみを有する出射光に変換するものである。しかし、従
来の偏光板では光吸収の二色性を利用しているため光の
利用効率が最大でも約45%と低く、また、光吸収に伴
う発熱作用により偏光板自体が熱破壊を生じる危険性を
有していた。そのため、光の一方向偏光への変換効率が
高く光吸収の少ない偏光素子の開発が待たれていた。そ
のような状況の中で、前記要求に応えるものとして、特
開昭57−158801に示されている光学素子(偏光
素子)が提案されている。
DETAILED DESCRIPTION OF THE INVENTION [Prior Art] A typical example of the conventional optical element is a polarizing plate. This method selectively absorbs only one linearly polarized light component of the incident light that has polarization components orthogonal to each other, and transmits only the other linearly polarized light component, resulting in output light that has only one polarized light component. It is converted into . However, since conventional polarizing plates utilize dichroism of light absorption, the light utilization efficiency is low at about 45% at maximum, and there is also a risk that the polarizing plate itself may be thermally destroyed due to the heat generation effect associated with light absorption. had sex. Therefore, the development of a polarizing element that has high efficiency in converting light into unidirectionally polarized light and has low light absorption has been awaited. Under such circumstances, an optical element (polarizing element) disclosed in Japanese Patent Application Laid-Open No. 57-158801 has been proposed to meet the above requirements.

〔産業上の利用分野〕[Industrial application field]

本発明はランダムな光の偏光特性を一方向の直線偏光に
変える偏光素子に関する。
The present invention relates to a polarizing element that changes the polarization characteristics of random light into unidirectional linearly polarized light.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前記特開昭57−158801に示されている
光学素子(偏光素子)では、−軸性の複屈折性を示す材
料としてアミド系の重合体が用いられているが、この種
の有機重合体は大きな複屈折性を示すものの、分子配向
性や重合体の成形方法が極めて難しいという間組点を有
していた。
However, in the optical element (polarizing element) shown in JP-A-57-158801, an amide polymer is used as a material exhibiting -axial birefringence, but this type of organic polymer Although the combination exhibits large birefringence, it has problems with molecular orientation and extremely difficult polymer molding methods.

そこで、本発明は以上のような問題点を解決するもので
、その目的とするところは、分子配向性や成形性に優れ
た複屈折材料を用いて光吸収の少ない、つまり、光の一
方向偏光への変換効率の高い、コンパクトかつ安価な偏
光素子を提供することにある。
Therefore, the present invention is intended to solve the above-mentioned problems.The purpose of the present invention is to use a birefringent material with excellent molecular orientation and moldability to reduce light absorption, that is, to reduce light absorption in one direction. An object of the present invention is to provide a compact and inexpensive polarizing element that has high conversion efficiency into polarized light.

〔課題を解決するための手段〕[Means to solve the problem]

上記課頭を解決するために本発明の偏光素子は、お互い
に直交する偏光成分を有する入射光を一方向の偏光成分
のみを有する出射光に変換する偏光素子において、偏光
成分を集光する手段として複屈折性を示す液晶材料を用
いたことを特徴とする。
In order to solve the above problem, the polarizing element of the present invention is a polarizing element that converts incident light having mutually orthogonal polarized light components into output light having only one polarized light component, and a means for condensing the polarized light components. It is characterized by using a liquid crystal material that exhibits birefringence.

また、前記偏光素子を入射光束に垂直な面内に複数構成
してアレイ化したことを特徴とする。
Further, the present invention is characterized in that a plurality of the polarizing elements are arranged in an array in a plane perpendicular to the incident light beam.

〔作用〕[Effect]

液晶状態においては極性高分子が規則的に配列されるこ
とにより光学的異方軸が形成される。ここに光が入射す
ると、媒質中の光学的異方軸に相応した振動面を有する
2つの光束(常光及び異常光)に分離される。この現象
は媒質の屈折能が2つの光線軸間で異なるために生じ、
−軸性複屈折性材料である液晶材料では常光成分に対し
no、異常光成分に対しはneなる2つの屈折率を有す
ることになる。
In the liquid crystal state, optical anisotropic axes are formed by regularly arranging polar polymers. When light enters here, it is separated into two beams (ordinary light and extraordinary light) having vibration planes corresponding to the optical anisotropic axis in the medium. This phenomenon occurs because the refractive power of the medium differs between the two optical axes,
-A liquid crystal material that is an axial birefringent material has two refractive indices: no for the ordinary light component and ne for the extraordinary light component.

第1図は本発明の偏光素子の構成断面図であり、この第
1図に基づいて本発明の詳細な説明する。
FIG. 1 is a cross-sectional view of the structure of a polarizing element of the present invention, and the present invention will be explained in detail based on this FIG.

2つの光学的に等方な透明材料(屈折率ni)  によ
り形成された等方性層(12,14)の間に、複屈折性
を示す液晶材料(常光屈折率no、異常光屈折率ne、
ne>noとする)が配向状態を保ったまま挟持されて
いる。ここで等方性層(12)の液晶M (13)に対
する側には断面形状が凹型のレンズパターン(15)が
形成されている。等方性層(12)に形成されている凹
型のレンズパターン(15)は等方性層の屈折率niと
液晶材料の異常光屈折率neとの関係がn e> n 
iと仮定したためであり、もし逆にni>neであると
仮定すると等方性層(12)には凸型のレンズ形状が形
成されなければならない。
Between isotropic layers (12, 14) formed of two optically isotropic transparent materials (refractive index ni), liquid crystal material exhibiting birefringence (ordinary refractive index no, extraordinary refractive index ne ,
(ne>no) are sandwiched while maintaining their orientation. Here, a lens pattern (15) having a concave cross-sectional shape is formed on the side of the isotropic layer (12) facing the liquid crystal M (13). The concave lens pattern (15) formed in the isotropic layer (12) has a relationship between the refractive index ni of the isotropic layer and the extraordinary refractive index ne of the liquid crystal material n e> n
This is because it is assumed that ni>ne, and conversely, if it is assumed that ni>ne, a convex lens shape must be formed in the isotropic layer (12).

いま、入射光線中の実線で示された常光成分(16)に
注目すると液晶!(13)、等方性!(12)間におい
ては屈折率差がないため、常光成分(16)に対しては
2つの層は光学的に同質な一体層と見なすことが出来る
。つまり、常光成分に対しては何等屈折作用を受けない
。他方、破線で示された異常光成分(17)に注目する
と液晶層(13)、等方性層(12)間においてはn 
e> n iなる屈折率差が存在するため、2つの層の
境界面(15)において光は屈折作用を受け、等方性層
と液晶層との界面によって形成されるレンズ形状に応じ
て焦点を形成する。
Now, if you pay attention to the ordinary light component (16) shown by the solid line in the incident light beam, you will see that it is a liquid crystal! (13), isotropic! Since there is no difference in refractive index between (12), the two layers can be regarded as an optically homogeneous integral layer with respect to the ordinary light component (16). In other words, the ordinary light component is not subjected to any refractive effect. On the other hand, focusing on the extraordinary light component (17) shown by the broken line, between the liquid crystal layer (13) and the isotropic layer (12), n
Since there is a refractive index difference e> n i, the light is refracted at the interface (15) between the two layers, and the focus is determined according to the lens shape formed by the interface between the isotropic layer and the liquid crystal layer. form.

次に、λ/2板などの位相差板(18)を用いて異常光
成分の偏光方向を90″回転させて常光成分の偏光方向
と合わせてやれば、入射光線はほとんど吸収されること
なく、偏光方向がよく揃った出射光(20)を得ること
ができる。
Next, if the polarization direction of the extraordinary light component is rotated by 90'' using a retardation plate (18) such as a λ/2 plate to match the polarization direction of the ordinary light component, almost no incident light will be absorbed. , it is possible to obtain output light (20) with well-aligned polarization directions.

〔実施例〕〔Example〕

以下、実施例に基づき本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail based on Examples.

但し、本発明は以下の実施例に限定されるものではない
However, the present invention is not limited to the following examples.

[実施例1] 第1図に基づいて本発明の実施例を詳しく説明する。片
面に凹型のレンズパターンを有する複屈折性を示さない
光学的に等方な等方性、1ffl((12)、以下基板
1と呼ぶ)及び両面が平板状の等方性層((14)、以
下基板2と呼ぶ)を高耐熱性のアクリル系樹脂材料(屈
折率n=1.49)により形成した。尚、基板1及び基
板2の厚みは各々1 mra、1.32mraとした。
[Example 1] An example of the present invention will be described in detail based on FIG. An optically isotropic layer having a concave lens pattern on one side and showing no birefringence, 1ffl ((12), hereinafter referred to as substrate 1), and an isotropic layer having a flat plate shape on both sides ((14) , hereinafter referred to as substrate 2) was formed from a highly heat-resistant acrylic resin material (refractive index n=1.49). Note that the thicknesses of substrate 1 and substrate 2 were 1 mra and 1.32 mra, respectively.

レンズパターンは第2図に示すように断面形状が凹型で
ある一方向集光性のリニアレンチキュラー状のパターン
をアレイ状に配列したもので、個々のパターン形状はレ
ンズ幅0゜1 mm、曲率半径0.2n+mである。上
記基板1及び基板2を用いて通常の液晶セルを組む方法
に準じて約10μmのギャップを持つセルを張り合わせ
により作製した。その後、減圧封入法により約10μm
の間隙に液晶材料(ネマチック液晶、常光屈折率no=
1.49、異常光屈折率 ne=1.。
As shown in Figure 2, the lens pattern is an array of unidirectional light-concentrating linear lenticular patterns with a concave cross-sectional shape, each with a lens width of 0°1 mm and a radius of curvature. It is 0.2n+m. A cell having a gap of about 10 μm was fabricated by laminating the substrates 1 and 2 together according to the method of assembling a normal liquid crystal cell. After that, approximately 10 μm was obtained using the reduced pressure encapsulation method.
Liquid crystal material (nematic liquid crystal, ordinary refractive index no =
1.49, extraordinary refractive index ne=1. .

71)を注入し、封止して、等方性層−複屈折性層一等
方性層の3層構造体を形成した。なお、この場合基板1
および基板2の液晶材料と接する面倒には予めポリイミ
ドによる配向材を塗布しておき、液晶材料が配向し易い
ようにしておいた。また、基板2の液晶材料と接しない
面には、上記レンズピッチに合わせて、λ/2の位相差
を与える幅20μmのストライブ状の位相差板(18)
を予め形成しておいた。
71) was injected and sealed to form a three-layer structure consisting of an isotropic layer, a birefringent layer, and an isotropic layer. In this case, the substrate 1
An alignment material made of polyimide was applied in advance to the areas of the substrate 2 that were in contact with the liquid crystal material, so that the liquid crystal material could be easily aligned. In addition, on the surface of the substrate 2 not in contact with the liquid crystal material, there is a striped retardation plate (18) with a width of 20 μm that provides a phase difference of λ/2 in accordance with the lens pitch.
was formed in advance.

いま、第1図において常光成分(偏光方向が紙面に平行
)を実線で、異常光成分(偏光方向が紙面に垂直)を破
線で示すと、等方性!(12)の屈折率niと液晶層(
13)の常光屈折率noが等しいことにより、偏光素子
に入射した光のうち常光成分は等方性! (12)と液
晶層(13)の界面において、同等屈折作用を受けるこ
となく直進するのに対して、異常光成分は界面での屈折
率変化にともなう光の屈折作用を受は光が空間的に集め
られ、λ/2の位相差を与える位相差板(18)上に焦
点を結ぶ。この位相差板を透過することにより偏光方向
は900回転するため、異常光成分の偏光方向は常光成
分の偏光方向と同一となる。なお、位相差板に入射した
常光成分も同様に偏光方向の回転作用を受けるが、全光
透過面積に対する位相差板の占める面積の割合が小さけ
れば、偏光方向が充分に揃った出射光を得ることが可能
である。ちなみに、本実施例の場合、位相差板の全光透
過面積に占める面積の割合は20%であるため、全出射
光に対して偏光方向が揃っている光の割合は約90%と
非常に高い。
Now, in Figure 1, if we show the ordinary light component (polarization direction parallel to the page) as a solid line and the extraordinary light component (polarization direction perpendicular to the page) as a broken line, we can see that it is isotropic! (12) refractive index ni and liquid crystal layer (
13) Since the ordinary light refractive index no is the same, the ordinary light component of the light incident on the polarizing element is isotropic! At the interface between (12) and the liquid crystal layer (13), the light travels straight without being subjected to the same refraction effect, whereas the extraordinary light component is subject to the refraction effect due to the change in the refractive index at the interface. is focused on a retardation plate (18) that provides a phase difference of λ/2. Since the polarization direction is rotated 900 times by passing through this retardation plate, the polarization direction of the extraordinary light component is the same as the polarization direction of the ordinary light component. Note that the ordinary light component incident on the retardation plate is also subject to the rotation of the polarization direction, but if the ratio of the area occupied by the retardation plate to the total light transmission area is small, output light with sufficiently uniform polarization directions can be obtained. Is possible. Incidentally, in the case of this example, the area ratio of the retardation plate to the total light transmission area is 20%, so the ratio of light with the same polarization direction to all emitted light is approximately 90%, which is extremely large. expensive.

従来の偏光板は光吸収の二色性を利用して特定の偏光性
分のみを取り出していたため、光吸収にともなう発熱作
用により、強い光に対しては熱破壊の危険性を有してい
た。それに対して、本発明の偏光素子は、はとんど光吸
収作用を生じないため、強い光を入射した場合にも熱破
壊を生じることなく、高効率で偏光方向の変換を行なう
ことが可能である。
Conventional polarizing plates take advantage of the dichroism of light absorption to extract only a specific polarized component, so there is a risk of thermal destruction from strong light due to the heat generation effect that accompanies light absorption. . On the other hand, the polarizing element of the present invention hardly causes any light absorption effect, so it can convert the polarization direction with high efficiency without causing thermal damage even when strong light is incident. It is.

従来の偏光板を用いた方法では光透過率が最大45%程
度であるのに対して、本発明の偏光素子を用いた方法で
は100%に近い光透過率が得られる。焦点を通過した
光は集光時と同じ角度を持って広がるが、以上の構成を
ある程度小さなサイズ(本実施例では集光レンズ幅が1
00μm)で、しかも焦点距離をある程度長く(つまり
光の広がり角が小さい)とった構成とすれば、光線の発
散性はほとんど問題とはならず、光の吸収を伴わずに入
射光のほとんど全てを、偏光方向の揃った出射光に変換
することが可能である。
While the conventional method using a polarizing plate has a maximum light transmittance of about 45%, the method using the polarizing element of the present invention provides a light transmittance close to 100%. The light that passes through the focal point spreads out at the same angle as when it was focused, but the above configuration can be modified to a somewhat smaller size (in this example, the width of the focusing lens is 1
00 μm), and if the focal length is set to a certain length (that is, the spread angle of light is small), the divergence of light rays will hardly be a problem, and almost all of the incident light will be absorbed without light absorption. can be converted into emitted light with uniform polarization direction.

用しても、かなり偏光方向の揃った光束を得ることが出
来るが、第2図に示すように位相差板(18)の後方に
、透過光の偏光方向に揃えて従来の偏光板((21)、
偏光方向が紙面に対して平行である光のみが透過できる
)を配置すれば、極めて偏光方向の揃った出射光を得る
ことが出来る。光吸収の二色性を利用した偏光板は光吸
収に伴い発熱作用を示すが、本発明の偏光素子と組み合
わせて使えば吸収される光の割合は入射光量の1/10
程度であるため、強い光を入射した場合にもほとんど熱
破壊を生じることはない。本発明の偏光素子を液晶表示
素子、照明装置や光学測定機器などに紹み込む場合には
上記のような構成とすることが理想的である。
However, as shown in Figure 2, a conventional polarizing plate (( 21),
Only light whose polarization direction is parallel to the paper surface can be transmitted), it is possible to obtain output light with extremely uniform polarization directions. A polarizing plate that utilizes the dichroism of light absorption exhibits a heat-generating effect as it absorbs light, but when used in combination with the polarizing element of the present invention, the proportion of light absorbed is 1/10 of the amount of incident light.
Therefore, even when strong light is incident, thermal destruction hardly occurs. When introducing the polarizing element of the present invention into a liquid crystal display element, a lighting device, an optical measuring instrument, etc., it is ideal to have the above configuration.

[実施例2] 第2図は本発明の偏光素子の応用例を示したもので、偏
光素子と従来の光吸収の二色性を利用した偏光板を組み
合わせて構成した偏光素子を示す構成断面図である。本
発明の偏光素子を単独で使上記実施例では、何れも集光
レンズ体として一方向集光性のリニアレンチキュラーレ
ンズアレイを用いたが、もちろん他の一般的な円形、楕
円形レンズでもよい。しかし、光の一方向偏光への変換
効率を高めるためにはレンズ体を二次元的に最密充填し
、非レンズ部分(つまり集光に関与しない部分)が生じ
ないようにすることが重要であり、そのことを考慮する
とレンズ形状をリニアレンチキュラー形状とすることが
最も理想的であるといえる。なお、使用できるその他の
液晶材料としては、スメクチック系、コレステリック系
などかある。
[Example 2] Figure 2 shows an application example of the polarizing element of the present invention, and is a cross section showing a polarizing element constructed by combining a polarizing element and a conventional polarizing plate that utilizes dichroism of light absorption. It is a diagram. Using the Polarizing Element of the Invention Alone In the above embodiments, a linear lenticular lens array with unidirectional light condensing properties was used as the condensing lens body, but of course other general circular or elliptical lenses may also be used. However, in order to increase the conversion efficiency of light into unidirectionally polarized light, it is important to close-pack the lens body two-dimensionally and to prevent the formation of non-lens parts (that is, parts that do not participate in light collection). Considering this, it can be said that the most ideal lens shape is a linear lenticular shape. Note that other liquid crystal materials that can be used include smectic and cholesteric materials.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の偏光素子は、お互いに直交
する偏光成分を有する入射光を一方向の偏光成分のみを
有する出射光に変換する偏光素子において、偏光成分を
集光する手段として複屈折性を示す液晶材料を用いたこ
とにより、ランダムな偏光から直線偏光成分の分離を行
なう複屈折レンズを簡単に構成することが出来る。また
、液晶表示素子の製造技術が応用できるため、製造コス
トを安価に抑えることが出来る。本発明の構成では液晶
分子を動かす必要がないため、例えば液晶の粘度特性に
限定されることなく、多種多様な液晶材料を使用するこ
とが可能である。本発明の構成をとることにより、入射
した光のほとんど全てを偏光面が揃った出射光に、高効
率で変換することが可能である。
As explained above, the polarizing element of the present invention converts incident light having polarization components orthogonal to each other into output light having only one polarization component, and uses birefringence as a means for focusing the polarization components. By using a liquid crystal material that exhibits properties, it is possible to easily construct a birefringent lens that separates linearly polarized light components from random polarized light. Furthermore, since manufacturing technology for liquid crystal display elements can be applied, manufacturing costs can be kept low. Since the configuration of the present invention does not require moving liquid crystal molecules, it is possible to use a wide variety of liquid crystal materials without being limited by the viscosity characteristics of liquid crystal, for example. By adopting the configuration of the present invention, it is possible to convert almost all of the incident light into output light with a uniform plane of polarization with high efficiency.

同様の目的で使用される従来の偏光板とは異なり、本発
明の偏光素子は本質的に光吸収がないため、強い光線を
入射させた場合にも、発熱による自己破壊をまねくこと
なく安定的に機能する。
Unlike conventional polarizing plates used for similar purposes, the polarizing element of the present invention has essentially no light absorption, so even when strong light is incident, it remains stable without self-destruction due to heat generation. functions.

本発明の偏光素子は上記の特性を活がして、偏光を必要
とする各種表示素子、特に液晶表示素子、光アイソレー
タ、光スィッチ、光学フィルタや、それらを構成要素と
する各種光学測定機器など、広範囲の応用が可能である
The polarizing element of the present invention takes advantage of the above characteristics to be used in various display elements that require polarized light, particularly liquid crystal display elements, optical isolators, optical switches, optical filters, and various optical measurement instruments that use these as constituent elements. , a wide range of applications are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の偏光素子の原理構造を説明するための
構成断面図。 第2図は基鈑1の外観図。 第3図は本発明の偏光素子に従来の偏光板を組み合わせ
て構成した偏光素子の構成断面図。 1 2 3 4 5 6 7 8 9 0 入射光 等方性層 液晶層(複屈折層) 等方性層 レンズパターン(境界面) 常光線 異常光線 位相差板 常光線(変換後) 出射光 21 ・ ・偏光板 第1図及び第3図において各々共通する部分には同じ番
号を用いた。 以上 第3図
FIG. 1 is a cross-sectional view of the structure of the polarizing element of the present invention for explaining its basic structure. Figure 2 is an external view of base plate 1. FIG. 3 is a cross-sectional view of a polarizing element constructed by combining the polarizing element of the present invention with a conventional polarizing plate. 1 2 3 4 5 6 7 8 9 0 Incident light isotropic layer Liquid crystal layer (birefringent layer) Isotropic layer lens pattern (boundary surface) Ordinary ray Extraordinary ray Retardation plate Ordinary ray (after conversion) Output light 21 ・・Polarizing plate The same numbers are used for common parts in FIGS. 1 and 3. Figure 3 above

Claims (2)

【特許請求の範囲】[Claims] (1)お互いに直交する偏光成分を有する入射光を一方
向の偏光成分のみを有する出射光に変換する偏光素子に
おいて、偏光成分を集光する手段として複屈折性を示す
液晶材料を用いたことを特徴とする偏光素子。
(1) In a polarizing element that converts incident light having polarization components orthogonal to each other into outgoing light having polarization components in only one direction, a liquid crystal material exhibiting birefringence is used as a means for focusing the polarization components. A polarizing element characterized by:
(2)前記偏光素子を入射光束に垂直な面内に複数構成
してアレイ化したことを特徴とする請求項1記載の偏光
素子。
(2) The polarizing element according to claim 1, wherein a plurality of the polarizing elements are arranged in an array in a plane perpendicular to the incident light beam.
JP13971289A 1989-06-01 1989-06-01 Polarizing element Pending JPH035706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13971289A JPH035706A (en) 1989-06-01 1989-06-01 Polarizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13971289A JPH035706A (en) 1989-06-01 1989-06-01 Polarizing element

Publications (1)

Publication Number Publication Date
JPH035706A true JPH035706A (en) 1991-01-11

Family

ID=15251664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13971289A Pending JPH035706A (en) 1989-06-01 1989-06-01 Polarizing element

Country Status (1)

Country Link
JP (1) JPH035706A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041604A (en) * 2005-08-04 2007-02-15 Samsung Electronics Co Ltd High-resolution autostereoscopic display
KR20170037072A (en) * 2015-09-25 2017-04-04 주식회사 엘지화학 Optical element
US9632223B2 (en) 2013-10-24 2017-04-25 Moxtek, Inc. Wire grid polarizer with side region

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041604A (en) * 2005-08-04 2007-02-15 Samsung Electronics Co Ltd High-resolution autostereoscopic display
US9632223B2 (en) 2013-10-24 2017-04-25 Moxtek, Inc. Wire grid polarizer with side region
KR20170037072A (en) * 2015-09-25 2017-04-04 주식회사 엘지화학 Optical element

Similar Documents

Publication Publication Date Title
US7764354B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
Serak et al. Diffractive waveplate arrays
JP3620145B2 (en) Optical head device
JPH03174502A (en) Polarization-sensitive beam splitter and method of manufacturing the same
US6304312B1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
JP2010204447A (en) Liquid crystal optical element
CN1141601C (en) Continuous vari-focus Fresnel lens
KR100634550B1 (en) Polarization converting system and method for manufacturing the same and liquid crystal display apparatus employing it
Nersisyan et al. Axial polarizers based on dichroic liquid crystals
JP2718057B2 (en) Polarizing element
JPH035706A (en) Polarizing element
JP4106981B2 (en) Optical attenuator
JP2007225905A (en) Optical isolator and bidirectional optical transmitting/receiving apparatus
JPH032732A (en) Polarizing element
KR101866193B1 (en) Bi-focal gradient index lens and method for fabricating the lens
JPH02308204A (en) Optical element
JP3598703B2 (en) Optical head device and manufacturing method thereof
JP2893769B2 (en) Polarizing element
JPH01277203A (en) Polarizing element
JP2900896B2 (en) Polarizing element and lighting device
JPH04240804A (en) Polarizing element
JP2007233410A (en) Light reflective polarizer and projector using the same
JP2003066450A (en) Liquid crystal element and optical attenuator
JP2004198958A (en) Polarizing element
JPH01265228A (en) Liquid crystal display element