JPH03272211A - Apc circuit - Google Patents

Apc circuit

Info

Publication number
JPH03272211A
JPH03272211A JP7238690A JP7238690A JPH03272211A JP H03272211 A JPH03272211 A JP H03272211A JP 7238690 A JP7238690 A JP 7238690A JP 7238690 A JP7238690 A JP 7238690A JP H03272211 A JPH03272211 A JP H03272211A
Authority
JP
Japan
Prior art keywords
nonlinear
linear
control
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7238690A
Other languages
Japanese (ja)
Inventor
Kazuhiro Suzuki
和裕 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7238690A priority Critical patent/JPH03272211A/en
Publication of JPH03272211A publication Critical patent/JPH03272211A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To apply accurate compensation control to an optical output level fluctuation due to a temperature change by providing 1st and 2nd linear/ nonlinear conversion circuits or the like and applying linear control to an element having a nonlinear input/output characteristic with a control signal converted into another nonlinear characteristic reverse to the nonlinear characteristic. CONSTITUTION:The APC circuit is provided with a comparator 2 controlling a bias current and a pulse current supplied to a lighting section 7, 1st and 2nd linear/nonlinear conversion circuits 3, 4 switching the control of the comparator 2 from the linear control into the nonlinear control, a 1st drive circuit 5 controlling the bias current supplied to the lighting section 7 with an output of the 1st linear/nonlinear conversion circuit 3 and a 2nd drive circuit 6 controlling the pulse current fed to the lighting section 7 with an output of the 2nd linear/nonlinear conversion circuit 4. Then the element having a nonlinear input/ output characteristic is subject to linear control by a control signal whose characteristic is converted into another nonlinear characteristic reverse to the nonlinear characteristic.

Description

【発明の詳細な説明】 〔概要 〕 APC回路に関し、 温度変化による光出力レベルの補償制御をより正確に行
うことを目的とし、 送出すべき電気信号を入力し、基準電圧を作成するとと
もにデータ信号を出力する基準電圧作成回路と、該基準
電圧と光出力レベルに対応した電圧を人力し光出力を所
定のレベルに設定する為に発光部に印加されるバイアス
電流及びパルス電流を制御する比較器と、該比較器での
制御を線形制御から非線形制御に切り換える第1及び第
2の線形/非線形変換回路と、該第1の線形/非線形変
換回路の出力により発光部に印加するバイアス電流を制
御する該1の駆動回路と、該第2の線形/非線形変換回
路の出力により発光部に印加するパルス電流を制御する
第2の駆動回路を備え、該入出力特性に非線形を有する
素子を該非線形とは逆の特性の非線形特性に変換した制
御信号により線形制御するように構成する。
[Detailed Description of the Invention] [Summary] Regarding the APC circuit, the purpose is to more accurately perform compensation control of the optical output level due to temperature changes.The purpose of this invention is to input an electrical signal to be sent, create a reference voltage, and generate a data signal. A comparator that controls the bias current and pulse current applied to the light emitting section to set the optical output to a predetermined level by manually generating a voltage corresponding to the reference voltage and the optical output level. and first and second linear/nonlinear conversion circuits that switch control in the comparator from linear control to nonlinear control, and control a bias current applied to the light emitting section by the output of the first linear/nonlinear conversion circuit. and a second drive circuit that controls a pulse current applied to the light emitting section by the output of the second linear/nonlinear conversion circuit, and the element having nonlinear input/output characteristics has a nonlinear The configuration is such that linear control is performed using a control signal converted into a nonlinear characteristic having a characteristic opposite to that of the control signal.

[産業上の利用分野 ] 本発明はAPC回路に関し、特に人出力特性が非線形と
なる素子が使用されるAPC回路に関する。
[Industrial Field of Application] The present invention relates to an APC circuit, and more particularly to an APC circuit that uses elements with nonlinear human output characteristics.

通常、光出力のレベルを一定に保つためのAPC回路(
Automatic Power Control )
はその光出力をLDのバック光により検出し、検出され
た光出力に相当する電圧値に変換され基準電圧値と比較
される。この比較結果によりLD(レーザーダイオード
)に印加するバイアス電流及びパルス電流を制御してい
る。ここでLDの駆動回路としては、例えばFET等の
非線形特性を有する素子で構成される。この制御は温度
変化が起こった時にそのLDの温度特性による発光量の
変化を防止する為に常に発光量を一定に保つためにバイ
アス電流及びパルス電流の補償を行うためのものである
Usually, an APC circuit (
Automatic Power Control)
detects its optical output using the backlight of the LD, converts it into a voltage value corresponding to the detected optical output, and compares it with a reference voltage value. Based on this comparison result, the bias current and pulse current applied to the LD (laser diode) are controlled. Here, the LD drive circuit is composed of an element having nonlinear characteristics, such as an FET. This control is for compensating the bias current and pulse current in order to always keep the amount of light emitted constant in order to prevent changes in the amount of light emitted due to the temperature characteristics of the LD when a temperature change occurs.

しかし、FET等で構成された駆動回路はその人出力特
性が非線形となるためコンパレータの比較出力をそのま
ま駆動回路に出力するとその非線形特性により誤った(
ずれた値)の制御を行ってしまう可能性を有している。
However, since the output characteristics of a drive circuit made up of FETs etc. are non-linear, if the comparison output of the comparator is directly output to the drive circuit, errors may occur due to the non-linear characteristics (
There is a possibility that control may be performed with a deviated value.

〔従来の技術 ] 第4図に従来のFETを用いたLD駆動回路を示し、以
下動作を説明する。
[Prior Art] FIG. 4 shows an LD drive circuit using a conventional FET, and its operation will be described below.

図に於いて、まず送信すべき信号(電気信号)が基準電
圧作成回路1に人力される。この基準電圧作成回路1で
は、LD(レーザーダイオード)7の光出力のレベルに
応した電圧と比較する為の基準電圧を作威し、比較器2
へ出力するとともにデータ信号を第2の駆動回路6に出
力する。比較器2では該LD7の光出力のレベルに応し
た電圧を基準電圧作成回路1から人力された基準電圧と
比較し、温度変化によるLDの特性変化に従う光出力レ
ベルの増減を補償するように該LD7へ印加するバイア
ス電流IB及びパルス電流I、を制御する。制御として
は、第1の駆動回路5のFET52のソース端子に比較
結果により得られた電圧をバッファ52によりゲイン(
1頃き)をコントロールして印加し、FET52のゲー
ト、ソース間電圧■6.を変える事によってバイアス電
流■6を増減させる。パルス電流I、も同様に第2の駆
動回路のFET62のソース端子に該比較結果により得
られた電圧をバッファ62によりゲイン(傾き)をコン
トロールして印加し、FET62のゲート、ソース間電
圧VGEを変えることにより制御される。また、LD7
の光出力のレベルに応じた電圧はLD7の発光時に現れ
るLD7のバック光を利用し、LD8によりハック光を
受光し、該光出力レベルに対応した電圧値を得ている。
In the figure, first, a signal (electrical signal) to be transmitted is manually input to a reference voltage generating circuit 1. This reference voltage generation circuit 1 generates a reference voltage for comparison with a voltage corresponding to the level of optical output of an LD (laser diode) 7, and comparator 2
At the same time, the data signal is output to the second drive circuit 6. The comparator 2 compares the voltage corresponding to the level of the optical output of the LD 7 with the reference voltage manually input from the reference voltage generation circuit 1, and compensates for the increase or decrease in the optical output level due to changes in the characteristics of the LD due to temperature changes. The bias current IB and pulse current I applied to the LD7 are controlled. For control, the voltage obtained from the comparison result is applied to the source terminal of the FET 52 of the first drive circuit 5 by the buffer 52 with a gain (
1) is controlled and applied, and the voltage between the gate and source of FET 52 ■6. The bias current ■6 can be increased or decreased by changing . Similarly, the pulse current I is applied to the source terminal of the FET 62 of the second drive circuit by controlling the gain (slope) using the buffer 62 and applying the voltage obtained from the comparison result to the source terminal of the FET 62 to increase the voltage VGE between the gate and source of the FET 62. controlled by changing. Also, LD7
The voltage corresponding to the light output level is obtained by using the back light of the LD 7 that appears when the LD 7 emits light, and by receiving the hack light by the LD 8 to obtain the voltage value corresponding to the light output level.

次に温度変化による特性の変化の補償について第5図に
基づいて説明する。
Next, compensation for changes in characteristics due to temperature changes will be explained based on FIG. 5.

まず、第5図(C)に示されるNチャネルFETの伝達
特性を第5図(a)に示す。このNチャネルFETの出
力電流■。はそのゲート、ソース間の電位差■。、によ
り制御される。しかし、出力電流I。
First, FIG. 5(a) shows the transfer characteristics of the N-channel FET shown in FIG. 5(C). The output current of this N-channel FET is ■. is the potential difference between its gate and source■. , controlled by . However, the output current I.

はそのゲート、ソース間の電位差VGSに対しては非線
形となる特性を有しているため、通常第5図(b)に示
すようにそのFETが使用される温度近傍の非線形の特
性に近似した直線(図示a点とb点を桔んだ直線)によ
りFETの出力電流を制御している。
has nonlinear characteristics with respect to the potential difference VGS between its gate and source, so it is usually approximated to the nonlinear characteristics near the temperature at which the FET is used, as shown in Figure 5(b). The output current of the FET is controlled by a straight line (a straight line passing through points a and b in the figure).

〔発明が解決しようとする課題 〕[Problem to be solved by the invention]

以上のように、従来の構成においては温度変化の補償を
FETが使用される温度近傍の非線形の特性に近似した
直線(図示a点とb点を結んだ直線)により制御してい
るため、非線形特性の近傍付近に設定する直線を誤って
設定した場合、及び又はa点及びb点から離れた位置で
温度の補償制御を行った時に制御のずれが非常に大きく
なる恐れがあるという問題を有している。
As mentioned above, in the conventional configuration, compensation for temperature changes is controlled by a straight line (straight line connecting points a and b in the figure) that approximates the nonlinear characteristics near the temperature at which the FET is used, so the nonlinear There is a problem that if a straight line is set incorrectly near the characteristic, or if temperature compensation control is performed at a position far from points a and b, the control deviation may become extremely large. are doing.

よって、本発明ては温度変化による光出力レヘルの補償
制御卸をより正確に行うことを目的としている。
Therefore, an object of the present invention is to more accurately perform compensation control of the optical output level due to temperature changes.

r 課題を解決する為の手段 〕 第1図に本発明の原理構成図を示す。r Means for solving problems〕 FIG. 1 shows a basic configuration diagram of the present invention.

基準電圧作成回路1に送信信号が入力された場合、該デ
ータ信号を第2の駆動回路に人力するとともに所定の基
準電圧を作威し、比較器2に出力する。比V、器2では
入力された基準電圧とLDの出力レベルに対応した電圧
値を比較し、その比較結果に応じてLDの駆動電流を制
御する制御信号を第1及び第2の線形/非線形変換回路
に出力される。第1及び第2の線形/非線形変換回路で
は人力された制御信号をFETの非線形特性と相対する
非線形の信号に変換し、第1の駆動回路及び第2の駆動
回路に出力している。第1の駆動回路では人力された非
線形の制御信号によりバイアス電流を線形制御し、第2
の駆動回路では人力された非線形の制御信号によりパル
ス電流を線形制御するように動作する。
When a transmission signal is input to the reference voltage generation circuit 1, the data signal is inputted to the second drive circuit, and a predetermined reference voltage is generated and outputted to the comparator 2. The ratio V, device 2 compares the input reference voltage and the voltage value corresponding to the output level of the LD, and according to the comparison result, controls the control signal for controlling the drive current of the LD into the first and second linear/nonlinear signals. Output to the conversion circuit. The first and second linear/nonlinear conversion circuits convert the manually input control signal into a nonlinear signal corresponding to the nonlinear characteristics of the FET, and output the signal to the first drive circuit and the second drive circuit. The first drive circuit linearly controls the bias current using a nonlinear control signal input manually, and the second
The drive circuit operates to linearly control the pulse current using a manually inputted nonlinear control signal.

〔作用 〕[Effect]

本発明によれば、LDの光出力レベル制御を行う非線形
特性を有する駆動回路に印加する制御信号を該駆動回路
の非線形1.7性に対して相対する非線形信号に変換し
た後で駆動回路に印加させる事により、実質的に線形制
御を可能としている。
According to the present invention, a control signal applied to a drive circuit having nonlinear characteristics that controls the optical output level of an LD is converted into a nonlinear signal that is opposite to the nonlinear 1.7 characteristic of the drive circuit, and then the control signal is applied to the drive circuit. By applying this, substantially linear control is possible.

〔実施例 〕〔Example 〕

以下図面に示す実施例に基づいて詳細に説明する。 A detailed description will be given below based on the embodiments shown in the drawings.

本発明の要部である線形/非線形変換回路3゜4を第2
図に示し、該第2図に示す線形/非線形変換回路3L4
1を第1図の線形/非線形変換回路3.4に置き換えて
説明する。
The linear/nonlinear conversion circuit 3゜4, which is the main part of the present invention, is
The linear/nonlinear conversion circuit 3L4 shown in FIG.
The explanation will be given by replacing 1 with the linear/nonlinear conversion circuit 3.4 in FIG.

−例としてFETを用いた駆動回路の例を用いて以下説
明する。FETの非線形特性は2次関数の特性を有して
いるため、線形/非線形変換回路としては2次関数特性
と相対する平方根特性に制両信号を変換して制御する。
- An explanation will be given below using an example of a drive circuit using an FET. Since the nonlinear characteristics of the FET have quadratic function characteristics, the linear/nonlinear conversion circuit performs control by converting the constraint signal into a square root characteristic that is opposite to the quadratic function characteristics.

回路動作としては、線形/非線形回路31.41を除く
部分に付いては従来の動作と同じであります。非線形回
路3゜4内では人力された制御信号が平方根演算回路3
5.45(線形/非線形変換回路)に人力される。
The circuit operation is the same as the conventional circuit except for linear/nonlinear circuits 31 and 41. In the nonlinear circuit 3゜4, the manually inputted control signal is sent to the square root calculation circuit 3.
5.45 (linear/nonlinear conversion circuit) is manually operated.

平方根演算回路3,4は、演算増幅器の帰還回路にr 
y =  f (eo)」なる演算回路が接続されて構
成された−・殻間な平方根演算回路であり、その動作は
人力(C8)に対してその出力(co)は、次式に示す
通りである。
The square root calculation circuits 3 and 4 are connected to the feedback circuit of the operational amplifier.
y = f (eo)'' is connected to form a square root calculation circuit, and its operation is performed by human power (C8), while its output (co) is as shown in the following equation. It is.

e r    + f (e o ) RR e□・=  f(eo) eo ==  f −’(ei ) 即ち、信号f(eo)が2次関数であった場合、出力(
e、)に現れる信号は「eo・・Je t Jとなる。
e r + f (eo) RR e□・= f(eo) eo == f −'(ei) In other words, if the signal f(eo) is a quadratic function, the output (
The signal appearing at ``e,'' becomes ``eo...Jet J.

よって入力された制御信号が平方根演算回路にて線形特
性と相対する非線形特性に、即ち第3図に示す様な制御
信号をレベルシフト回路36.46に出力する。レベル
シフト回路では入力された非線形の制御信号の動作点a
を該駆動回路の非線形信号の動作点に一致させるように
シフト値を決定し、該シフト値に従って入ノj信号をシ
フトさせ、駆動量F!@36.46に非線形の制御信号
を出力している。該駆動回路36.46では相対する非
線形特性の制御信号により、LDの駆動電流を実質的に
線形制御する。
Therefore, the input control signal is outputted to the level shift circuits 36 and 46 by the square root calculation circuit to obtain a nonlinear characteristic that is opposite to a linear characteristic, that is, a control signal as shown in FIG. 3. In the level shift circuit, the operating point a of the input nonlinear control signal is
A shift value is determined so as to match the operating point of the nonlinear signal of the drive circuit, and the incoming signal is shifted according to the shift value, and the drive amount F! A nonlinear control signal is output to @36.46. The driving circuits 36 and 46 substantially linearly control the driving current of the LD using control signals having opposing nonlinear characteristics.

以下、非線形特性を有する駆動回路を相対する非戦系特
性で制御することについて説明する。
Hereinafter, a description will be given of controlling a drive circuit having non-linear characteristics using the opposing non-war characteristics.

r(x) −FETの非線形特性 a  −動作点の位置 x   −FETと逆特性の非線形特性f (z)−制
御情報 とした時、 f(x) −b (x+a)2 ・・・(1)x=JZ
−、a   ・・・(2) (1)式に(2)弐を代入 f(z) =b L’Z−a+a)” f(z) −b L’Z) 2=bZ・・・(3)上式
に示される通り、平方根特性(非線形)に変換された制
御信号により2乗特性(非線形)を有する素子又は回路
を制御した場合、両非線形特性が打ち消され、線形特性
が得られる。
r(x) - nonlinear characteristic a of FET - position x of operating point - nonlinear characteristic f (z) with inverse characteristic to FET - control information, f(x) - b (x+a)2 ... (1 )x=JZ
-, a...(2) Substitute (2) into equation (1) f(z) =b L'Z-a+a)" f(z) -b L'Z) 2=bZ...( 3) As shown in the above equation, when an element or circuit having a square root characteristic (nonlinear) is controlled by a control signal converted to a square root characteristic (nonlinear), both nonlinear characteristics are canceled and a linear characteristic is obtained.

よって、制御しようとする非線形特性を相対する逆の非
線形特性で制御した場合に線形動作を行う事が可能とな
る。
Therefore, when the nonlinear characteristic to be controlled is controlled by the opposite nonlinear characteristic, linear operation can be performed.

〔効果〕〔effect〕

以上のように本発明によれば、非線形特性を有する駆動
回路を線形動作する事が可能となり、温度変化による光
出力レベルの補償制御を正確に行うことが可能となった
As described above, according to the present invention, it has become possible to linearly operate a drive circuit having nonlinear characteristics, and it has become possible to accurately perform compensation control of the optical output level due to temperature changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、 第2図は本発明の要部実施例、 第3図は平方根特性を示す図、 第4図は従来のAPC回路図、 第5図はNチャネルFETの伝達特性を示す図、図に於
いて、 ■・・・基準電圧作成回路 2・・・比較器3.4・・
・線形/非線形変換回路 5.6・・・駆動回路 7.8・・・レーザダイオード 31.41・・・平方根変換回路 32.42・・・レベルシフト回路 51.61・・・バッファ 52.62・・・FET
Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is an embodiment of the main part of the present invention, Fig. 3 is a diagram showing square root characteristics, Fig. 4 is a conventional APC circuit diagram, and Fig. 5 is a diagram of an N-channel FET. In the diagrams showing transfer characteristics, ■... Reference voltage generation circuit 2... Comparator 3.4...
・Linear/nonlinear conversion circuit 5.6...Drive circuit 7.8...Laser diode 31.41...Square root conversion circuit 32.42...Level shift circuit 51.61...Buffer 52.62 ...FET

Claims (1)

【特許請求の範囲】 入出力特性が非線形となる素子を用いた電気/光変換回
路に於いて、 送出すべき電気信号を入力し、基準電圧を作成するとと
もにデータ信号を出力する基準電圧作成回路(1)と、
該基準電圧と光出力レベルに対応した電圧を入力し光出
力を所定のレベルに設定する為に発光部(7)に印加さ
れるバイアス電流(I_B)及びパルス電流(I_P)
を制御する比較器(2)と、該比較器(2)での制御を
線形制御から非線形制御に切り換える第1及び第2の線
形/非線形変換回路(3)(4)と、該第1の線形/非
線形変換回路(3)の出力により発光部(7)に印加す
るバイアス電流(I_B)を制御する該1の駆動回路(
5)と、該第2の線形/非線形変換回路(4)の出力に
より発光部(7)に印加するパルス電流(I_P)を制
御する第2の駆動回路を備え、 該入出力特性に非線形を有する素子を該非線形とは逆の
特性の非線形特性に変換した制御信号により線形制御を
行うことを特徴とするAPC回路。
[Claims] In an electric/optical conversion circuit using an element with nonlinear input/output characteristics, a reference voltage generation circuit that receives an electric signal to be sent, generates a reference voltage, and outputs a data signal. (1) and
A bias current (I_B) and a pulse current (I_P) are applied to the light emitting section (7) in order to input a voltage corresponding to the reference voltage and the optical output level and set the optical output to a predetermined level.
a comparator (2) that controls the comparator (2), first and second linear/nonlinear conversion circuits (3) and (4) that switch the control of the comparator (2) from linear control to nonlinear control; The drive circuit (1) controls the bias current (I_B) applied to the light emitting section (7) by the output of the linear/nonlinear conversion circuit (3).
5) and a second drive circuit that controls a pulse current (I_P) applied to the light emitting part (7) by the output of the second linear/nonlinear conversion circuit (4), An APC circuit characterized in that linear control is performed using a control signal obtained by converting an element having a nonlinear characteristic to a nonlinear characteristic opposite to the nonlinear characteristic.
JP7238690A 1990-03-20 1990-03-20 Apc circuit Pending JPH03272211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7238690A JPH03272211A (en) 1990-03-20 1990-03-20 Apc circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7238690A JPH03272211A (en) 1990-03-20 1990-03-20 Apc circuit

Publications (1)

Publication Number Publication Date
JPH03272211A true JPH03272211A (en) 1991-12-03

Family

ID=13487793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7238690A Pending JPH03272211A (en) 1990-03-20 1990-03-20 Apc circuit

Country Status (1)

Country Link
JP (1) JPH03272211A (en)

Similar Documents

Publication Publication Date Title
EP0982880B1 (en) Optical transmitter having temperature compensating function
US5018154A (en) Semiconductor laser drive device
EP0497431B1 (en) An apparatus for driving a semiconductor laser device
US6795656B1 (en) Optical transmission circuit using a semiconductor laser
JP2001053377A (en) Semiconductor laser driver
US4837428A (en) Driving circuit for laser diode
US5398008A (en) Circuit arrangement for amplitude-modulating the drive signal of a laser
JPH03272211A (en) Apc circuit
JP2002217836A (en) Laser diode drive circuit and optical transmission system
JPH11126935A (en) Laser diode drive circuit
EP0692873B1 (en) Apparatus for converting optical bipolar signals to optical unipolir signals
US5761231A (en) Method and circuit arrangement for regulating the luminous power of a laser diode
JPH03123091A (en) Semiconductor laser driving device
JP2005057216A (en) Laser diode driving circuit and optical transmitting device
KR100344635B1 (en) Three dimension functional voltage generating circuit
JPH067614B2 (en) Semiconductor laser drive system
JPH1168669A (en) Optical transmitter
JP2002270951A (en) Device and method for controlling semiconductor laser
JPH0399485A (en) Semiconductor laser device
JPH06152026A (en) Driving circuit for light emitting element
JPH1070330A (en) Laser driving circuit
JPH0319146A (en) Semiconductor laser modulation device
JP2007165382A (en) Laser diode driving apparatus
JPH0324521A (en) Optical modulation circuit
JPH10117032A (en) Laser diode-drive circuit and laser diode drive method