JPH03272439A - Method and apparatus for measuring rustproof oil coating amount on steel plate - Google Patents

Method and apparatus for measuring rustproof oil coating amount on steel plate

Info

Publication number
JPH03272439A
JPH03272439A JP7307590A JP7307590A JPH03272439A JP H03272439 A JPH03272439 A JP H03272439A JP 7307590 A JP7307590 A JP 7307590A JP 7307590 A JP7307590 A JP 7307590A JP H03272439 A JPH03272439 A JP H03272439A
Authority
JP
Japan
Prior art keywords
light
steel plate
intensity
oil
wavelength region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7307590A
Other languages
Japanese (ja)
Inventor
Takayuki Yanagimoto
柳本 隆之
Susumu Moriya
進 守屋
Fumihiko Ichikawa
文彦 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7307590A priority Critical patent/JPH03272439A/en
Publication of JPH03272439A publication Critical patent/JPH03272439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To accurately measure a rustproof oil coating amount by branching a reflected light from a steel plate, selectively detecting the intensities of lights of an excited wavelength region and a fluorescent wavelength region, and correcting the intensity of the received light of the fluorescent wavelength region by the surface state of the plate according to the information. CONSTITUTION:The surface of a steel plate 3 continuously fed and coated with rustproof oil is emitted with a luminous flux 2 of specific exciting wavelength from a light source 1. Reflected lights from the plate 3 are condensed by a condensing lens 4. The condensed reflected light is guided to a light dividing element 5 to be branched to luminous fluxes 2a, 2b. The flux 2a is guided to a spectral element 8 and detected at the intensity of an exciting wavelength region by a photodetector 6. The flux 2b is guided to a spectral element 9 and detected at the intensity of a fluorescent wavelength region by a photodetector 7. A calculator 10 corrects the received intensity of the fluorescent wavelength region by the surface state of the plate 3 by the outputs of the photodetectors 6, 7 and calculates the quantity of coating oil of the plate 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鋼板表面の防錆油塗布量測定方法ならびにその
装置に係り、とくに、製鉄業における冷間圧延工程、表
面処理工程でのオンライン品質管理、塗油量制御に適用
するのに好適で、鋼板表面の防錆油塗布量を高精度で測
定できる測定方法ならびにその装置に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method and apparatus for measuring the amount of rust preventive oil applied to the surface of a steel plate, and in particular, on-line quality control in the cold rolling process and surface treatment process in the steel industry. The present invention relates to a measuring method and apparatus suitable for application to control of the amount of oil applied and capable of measuring the amount of rust preventive oil applied on the surface of a steel plate with high accuracy.

従  来  の  技  術 一般に、冷間圧延や表面処理等の工程を経て製造された
冷延鋼板や各種メツキ材などの表面には、錆の発生を防
ぐために、防錆油が塗布されている。この塗油方法は、
通常、静電塗油装置を用いた連続的塗油方法が一般的で
ある。
Conventional technology In general, the surfaces of cold-rolled steel sheets and various plating materials manufactured through processes such as cold rolling and surface treatment are coated with anti-rust oil to prevent rust from forming. This anointing method is
Usually, a continuous oil application method using an electrostatic oil application device is common.

しかしながら、この連続的塗油方法においては、防錆油
の塗布量の不足、塗油むらの発生によって、防錆効果の
低下を招来し、逆に、塗布量の過剰によって、防錆油の
原単位の増加、脱脂不良による不メツキ部が発生等とい
う問題が生じる。−万、ユーザの脱脂設備の能力は異な
ることから、最近では塗布すべき防錆油の油種、塗布量
が個別的に指定されるケースが多く、この要請に対応す
るために、R密な塗布量の管理が要求される。
However, in this continuous oil application method, the rust prevention effect is reduced due to an insufficient amount of rust preventive oil applied and uneven oil application, and conversely, an excessive amount of oil applied causes the raw material of rust preventive oil to deteriorate. Problems arise such as an increase in the number of units and the occurrence of unmetallic parts due to insufficient degreasing. -Since the capabilities of users' degreasing equipment vary, recently there are many cases in which the type and amount of anti-corrosion oil to be applied are individually specified. Control of application amount is required.

しかし、この塗布量の管理の主流は、サンプリングによ
るオフラインバッチ測定によるものであって、この管理
方法では次の通りの問題がある。
However, the main method of controlling the coating amount is off-line batch measurement using sampling, and this control method has the following problems.

この塗布量は、主として、例えば精密天秤による重量法
や、水面上に形成された単分子層の油の面積から塗布量
を算出するハイドロフィルバランス法等によって測定さ
れている。しかし、前者の精密天秤による重量法では、
塗油量が1100II/m2程度の如く少量であると、
WJ密が悪く、後者のハイドロフィルバランス法では、
測定に長時間を要するという問題がある。また、これら
の方法は、いずれもオフラインによる測定方式であり、
圧延コイル中の1点から数点を測定するのみで、各測定
値が必ずしもコイル全長の代表値を表しているとは限ら
ず、これにもとすいて塗布量の調整を行なうことがきわ
めて難しい。
The coating amount is mainly measured by, for example, a gravimetric method using a precision balance, a hydrofil balance method in which the coating amount is calculated from the area of a monomolecular layer of oil formed on the water surface, or the like. However, in the former gravimetric method using a precision balance,
If the amount of oil applied is small, such as about 1100II/m2,
WJ density is poor and the latter hydrofill balance method
There is a problem that measurement requires a long time. In addition, all of these methods are offline measurement methods,
Measurements are only made at one to several points in the rolled coil, and each measured value does not necessarily represent the representative value of the entire length of the coil, making it extremely difficult to adjust the coating amount. .

そこで、これらの欠点を克服するために、種々のオンラ
イン測定法が提案されている。
Therefore, various online measurement methods have been proposed to overcome these drawbacks.

このようなオンライン測定方法の一つとして、例えば特
開昭63−61146号公報に、水銀ランプ等の励起光
1’llt艮、例えば水銀ランプの場合、253、77
nm)を鋼板の防錆油付着面に照射し、このときに油中
に含まれる蛍光発生物質から生ずる蛍光量を測定して防
錆油付@量を算定する方法が提案されている。この方法
は十分な感度が得られることの確認はなされているが、
塗布量が100JI、’12100如く小量のプロセス
では、下地反射酸分が大きいため、コイル毎に異なる表
面粗度ヤ、光沢等の表面性状の変化によって測定誤差が
生じ、安定した測定を行なうことが困難である。
As one of such online measurement methods, for example, Japanese Patent Application Laid-Open No. 63-61146 discloses that excitation light 1'llt from a mercury lamp, e.g., 253, 77
A method has been proposed in which the rust-preventive oil adhesion amount is calculated by irradiating the surface of the steel plate with anti-corrosive oil (nm) and measuring the amount of fluorescence generated from the fluorescent substance contained in the oil. Although it has been confirmed that this method provides sufficient sensitivity,
In processes where the amount of coating is small, such as 100 JI or '12100, the reflected acid content of the base is large, and measurement errors occur due to changes in surface properties such as surface roughness and gloss, which vary from coil to coil, so it is necessary to perform stable measurements. is difficult.

また、特開昭61−138102号公報には、防錆油が
塗布された鋼板の表面に特定波長の励起用レーザ光を@
躬し、このとき二に鋼板表面から生ずる蛍光スペクトル
のうち1.油のみに含まれる蛍光スペクトルの強度を検
出し、この蛍光スペクトルの強度から油の塗布量を求め
る方法が提案されている。しかし、この方法では、ライ
ンの上流側にオンライン粗度計を設置する必要があるほ
か、同一粗度であっても、例えば光沢などの表面性状が
異なる鋼板の場合は、検出される蛍光スペクトル強度は
表面性状変化によって影響をうけ、測定値に誤差が生じ
る欠点がある。
Furthermore, in Japanese Patent Application Laid-open No. 138102/1982, excitation laser light of a specific wavelength is applied to the surface of a steel plate coated with anti-rust oil.
At this time, secondly, one of the fluorescence spectra generated from the steel plate surface. A method has been proposed in which the intensity of the fluorescence spectrum contained only in oil is detected and the amount of oil applied is determined from the intensity of this fluorescence spectrum. However, with this method, it is necessary to install an online roughness meter upstream of the line, and in the case of steel sheets with the same roughness but different surface properties such as gloss, the detected fluorescence spectral intensity is affected by changes in surface properties, resulting in errors in measured values.

発明が解決しようとする課題 本発明は上記のような課題を解決なすべくなされたもの
であって、なかでも、上記のオンライン測定方法である
と下地鋼板の表面性状に影響されて、防錆油の塗布量が
高精度に測定できない欠点を、解決することを目的とす
る。
Problems to be Solved by the Invention The present invention has been made to solve the above-mentioned problems, and in particular, the above-mentioned online measurement method is affected by the surface properties of the base steel plate, The purpose is to solve the drawback that the coating amount cannot be measured with high precision.

課題を解決するための 手段ならびにその作用 ます、上記の如く、特開昭61−138102号公報に
記載される塗油量測定方法であると、鋼板表面性状の変
化によって蛍光スペクトル強度が影響されるため、この
影響を除去するために実験、検討を行なった。この実験
の結果、鋼板表面から生じる反射スペクトルには油の蛍
光酸分のほかに励起光酸分が含まれ、しかも、励起光波
長と蛍光波長とは接近しているため、蛍光波長領域のス
ペクトル強度は蛍光のみのスペクトル強度ではなく励起
光の蛍光量wi、成分も含まれていることがわかった。
Means for solving the problem and its effect. As mentioned above, in the oil coating amount measurement method described in JP-A-61-138102, the fluorescence spectrum intensity is affected by changes in the surface properties of the steel sheet. Therefore, we conducted experiments and studies to eliminate this effect. As a result of this experiment, the reflection spectrum generated from the steel sheet surface includes excitation photoacid components in addition to the fluorescent acid component of the oil, and since the excitation light wavelength and fluorescence wavelength are close to each other, the spectrum in the fluorescence wavelength region It was found that the intensity is not only the spectral intensity of fluorescence but also includes the fluorescence amount wi and components of the excitation light.

また、この蛍光波長領域に含まれる励起光の量は下地鋼
板の表面状態によって変化し、とくに、表面状態によっ
て蛍光液要領域の光強度が異なることがわかった。更に
、蛍光波長領域に含まれる励起光成分の強度は、励起光
′tL長領域の励起光強度変化と相関関係があり、防錆
油の付@量によって、光の吸収などの原因により、光強
度の絶対値は変化するものの、強度比は保たれることが
わかった。
It has also been found that the amount of excitation light included in this fluorescent wavelength region varies depending on the surface condition of the underlying steel plate, and in particular, the light intensity in the fluorescent liquid required region varies depending on the surface condition. Furthermore, the intensity of the excitation light component included in the fluorescence wavelength region has a correlation with the excitation light intensity change in the excitation light 'tL long region. It was found that although the absolute value of intensity changes, the intensity ratio is maintained.

そこで、これら結果から、鋼板表面の反射スペクトル中
の励起光波長領域と蛍光波長領域の強度の関係から、蛍
光波長領域に含まれる励起光量の算出が可能であり、こ
の励起光量を蛍光波長領域の全強度から差し引くことに
よって、表面状態の影響を除去した塗油量の算出が高精
度にできることがわかる。
Therefore, from these results, it is possible to calculate the amount of excitation light included in the fluorescence wavelength region from the relationship between the intensity of the excitation light wavelength region and the fluorescence wavelength region in the reflection spectrum of the steel plate surface, and the amount of excitation light included in the fluorescence wavelength region can be calculated. It can be seen that by subtracting from the total strength, the amount of oil applied can be calculated with high accuracy, removing the influence of the surface condition.

すなわち、本発明の要旨とするところは、油が塗布され
た鋼板表面に特定波長の励起光を照射し、これにより得
られる鋼板表面の反射光を光学素子により分岐し、これ
ら分岐した反射光のうちで一方の反射光から励起光′l
l長戊分の強度を選択的に採取し、他方の反射光から蛍
光波長領域の強度を採取し、これら採取の結果から、得
られた情報によって表面状態の影響を除去した蛍光のみ
の強度を算出し、鋼板上の!l!油働を高精度に求める
鋼板表面の塗油量測定方法ならびにその装置である。
In other words, the gist of the present invention is to irradiate the surface of a steel plate coated with oil with excitation light of a specific wavelength, to split the resulting reflected light from the steel plate surface using an optical element, and to separate these branched reflected lights. Excitation light 'l from one of the reflected lights
Selectively collect the intensity of the l-length component, collect the intensity of the fluorescence wavelength region from the other reflected light, and from the results of these collections, use the information obtained to calculate the intensity of only the fluorescence with the influence of the surface condition removed. Calculate and on the steel plate! l! This is a method and device for measuring the amount of oil applied to the surface of a steel plate to determine the oil action with high precision.

次に、これら手段たる構成ならびにその作用について更
に詳しく説明すると、次の通りである。
Next, the structure of these means and their operation will be explained in more detail as follows.

まず、本発明によって鋼板表面に塗布された油の量を測
定するに当って、この油が付着した鋼板表面に特定′t
l長の励起光を照制し、この照射によって生じる反射光
を光学素子によって分岐し、一方の分岐した反射光につ
いて、励起光波長領域の反射強度変化を測定し、他方の
分岐した反射光について油の蛍光波長領域の強度測定を
する。
First, in measuring the amount of oil applied to the surface of a steel plate according to the present invention, the surface of the steel plate to which this oil has adhered must be
1-length excitation light is irradiated, the reflected light generated by this irradiation is split by an optical element, the reflection intensity change in the excitation light wavelength region is measured for one branched reflected light, and the reflected light for the other branched reflected light is measured. Measures the intensity of the oil's fluorescence wavelength range.

すなわち、特定波長の励起光を油の付着した鋼板表面に
照射することにより得られる反射光、つまり、反射スペ
クトルは単に油の蛍光酸分のみから成るものでなく、第
2図に示すように、油の蛍光酸分のほかに励起光成分が
含まれ、しがも、その強度は励起光が非常に強く、それ
ぞれの波長は接近している。このため、蛍光波長領域の
強度は、油の蛍光成分と励起光成分とが加算されたもの
になっている。さらに、この励起光成分は下地鋼板の表
面状!9による光散乱分布の違いにより検出角度で変化
する。
In other words, the reflected light obtained by irradiating the oil-covered steel plate surface with excitation light of a specific wavelength, that is, the reflection spectrum, does not simply consist of the fluorescent acid content of the oil, but as shown in Figure 2. In addition to the fluorescent acid content of the oil, it also contains an excitation light component, and the intensity of the excitation light is very strong, with wavelengths close to each other. Therefore, the intensity in the fluorescence wavelength region is the sum of the oil fluorescence component and the excitation light component. Furthermore, this excitation light component is similar to the surface of the underlying steel plate! 9 varies depending on the detection angle due to the difference in light scattering distribution.

しかしながら、この変化量は、上記の如く、実験的に、
励起光波長領域の励起光強度と蛍光波長領域に含まれる
励起光強度とに相関関係を持っていることが確認でき、
なかでも、鋼板に油が付着した場合でも、油による光の
吸収によって強度の絶対値は異なっても、この相関関係
はIIされ、必ずしも、蛍光波長領域に含まれる励起光
強度を直接求めなくとも、蛍光′!l領域に含まれる励
起光強度は励起光領域の励起光強度を測定することによ
り正確に求めることができる。
However, as mentioned above, this amount of change is experimentally
It was confirmed that there is a correlation between the excitation light intensity in the excitation light wavelength region and the excitation light intensity included in the fluorescence wavelength region.
In particular, even if oil adheres to a steel plate, even if the absolute value of the intensity differs due to the absorption of light by the oil, this correlation is expressed as II, and it is not necessary to directly calculate the excitation light intensity included in the fluorescence wavelength region. ,fluorescence'! The excitation light intensity included in the l region can be accurately determined by measuring the excitation light intensity in the excitation light region.

すなわち、粗度の小さい鋼板と粗度の大きい鋼板とに防
錆油を付着し、この付Imを変化させ、上記の如く、励
起光領域の励起光強度が蛍光液領域に含まれる励起光強
度との間で相関関係を持つことを利用して、蛍光′lI
l鎖長の受光強度と蛍光′tL長領域に含まれる励起光
強度を実験的に求めたところ、第3図ならびに第4図に
示す通りであった。第3図ならびに第4図において符号
◆は蛍光波長領域の受光強度を示し、◇は蛍光液領域に
含まれる励起光強度を示し、なかでも、第3図は粗度の
小さい鋼板、第4図は粗度の大きい鋼板を示す。これら
2つの情報から蛍光強度を算出すると、符号■で示す蛍
光強度が得られる。更に詳しく説明すると、第4図に示
す如く、表面粗度の大きい鋼板では、光の散乱の影響が
大きく、蛍光波長領域に含まれる励起光の割合が大きい
。これに対し、第3図に示す如く、表面粗度の小さい鋼
板では、光の散乱の影響が比較的小さいこともあって、
蛍光波長領域に含まれる励起光の割合が小さい。何れの
場合であっても、この励起光の割合を差し引くことによ
り表面粗度の影響を除去でき、鋼板表面上の防錆油塗布
量が高精度に測定できる。
That is, by applying rust preventive oil to a steel plate with a small roughness and a steel plate with a large roughness, and changing the value Im, the excitation light intensity in the excitation light region becomes the excitation light intensity included in the fluorescent liquid region as described above. Using the correlation between the fluorescence 'lI
The received light intensity of l chain length and the excitation light intensity included in the fluorescence 'tL length region were experimentally determined and were as shown in FIGS. 3 and 4. In Figures 3 and 4, the symbol ◆ indicates the received light intensity in the fluorescence wavelength region, and ◇ indicates the intensity of excitation light contained in the fluorescent liquid region. indicates a steel plate with large roughness. When the fluorescence intensity is calculated from these two pieces of information, the fluorescence intensity indicated by the symbol ■ is obtained. More specifically, as shown in FIG. 4, in a steel plate with a large surface roughness, the influence of light scattering is large, and the proportion of excitation light included in the fluorescence wavelength region is large. On the other hand, as shown in Fig. 3, steel plates with a small surface roughness have a relatively small effect of light scattering.
The proportion of excitation light included in the fluorescence wavelength region is small. In either case, by subtracting the proportion of this excitation light, the influence of surface roughness can be removed, and the amount of antirust oil applied on the surface of the steel plate can be measured with high precision.

要するに、上記のところから明らかな通り、単に、蛍光
波長領域の強度測定を行なうのみにとどまらず、これに
併せて、励起光′lll鎖長の反射光強度変化を測定す
ると、励起光波長領域の励起光強度は鋼板表面状!II
によって変化する蛍光波長gAV1.に含まれる励起光
強度との間で相関関係を持っていることから、この蛍光
波長領域に含まれる励起光成分が求められ、これを蛍光
波長領域の全強度から差し引くことにより、表面状態に
より変化する励起光強度の変動を補正した状態で、高精
度に防錆油の塗布量が求めることができる。このように
塗布量を求めると、単位面積当りの塗油量が微量であっ
ても充分なli8度で測定することが可能となる。
In short, as is clear from the above, it is not enough to simply measure the intensity in the fluorescence wavelength region, but also to measure the change in the reflected light intensity of the excitation light chain length. The intensity of the excitation light is the same as the surface of the steel plate! II
The fluorescence wavelength gAV1. Since there is a correlation between the excitation light intensity contained in The applied amount of rust preventive oil can be determined with high accuracy while correcting the fluctuations in the excitation light intensity. When the amount of applied oil is determined in this way, even if the amount of applied oil per unit area is minute, it is possible to measure at a sufficient li of 8 degrees.

第1図は本発明の一つの実施例に係る防@油塗布量測定
装置の配置図であって、この測定装置は、特定波長の励
起光を照vAする光源1と、集光レンズ4等の集光光学
系と、この集光光学系で集光された反射光を分岐させる
光分割素子5と、回折格子等の分光素子と、この光分割
素子5によって分岐された各分岐反射光をそれぞれ選択
的に透過させる各分光素子8.9と、これら各分光素子
8.9を透過した光の強度を検出する光検出器6.7と
、これら光検出器6.7からの検出情報にもとすいて演
算する演算装置10とから成っている。
FIG. 1 is a layout diagram of an oil coating amount measuring device according to one embodiment of the present invention, and this measuring device includes a light source 1 that emits excitation light of a specific wavelength, a condensing lens 4, etc. a light-splitting optical system, a light splitting element 5 for splitting the reflected light collected by the focusing optical system, a spectroscopic element such as a diffraction grating, and each branched reflected light split by the light splitting element 5. Each spectroscopic element 8.9 selectively transmits light, a photodetector 6.7 that detects the intensity of light transmitted through each spectroscopic element 8.9, and detection information from these photodetectors 6.7. It consists of an arithmetic device 10 that performs calculations.

すなわち、連続的に走行しかつ表面に防錆油が塗布され
た鋼板3の表面に、光源1から、特定励起波長21の光
束2を照射する。この走行鋼板3の表面上からの反射光
は集光レンズ4で集光される。この集光された反射光は
光分割素子5に導かれ、少なくとも2つの光束2a、 
2bに分岐される。
That is, a light beam 2 having a specific excitation wavelength 21 is irradiated from a light source 1 onto the surface of a steel plate 3 that is continuously traveling and whose surface is coated with antirust oil. The reflected light from the surface of the traveling steel plate 3 is condensed by a condenser lens 4. This condensed reflected light is guided to the light splitting element 5, and is divided into at least two light beams 2a,
2b.

この分岐された光束2a、2bのうち、一方の光束2a
を分光素子8に導き、そこで、励起光波長領域の光を選
択的に透過し、励起光波長領域の光強度を光検出器6に
よって検出する。また、分岐された他方の光束2bを分
光素子9に導き、そこで蛍光波長領域の光を選択的に透
過し、蛍光波長領域の光強度を光検出器7によって検出
する。これら光検出器6.1の出力側はaI算装置io
s、−接続され、両光検出器6.7からの出力にもとす
いて演算装置10によって塗布量を算出する。
Among these branched light beams 2a and 2b, one light beam 2a
is guided to the spectroscopic element 8, where light in the excitation light wavelength region is selectively transmitted, and the light intensity in the excitation light wavelength region is detected by the photodetector 6. Further, the other branched light beam 2b is guided to the spectroscopic element 9, where light in the fluorescence wavelength region is selectively transmitted, and the light intensity in the fluorescence wavelength region is detected by the photodetector 7. The output side of these photodetectors 6.1 is the aI calculation device io
s, - are connected, and the coating amount is calculated by the arithmetic unit 10 based on the outputs from both photodetectors 6.7.

なお、この演碑装W110の出力側は上位計鼻機11に
接続され、上位計算11111によってデータのロギン
グ、v1油装置へのフィードバッグ信号が出力される。
Note that the output side of this performance instrument W110 is connected to the host nose meter 11, and the host calculation 11111 outputs data logging and a feedback signal to the v1 oil device.

なお、光111から照射する励起光の波長λlヤ、光検
出器6.7で検出する検出波長範囲は、励起光波長;4
+と各油種の特性を調べることとによって、あらかじめ
適切なものに設定する。
Note that the wavelength λl of the excitation light irradiated from the light 111 and the detection wavelength range detected by the photodetector 6.7 are the excitation light wavelength;
+ and by checking the characteristics of each oil type to set it to an appropriate value in advance.

また、励起波長λ1としては、物質からの蛍光を効率よ
く発光させる範囲に設定し、好ましくは、0.25〜0
.6μ請の範囲内の紫外から可視波長が適当である。こ
の波長であると、励起したときに生じる蛍光を受光する
受光素子が検出感度の高いものを選択することができる
In addition, the excitation wavelength λ1 is set within a range that efficiently emits fluorescence from the substance, and is preferably 0.25 to 0.
.. Ultraviolet to visible wavelengths within the 6 μm range are suitable. With this wavelength, a light-receiving element that receives fluorescence generated upon excitation can be selected to have high detection sensitivity.

実  施  例 まず、表面性状が平均粗さで0.2〜1.0μmの下地
鋼板に防錆油を塗布して、走行状態の鋼板で第1図に示
すように本発明法によって反射光を分岐して、これら分
岐光の強度を測定して防錆油の塗布量を測定した。この
場合、光源1として励起波長476.5μmのArレー
ザ光源を用い、各分岐光について強度を検出する光検出
器6.7としては光電子増倍管を用い、また、分光素子
8.9の選択波長としては励起波長領域が476.5r
+園±50−1蛍光波長領域が5351’+lI±25
ni+を用いた。
Example First, anti-rust oil was applied to a base steel plate with an average roughness of 0.2 to 1.0 μm, and the reflected light was reflected by the method of the present invention using the steel plate while it was running, as shown in Figure 1. The amount of rust preventive oil applied was measured by branching and measuring the intensity of these branched lights. In this case, an Ar laser light source with an excitation wavelength of 476.5 μm is used as the light source 1, a photomultiplier tube is used as the photodetector 6.7 for detecting the intensity of each branched light, and the spectroscopic element 8.9 is selected. The excitation wavelength range is 476.5r.
+Sono ±50-1 Fluorescence wavelength range is 5351'+lI±25
ni+ was used.

以上の通りに本発明で測定したところ、鋼板表面に約1
00a+g、−’ ra2の防錆油が付着したときに、
第5図ならびに第6図に示す結果が得られた。すなわち
、第5図は光検出器6で検出された励起波長領域の光強
度を示し、第6図は光検出器7で測定された蛍光波長領
域の光強度を示し、これら受光スペクトルから第1表の
通り、防錆油塗布量が高精度に求められた。
When measured using the present invention as described above, it was found that approximately 1
00a+g, -' When rust preventive oil of ra2 is attached,
The results shown in FIGS. 5 and 6 were obtained. That is, FIG. 5 shows the light intensity in the excitation wavelength region detected by the photodetector 6, and FIG. 6 shows the light intensity in the fluorescence wavelength region measured by the photodetector 7. As shown in the table, the amount of rust preventive oil applied was determined with high accuracy.

また、比較のために、特開昭61−138102号公報
に示す従来例によって塗布量を測定したところ、第1表
に示す通り、バラツキが大きく、標準偏差は測定不能で
あった。
Further, for comparison, when the coating amount was measured using the conventional example shown in JP-A-61-138102, as shown in Table 1, the variation was large and the standard deviation could not be measured.

第  1  表 また、以上のように、本発明によって測定された塗布量
の情報を上位計算機11によって塗油装置にフィードバ
ックしたところ、よりm−安定な品質管理体制を実現す
ることができた。
Table 1 Furthermore, as described above, when the information on the amount of coating measured by the present invention was fed back to the oil application device by the host computer 11, a more stable quality control system could be realized.

〈発明の効果〉 以上詳しく説明したように、本発明は、防錆油を塗布し
た鋼板の表面からの反射光を分岐し、一方の分岐光から
励起光領域の光強度を測定すると共に、他方の分岐光か
ら蛍光波長領域の光強度を検出し、これらの検出情報か
ら防錆油塗布量を求める。従って、鋼板表面に塗布され
た油の塗布量が微量であっても高い精度で測定できる。
<Effects of the Invention> As explained in detail above, the present invention splits reflected light from the surface of a steel plate coated with anti-rust oil, measures the light intensity of the excitation light region from one branched light, and measures the light intensity of the excitation light region from one branched light. The light intensity in the fluorescence wavelength region is detected from the branched light, and the amount of anti-rust oil applied is determined from this detected information. Therefore, even if the amount of oil applied to the surface of the steel plate is minute, it can be measured with high accuracy.

下地鋼板の粗度ヤ反射率などの表面性状による影響は励
起光領域の光強度によって求められて、十分に補正され
るため、この測定装置は単純で安価に構成できる。要す
るに、本発明によると、ユーザの要求通りの塗油ができ
るほか、塗りむらを無くすことによる品質の安定化や、
目標通り、防R油の最小の塗布量が実現できることによ
る経済効果、および、従来側なわれていたオフラインの
塗油測定作業の省略など多大な経済効果が実現できる。
The influence of surface properties such as roughness and reflectance of the base steel plate is determined by the light intensity of the excitation light region and is sufficiently corrected, so this measuring device can be constructed simply and inexpensively. In short, according to the present invention, in addition to being able to apply oil according to the user's requirements, it is possible to stabilize the quality by eliminating uneven coating,
As expected, significant economic effects can be realized, such as achieving the minimum amount of anti-R oil applied and omitting the off-line oil application measuring work that was conventionally done.

なお、上記のところは、主として本発明を製鉄業ライン
における走行鋼板表面の塗′a測定に適用した例を中心
として説明したが、本発明は何れの分野、例えば、各種
非鉄分野への適用も可能である。
In addition, although the above description has mainly focused on an example in which the present invention is applied to coating a measurement on the surface of a running steel plate in a steel industry line, the present invention can also be applied to any field, for example, various non-ferrous fields. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一つの実施例に係る防錆油塗布量測定
装置の配置図、第2図は励起光と油の蛍光とを表すスペ
クトルの特性を示すグラフ、第3図ならびに第4図はそ
れぞれ蛍光波長領域における全受光強度、蛍光強度なら
びに蛍光波長領域に含まれる励起光強度の相互関係を示
す各グラフ、第5図は一方の光検出器で検出した励起光
のスペクトルの特性を示すグラフ、第6図は他方の光検
出器で検出した蛍光波長領域のスベク1〜ルの特性を示
すグラフである。 符号1・・・・・・光)ll      2・・・・・
・光束3・・・・・・綱板     4・・・・・・集
光レンズ5・・・・・・光分割素子  6.7・・・・
・・光検出器8.9・・・・・・分光素子  10・・
・・・・′I4算装画装置・・・・・・上位計算機 #起tlLk、Q威 第2図
FIG. 1 is a layout diagram of a rust preventive oil coating amount measuring device according to one embodiment of the present invention, FIG. 2 is a graph showing the characteristics of the spectrum representing excitation light and oil fluorescence, and FIGS. The figures are graphs showing the correlation between the total received light intensity, fluorescence intensity, and excitation light intensity included in the fluorescence wavelength region, respectively. Figure 5 shows the characteristics of the spectrum of the excitation light detected by one photodetector. The graph shown in FIG. 6 is a graph showing the characteristics of the wavelength range of fluorescence detected by the other photodetector. Code 1... light)ll 2...
・Light flux 3... Steel plate 4... Condensing lens 5... Light splitting element 6.7...
...Photodetector 8.9...Spectroscopic element 10...
...'I4 arithmetic drawing device ...... Upper computer #KitlLk, Qwei Figure 2

Claims (1)

【特許請求の範囲】 1)油が塗布された鋼板の表面に特定波長の励起光を照
射し、その照射によつて生じる反射光のスペクトル分布
から鋼板表面の油の塗布量を求める際に、鋼板からの反
射光を光学素子によって分岐し、これら分岐した反射光
のうち、一方の分岐した反射光から励起波長領域の光強
度を選択的に検出すると共に、他方の分岐した反射光か
ら蛍光波長領域の光強度を選択的に検出し、これら情報
より鋼板の表面状態による蛍光波長領域の受光強度を補
正して鋼板の塗油量を算出することを特徴とする鋼板表
面の防錆油塗布量測定方法。 2)防錆油が塗布された鋼板の表面に特定波長の励起光
を照射する光源と、この鋼板表面からの反射光を集光す
る集光光学系と、この集光された光を少なくとも2つの
光束に分岐させる光分割素子と、この分岐された光束の
うち、一方の光束の励起光波長領域の光を選択する分光
素子と、この透過した励起光波長領域の光強度を検出す
る光検出器と、他方の光束の蛍光波長領域の光を選択す
る分光素子と、この透過した蛍光波長領域の光強度を検
出する光検出器と、前記両光検出器の出力を演算処理し
て防錆油の塗布量を算出する演算装置とを具えて成るこ
とを特徴とする鋼板表面の防錆油塗布量測定装置。
[Claims] 1) When irradiating the surface of a steel plate coated with oil with excitation light of a specific wavelength and determining the amount of oil applied on the surface of the steel plate from the spectral distribution of the reflected light generated by the irradiation, The reflected light from the steel plate is split by an optical element, and the light intensity in the excitation wavelength region is selectively detected from one of these branched reflected lights, and the fluorescence wavelength is detected from the other branched reflected light. The amount of rust preventive oil applied to the surface of a steel plate is calculated by selectively detecting the light intensity of the area and correcting the received light intensity in the fluorescence wavelength range depending on the surface condition of the steel plate based on this information. Measuring method. 2) A light source that irradiates the surface of the steel plate coated with anti-rust oil with excitation light of a specific wavelength, a condensing optical system that collects the reflected light from the steel plate surface, and at least two A light splitting element that splits the light beam into two light beams, a spectroscopic element that selects the light in the excitation light wavelength region of one of the branched light beams, and a photodetector that detects the light intensity of the transmitted excitation light wavelength region. a spectroscopic element that selects the light in the fluorescence wavelength range of the other beam, a photodetector that detects the intensity of the transmitted light in the fluorescence wavelength range, and the outputs of both photodetectors are processed to prevent rust. 1. An apparatus for measuring the amount of rust preventive oil applied to a steel plate surface, comprising: a calculation device for calculating the amount of oil applied.
JP7307590A 1990-03-22 1990-03-22 Method and apparatus for measuring rustproof oil coating amount on steel plate Pending JPH03272439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7307590A JPH03272439A (en) 1990-03-22 1990-03-22 Method and apparatus for measuring rustproof oil coating amount on steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7307590A JPH03272439A (en) 1990-03-22 1990-03-22 Method and apparatus for measuring rustproof oil coating amount on steel plate

Publications (1)

Publication Number Publication Date
JPH03272439A true JPH03272439A (en) 1991-12-04

Family

ID=13507849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7307590A Pending JPH03272439A (en) 1990-03-22 1990-03-22 Method and apparatus for measuring rustproof oil coating amount on steel plate

Country Status (1)

Country Link
JP (1) JPH03272439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013457A (en) * 2016-07-22 2018-01-25 大日本印刷株式会社 Inspection system and inspection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196137A (en) * 1981-05-28 1982-12-02 Fujitsu Ltd Measuring device for photo luminescence intensity
JPS61138102A (en) * 1984-12-11 1986-06-25 Kawasaki Steel Corp Method for measuring amount of oil coated on surface of steel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196137A (en) * 1981-05-28 1982-12-02 Fujitsu Ltd Measuring device for photo luminescence intensity
JPS61138102A (en) * 1984-12-11 1986-06-25 Kawasaki Steel Corp Method for measuring amount of oil coated on surface of steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018013457A (en) * 2016-07-22 2018-01-25 大日本印刷株式会社 Inspection system and inspection method

Similar Documents

Publication Publication Date Title
US20060177566A1 (en) Anodizing system with a coating thickness monitor and an anodized product
EP0139186A1 (en) Apparatus for measuring film thickness
US5289266A (en) Noncontact, on-line determination of phosphate layer thickness and composition of a phosphate coated surface
EP0371550B1 (en) Measure for measuring thin film thickness
EP1015871A1 (en) Monitoring oil films
JPS5987307A (en) Measuring device of thickness of surface film
JPH095038A (en) Chromate treatment steel plate and chromate film thickness measuring method and apparatus
JP2915294B2 (en) Method and apparatus for measuring oil coating amount on metal material surface
JPH03272439A (en) Method and apparatus for measuring rustproof oil coating amount on steel plate
JPH03264850A (en) Method and apparatus for measuring amount of applied oil on steel plate surface
US11680791B2 (en) Methods and systems for real-time, in-process measurement of coatings on substrates of aerospace components
JPH0690014B2 (en) How to measure the amount of oil applied to the surface of steel sheet
JPH0418763B2 (en)
JP3331169B2 (en) Measurement method of oil amount on steel sheet surface
KR0158569B1 (en) Method for manufacturing thickness of oil on steel stripe
JP2943215B2 (en) Method and apparatus for measuring the amount of deposited rust-preventive oil
JPS5830605A (en) Method for measuring thickness of surface film
KR920011038B1 (en) Method of non-contact on-line determination of thickness and composition of phosphate layer of phosphate film surface
KR0124822B1 (en) Measuring method and apparatus for oil quantum painted
JP2892531B2 (en) Method and apparatus for measuring oil amount
JPH01262404A (en) Measuring instrument for spectral interference fringe
JPH01132936A (en) Method and apparatus for analyzing film
JPH0337123B2 (en)
KR100299453B1 (en) Method of measuring surface cleanness of steel plate
JPH1172436A (en) Method and apparatus for measuring oil-application amount on metallic material surface