JPH03271898A - Fire sensor - Google Patents

Fire sensor

Info

Publication number
JPH03271898A
JPH03271898A JP7096090A JP7096090A JPH03271898A JP H03271898 A JPH03271898 A JP H03271898A JP 7096090 A JP7096090 A JP 7096090A JP 7096090 A JP7096090 A JP 7096090A JP H03271898 A JPH03271898 A JP H03271898A
Authority
JP
Japan
Prior art keywords
circuit
fire
resistance
value
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7096090A
Other languages
Japanese (ja)
Inventor
Shunsaku Nakauchi
俊作 中内
Fumio Watase
渡瀬 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Gijutsu Kaihatsu Co Ltd
Original Assignee
Kokusai Gijutsu Kaihatsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Gijutsu Kaihatsu Co Ltd filed Critical Kokusai Gijutsu Kaihatsu Co Ltd
Priority to JP7096090A priority Critical patent/JPH03271898A/en
Publication of JPH03271898A publication Critical patent/JPH03271898A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate a construction and to automatically detect trouble by sending the output of a measuring circuit, which measures the resistance value of a sensing line made of a metallic wire at intervals of a certain time, to a receiver. CONSTITUTION:The temperature rise value of a sensing line 1 is decided by a deciding circuit 7 in accordance with the series of the resistance value sent from a time series storage circuit 5, and the deciding circuit 7 not only decides the temperature rise value for one past minute but also calculates the moving average value of a temperature rise rate to perform decision or abandons an especially exceptional measured value by a rejection test to systematically decide a fire, non-fire, or a disconnection accident. It is decided by the deciding circuit 7 whether a fire occurs or not in accordance with temperature rise information, and the information is sent to the receiver of a fire alarm. Thus, the construction is facilitated and trouble of a disconnection accident is automatically detected.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は室温を点ではなく、広範囲に分布させた感熱素
子で室温を面でとらえる火災感知器に関するものである
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a fire detector that detects room temperature not at a point but at a surface using heat-sensitive elements distributed over a wide range.

(0)従来の技術 従来の、成る一点で火災をとらえるスポット型の火災感
知器は、その直下で起きた火災に対しては敏感であるが
、水平方向に離れた所での火災に対しては急速に感度が
落ちる。
(0) Conventional technology Conventional spot-type fire detectors that detect fires at a single point are sensitive to fires that occur directly below them, but are sensitive to fires that occur horizontally away. sensitivity decreases rapidly.

このスポット型の欠点をなくした分布型火災感知器も販
売されていたが、これは感熱素子として内径2mm位の
銅パイプ製の空気管を利用するものであって、この空気
管を天井面に取り付けるときにこのパイプをつぶさない
ように工事をするには特殊な技術を必要とした。
A distributed type fire detector that eliminates the drawbacks of the spot type fire detector was also sold, but this uses an air tube made of copper pipe with an inner diameter of about 2 mm as a heat-sensitive element, and this air tube is attached to the ceiling. Special techniques were required to avoid crushing the pipe during installation.

又、空気管が外力でつぶされたり、穴が開いたりして役
に立たなくなった時にこれを自動的に検出することがで
きなかった。その別の試みとして、感熱用の線状の半導
体を用いる方式もあったか、感度が悪(電波障害等に対
して弱かった。
Furthermore, it is not possible to automatically detect when the air pipe becomes useless due to being crushed or punctured by an external force. Another attempt was to use a wire-shaped heat-sensitive semiconductor, but the sensitivity was poor (weak against radio wave interference, etc.).

(ハ)発明が解決しようとする課題 火災時にその発生場所による感度の差の少ない火災感知
器として動作し、工事が容易であり、且つ断線等の故障
を自動的に検出できるようにする。
(c) Problems to be Solved by the Invention In the event of a fire, the fire detector operates as a fire detector with little difference in sensitivity depending on the location where the fire occurs, is easy to construct, and can automatically detect failures such as wire breaks.

(:)課題を解決するための手段 室温を平均的にとらえるために感熱素子(以下感知線と
いう)として金属抵抗線で出来た熱感知部分を線状に広
く分布させる。
(:) Means for Solving the Problem In order to average the room temperature, heat-sensing elements (hereinafter referred to as sensing wires) made of metal resistance wire are widely distributed in a linear manner.

検出感度を高めるために比較的大きな電力を抵抗線に通
す。この消費電力を減少させるために常時通電ではなく
間欠通電を行い、室温をサンプリング検出でとらえる。
A relatively large amount of power is passed through the resistance wire to increase detection sensitivity. In order to reduce this power consumption, we use intermittent energization rather than constant energization, and detect the room temperature through sampling.

(本)作用 天井面、或いは壁面に取り付けられた感知線は室内の空
気によって暖められたり、冷やされたりし、その時の温
度に応じた抵抗値を示す。この抵抗値の温度係数は純度
の高い金属の場合は広範囲に亘って一定値を示すので、
抵抗値から温度上昇率を算出するのは容易である。
(Book) Function The sensing wire attached to the ceiling or wall is heated or cooled by the indoor air, and exhibits a resistance value depending on the temperature at that time. The temperature coefficient of this resistance value shows a constant value over a wide range in the case of highly pure metals, so
It is easy to calculate the temperature increase rate from the resistance value.

この温度上昇率の値を、火災感知器の国家規格に定めら
れた値と比較して火災か否かを判断する。
The value of this temperature rise rate is compared with the value stipulated in the national standards for fire detectors to determine whether there is a fire or not.

現在の規格では、感知線の20mの部分が10℃/分の
温度上昇に1分間さらされたときに火災警報を出すよう
に定められている。
The current standard specifies that a fire alarm will be issued if a 20m section of the sensing line is exposed to a temperature rise of 10°C/min for 1 minute.

(へ)実施例 本発明の実施例を図面に従って説明する。(f) Example Embodiments of the present invention will be described with reference to the drawings.

第1図は1つの建物に感知線と検出器を設けた場合を示
す平面図で、1は感知線、2は検出器。
Figure 1 is a plan view showing a case where a sensing line and a detector are installed in one building, where 1 is the sensing line and 2 is the detector.

3は建物の壁を示す。尚、Aは被警戒空間の部屋、Bは
同じく廊下でそれぞれ天井、壁等で仕切られている。
3 indicates the wall of the building. Note that A is a room to be guarded, and B is a corridor that is separated by ceilings, walls, etc.

第2図は検出器2の内部の構成を示すフロンク図である
FIG. 2 is a front view showing the internal configuration of the detector 2. As shown in FIG.

第2図において4は感知線1の抵抗を測定する回路、5
は測定された抵抗値を一定間隔の時系列値として、一定
時間の分、例えば5分間分だけ記憶している時系列記憶
回路、6は時系列記憶回路5から送出される信号を処理
して抵抗変化率から温度変化率を算出する回路、7は算
出回路6からの温度上昇率と、内蔵する参照値とを照合
して、火災か非火災か等を判定する回路、8は判定結果
を受信器に送出する回路、9は電流消費を軽減するため
のサンプリング回路である。
In Fig. 2, 4 is a circuit for measuring the resistance of the sensing line 1;
6 is a time series memory circuit that stores measured resistance values as time series values at regular intervals for a certain period of time, for example, 5 minutes; 6 is a time series memory circuit that processes signals sent from the time series memory circuit 5; A circuit that calculates the rate of temperature change from the rate of change in resistance; 7 is a circuit that compares the temperature rise rate from calculation circuit 6 with a built-in reference value to determine whether there is a fire or not; 8 is a circuit that determines the determination result. The circuit for sending data to the receiver, 9, is a sampling circuit for reducing current consumption.

第1図で感知線1は、建物平面図上で室のどの位置も感
知線1から数m程度以上離れないように、−数的には天
井面に、場合によっては壁面上に張られる。所謂露出配
線であるから設置後に建物の間仕切り変更等による配置
換えが容易である。
In FIG. 1, the sensing line 1 is placed on the ceiling, or on the wall in some cases, so that no location in the room is more than a few meters away from the sensing line 1 on the plan of the building. Because it is so-called exposed wiring, it is easy to rearrange it after installation by changing the partitions of the building, etc.

感知線lには純金属製がその抵抗の温度係数の高さから
推奨されるが、特に純ニツケル線はその温度係数の高さ
と、耐食性と、比較的高い抵抗率の故に優れている。純
ニッケルの抵抗率は?、24X 10−”Ω・mであり
、抵抗率の温度係数は6.7X10−”/”Cである。
A pure metal wire is recommended for the sensing wire 1 because of its high temperature coefficient of resistance, and pure nickel wire is particularly excellent because of its high temperature coefficient, corrosion resistance, and relatively high resistivity. What is the resistivity of pure nickel? , 24×10−”Ω·m, and the temperature coefficient of resistivity is 6.7×10−”/”C.

0.1〜0.5mm位のニッケル線を絶縁物で覆いこれ
を2本撚り線として使用する。金属線は打撃や衝撃に強
くなるように、中空のバイブでない、通常の金属線を使
用する。
Nickel wires of about 0.1 to 0.5 mm are covered with an insulator and used as two stranded wires. Use a regular metal wire, not a hollow vibrator, so that the metal wire is resistant to blows and shocks.

例としてloomの2本のベアの直径0.2mmのニッ
ケル線(全長100m X 2 )では全長に亘って温
度が1°C上る毎に抵抗は3.09Ω上昇する。上昇率
は一100℃〜300℃位の間に亘ってほぼ一定である
For example, in the case of two bare nickel wires in a room with a diameter of 0.2 mm (total length 100 m x 2), the resistance increases by 3.09 Ω every time the temperature rises by 1°C over the entire length. The rate of increase is approximately constant between -100°C and 300°C.

感知線1の一方の末端は半田付は等の方法で短絡してル
ープを形成させる。第1図の例ではこの末端は廊下の端
で短絡されている。
One end of the sensing wire 1 is short-circuited by soldering or the like to form a loop. In the example of FIG. 1, this end is shorted at the end of the hallway.

ループを形成した感知線1のペアの2本の他の末端は検
出器2の2つのターミナルに取り付けられ、間欠的に例
えば数秒毎に電流を流されて抵抗が測定される。
The two other ends of the looped pair of sensing wires 1 are attached to the two terminals of a detector 2, and a current is applied intermittently, for example every few seconds, to measure the resistance.

感知線の材質と直径が製造時に定められているから、そ
の感知線1の単位長当たりの抵抗値の単位温度あたりの
上昇値は予め分っている。
Since the material and diameter of the sensing wire are determined at the time of manufacture, the increase in resistance per unit temperature of the sensing wire 1 per unit length is known in advance.

感知線lの抵抗値の絶対値は感知線1の全長とその時の
室温によって変化するが、火災感知器として使用する場
合は現在の国家規格では、全長は100m以下と定めて
あり、全長の如何に拘らず、その中の20mの部分の温
度上昇率によって火災か否かを判定するように定められ
ているから、抵抗の絶対値は問題ではなく相対的な抵抗
の上昇率、即ち温度上昇率だけが分かれば火災感知器と
して用い得る。例として0.2mmの直径のニッケル線
ペアの感知線の長さ20mが毎分10℃の速さで1分間
温度上昇したときの感知線lの抵抗値の上昇分は次式で
示される。
The absolute value of the resistance value of the sensing wire 1 changes depending on the total length of the sensing wire 1 and the room temperature at that time, but when used as a fire detector, the current national standard stipulates that the total length is 100 m or less, Regardless, it is stipulated that whether there is a fire or not is judged based on the rate of temperature rise in a 20m section, so the absolute value of resistance does not matter, but the relative rate of rise in resistance, that is, the rate of temperature rise. If only this is known, it can be used as a fire detector. As an example, when the temperature of a pair of 0.2 mm diameter sensing wires of 20 m in length increases at a rate of 10° C. for 1 minute, the increase in the resistance value of the sensing wire l is expressed by the following equation.

7.24X 10−”ΩmX 40mX 6.7X 1
0−”/”e X 10℃/+aX1myr  X  
(0,1x 10−”)  ”m”〜6.17Ω 従って時系列記憶回路5から送り出される抵抗値の数列
から感知線1が受けている温度上昇値を、上述のように
判定回路7で判定できるのである。
7.24X 10-”ΩmX 40mX 6.7X 1
0-”/”e X 10℃/+aX1myr X
(0,1x 10-”) “m” ~ 6.17Ω Therefore, from the series of resistance values sent out from the time-series memory circuit 5, the temperature rise value that the sensing wire 1 is receiving is determined by the determination circuit 7 as described above. It can be done.

判定回路7は単に過去1分間の間の温度上昇値で判定す
るだけでなく、温度上昇率の移動平均値を計算して判定
したり、特に突出した測定値は棄却検定を行って棄却し
たりして総合的に火災か非火災か、或いは断線事故かの
判定をする。
The determination circuit 7 not only makes a determination based on the temperature rise value for the past minute, but also calculates the moving average value of the temperature increase rate and performs a rejection test to reject particularly prominent measured values. A comprehensive judgment is made as to whether there is a fire, non-fire, or a disconnection accident.

この温度上昇情報は判定回路7によって火災か否かを判
定され、信号送出回路8によって、図示してない火災報
知器の受信器に送られる。
This temperature rise information is judged by the judgment circuit 7 as to whether or not there is a fire, and is sent by the signal sending circuit 8 to a fire alarm receiver (not shown).

感知線lに流す電力は、S/Nを向上させるためには大
きい方が良くて、前出の0.2mmのペアloomの感
知線の場合で20〜30m A 、 0.18〜0.4
W位が良い。大きな建物の場合はこの位の電力でも検出
器2の数が多いので、配線の太さが問題になるから、電
力と配線費用を節約するためにサンプリング回路9が用
いられる。サンプリング間隔は、数秒に1回位で良い。
In order to improve the S/N, it is better to have a large amount of power flowing through the sensing wire l, and in the case of the aforementioned 0.2 mm paired loom sensing wire, it is 20 to 30 mA, 0.18 to 0.4
W rank is good. In the case of a large building, the number of detectors 2 is large even with this level of power, so the thickness of the wiring becomes a problem, so a sampling circuit 9 is used to save power and wiring costs. The sampling interval may be approximately once every few seconds.

断線事故の場合は抵抗値が極度に増大するので、算出さ
れる温度が非常な高温となるので容易に自動的に検出さ
れて受信器に送られる。
In the case of a wire breakage, the resistance value increases extremely and the calculated temperature becomes extremely high, which is easily automatically detected and sent to the receiver.

上記の説明で各装置回路は独立したものとして説明して
いるが、これらをマイクロコンピュータやLSI等の各
回路で実現しても発明として同じである。
Although each device circuit is described as being independent in the above description, the invention is the same even if these are realized by each circuit such as a microcomputer or LSI.

第3図と第4図は本発明の別の実施例を示す。3 and 4 show another embodiment of the invention.

上述の感知器では火災か否かを検出器内に判定回路7を
設けて判定していたが、検出器では単に抵抗値のみか、
或いはこれから算出される温度変化値のみを検出してこ
れをその感知器の固有番号と共に受信器迄送って、そこ
で火災か否かを判定する方式も有用である。第3図は時
系列記憶回路5、温度変化率算出回路6と判定回路7を
除いた例、第4図は判定回路7のみを除いた例である。
In the above-mentioned detector, a determination circuit 7 was installed inside the detector to determine whether there was a fire or not, but the detector only had a resistance value or not.
Alternatively, it is also useful to detect only the temperature change value calculated from this, send it to the receiver together with the unique number of the sensor, and then determine whether there is a fire or not. FIG. 3 shows an example in which the time series storage circuit 5, temperature change rate calculation circuit 6 and determination circuit 7 are removed, and FIG. 4 shows an example in which only the determination circuit 7 is removed.

これらの場合は感知器内の回路は簡略化されて安価にな
るが、受信器の方が複雑になって高価になる。
In these cases, the circuitry in the sensor is simplified and cheaper, but the receiver is more complex and expensive.

第5図は更に他の実施例を示した図で、前述した抵抗測
定回路4の代りに、ブリッジ回路口と抵抗変化分測定回
路16が使用される。
FIG. 5 shows still another embodiment, in which a bridge circuit port and a resistance change measuring circuit 16 are used in place of the resistance measuring circuit 4 described above.

感知線が火災時に検出すべき温度上昇率は10℃/mで
あるが、年間の気温変化や寒い地方や暑い地方における
温度差は一40℃〜+60℃位に及ぶ。従って気温によ
る感知線の温度変化は検出すべき火災の温度上昇より大
きいことになる。
The rate of temperature rise that the detection line should detect in the event of a fire is 10°C/m, but annual temperature changes and temperature differences between cold and hot regions range from -40°C to +60°C. Therefore, the temperature change of the sensing line due to air temperature is greater than the temperature rise of the fire to be detected.

勿論、気温による温度上昇は絶対値では太き(でも上昇
率で言うと火災の場合に比較して、はるかに小さい。
Of course, the temperature increase due to air temperature is large in absolute value (but in terms of rate of increase, it is much smaller than in the case of a fire.

気温変化による感知線の抵抗変化の影響を打ち消して抵
抗変化率だけを高いS/Nで検出するために第5図に示
したブリッジ回路口を使う。ブリッジ回路口で、1は感
知線、11は感知線と同じ抵抗の温度係数をもつ材料で
作った抵抗、12と13は感知線に比べてはるかに低い
温度による抵抗変化率をもつ抵抗体、例えばマンガニン
線で作った抵抗か、或いは同じ抵抗の温度係数をもつ抵
抗で、抵抗体11.12.13の3つは検出器の内部に
入れられ、熱絶縁物で外部と遮断した容器内に納められ
ている。このようにすると感知線は外気にさらされてい
るので火災時の温度上昇に対して敏感に反応するが、他
の3つの抵抗体は熱絶縁物でかこまれているので温度変
化の時定数は非常に大きく、火災時の温度上昇のように
早い温度変化にはついて行けない。しかし、気温変化の
ように遅い変化には追従するから、このようなブリッジ
」を組むとブリッジ口の検出端子14.15間には火災
の温度上昇のように早い温度上昇による変化だけが現れ
るからS /’ Nが良好となる。なおブリッジHの可
変抵抗11は壓知線1の工事が終了してその全長が定ま
った工事終了後にブリ、ジの検出端子14.15間の電
位差が零に近くなるように調節する。
The bridge circuit shown in FIG. 5 is used to cancel the influence of resistance changes in the sensing wire due to temperature changes and to detect only the resistance change rate with a high S/N ratio. At the bridge circuit port, 1 is a sensing wire, 11 is a resistor made of a material that has the same temperature coefficient of resistance as the sensing wire, and 12 and 13 are resistors that have a much lower rate of change in resistance due to temperature than the sensing wire. For example, resistors made of manganin wire or resistors with the same temperature coefficient of resistance, the three resistors 11, 12, and 13 are placed inside the detector and placed in a container isolated from the outside with thermal insulation. It is stored. In this way, the sensing wire is exposed to the outside air, so it responds sensitively to temperature rises in the event of a fire, but since the other three resistors are surrounded by thermal insulation, the time constant of temperature change is It is extremely large and cannot keep up with rapid temperature changes such as the rise in temperature during a fire. However, since it follows slow changes such as temperature changes, if such a bridge is constructed, only changes due to rapid temperature rises, such as the temperature rise of a fire, will appear between the detection terminals 14 and 15 at the bridge entrance. S/'N becomes good. The variable resistor 11 of the bridge H is adjusted so that the potential difference between the bridge and bridge detection terminals 14 and 15 becomes close to zero after the construction of the Ichi Line 1 is completed and its total length is determined.

抵抗変化分測定装置16は高い入力抵抗を持ったディジ
タル電圧測定器を主体として構成されたもので、検出端
子14.15にあられれる電位差から感知線の抵抗変化
分をサンプリング回路9の動作の度毎に行う。
The resistance change measuring device 16 is mainly composed of a digital voltage measuring device with a high input resistance, and measures the resistance change of the sensing wire from the potential difference appearing at the detection terminals 14 and 15 every time the sampling circuit 9 operates. Do it every time.

このブリ、ジ方式はS、/Nの向上に大変有効である。This bridge system is very effective in improving S and /N.

(ト)発明の効果 本発明は次のような諸効果を生ずる。(g) Effects of the invention The present invention produces the following effects.

従来の空気管式の分布型火災感知器に比べて、工事が容
易である。機械的衝撃に対してこわれ難い。設置後の配
置替えか容易である。断線事故のような致命点故障を自
動的に検出できる。検出器からの情報を中央の受信器で
集中管理ができるので、火災の発生と、その後の発展の
状況を的確に判定できる。従って、火災避難のための情
報をより確かにできる。
Construction is easier than conventional air tube type distributed fire detectors. Resistant to mechanical shock. Easy to rearrange after installation. Critical point failures such as disconnection accidents can be automatically detected. Since the information from the detectors can be centrally managed by a central receiver, it is possible to accurately determine the occurrence of a fire and its subsequent development. Therefore, information for fire evacuation can be more reliable.

従来のスポット型感知器に比べて、室の広範囲の温度上
昇を平均的にとらえるので、より正確な火災感知ができ
る。従来の空気管式より安価である。
Compared to conventional spot-type detectors, it detects temperature rises over a wide range of rooms on average, allowing for more accurate fire detection. It is cheaper than the conventional air tube type.

以上のように本発明は数々の効果を有し、その有用性は
非常に大きい。
As described above, the present invention has many effects and is extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は建物に本発明の火災感知器を設けたときの建物
平面図、第2図は本発明の実施例を示すブロック図、第
3図、第4図は他の実施例を示すブロック図、第5図は
本発明の抵抗変化分測定部分を示す図である。 l・・・感知線 4・・・抵抗測定回路 5・・・時系列記憶回路 6・・・温度変化率算出回路 7・・・火災・非火災判定回路 8・・・信号送出回路 9・・・サンプリング回路 H・・・ブリッジ回路 16・・・抵抗変化分測定回路 第1 図
Fig. 1 is a plan view of a building when the fire detector of the present invention is installed in the building, Fig. 2 is a block diagram showing an embodiment of the present invention, and Figs. 3 and 4 are block diagrams showing other embodiments. FIG. 5 is a diagram showing a resistance change measuring portion of the present invention. l... Sensing line 4... Resistance measurement circuit 5... Time series memory circuit 6... Temperature change rate calculation circuit 7... Fire/non-fire determination circuit 8... Signal sending circuit 9...・Sampling circuit H...Bridge circuit 16...Resistance change measurement circuit Fig. 1

Claims (4)

【特許請求の範囲】[Claims] (1)被警戒空間の天井等に分布させて設置する金属線
で構成した感知線と、該感知線の抵抗値を一定時間間隔
で測定する回路と、該測定回路の出力を受信器に送出す
る信号送出回路を備えたことを特徴とする火災感知器。
(1) Sensing wires made up of metal wires distributed on the ceiling of the guarded space, a circuit that measures the resistance of the sensing wires at regular time intervals, and sends the output of the measuring circuit to a receiver. A fire detector characterized by being equipped with a signal sending circuit.
(2)被警戒空間の天井等に分布させて設置する金属線
で構成した感知線と、該感知線の抵抗値を一定時間間隔
で測定する回路と、該測定回路の出力を時系列値として
記憶する時系列記憶回路と、該記憶回路の出力から温度
変化率を算出する回路と、該算出回路の出力を受信器に
送出する信号送出回路を備えたことを特徴とする火災感
知器。
(2) A sensing line consisting of metal wires installed distributed on the ceiling of the guarded space, a circuit that measures the resistance value of the sensing line at regular time intervals, and the output of the measuring circuit as a time series value. A fire detector comprising a time series memory circuit for storing data, a circuit for calculating a temperature change rate from the output of the memory circuit, and a signal sending circuit for sending the output of the calculation circuit to a receiver.
(3)被警戒空間の天井等に分布させて設置する金属線
で構成した感知線と、該感知線の抵抗値を一定時間間隔
で測定する回路と、該測定回路の出力を時系列値として
記憶する時系列記憶回路と、該記憶回路の出力から温度
変化率を算出する回路と、該算出回路からの温度変化率
と内蔵する参照値とを照合して火災か否かを判定する回
路と、該判定回路の出力を受信器に送出する信号送出回
路を備えたことを特徴とする火災感知器。
(3) A sensing line consisting of metal wires distributed on the ceiling of the guarded space, a circuit that measures the resistance value of the sensing line at regular time intervals, and the output of the measuring circuit as a time series value. A time series memory circuit for storing data, a circuit for calculating a temperature change rate from the output of the memory circuit, and a circuit for comparing the temperature change rate from the calculation circuit with a built-in reference value to determine whether or not there is a fire. A fire detector comprising: a signal sending circuit for sending the output of the determination circuit to a receiver.
(4)前記抵抗測定回路に代えて、熱感知線を一辺とす
るブリッジ回路と該ブリッジ回路の出力から抵抗変化分
を一定時間間隔で測定する回路とを設けたことを特徴と
する請求項1又は2又は3記載の火災感知器。
(4) In place of the resistance measuring circuit, a bridge circuit having a heat sensing line on one side and a circuit for measuring a change in resistance from the output of the bridge circuit at regular time intervals is provided. Or the fire detector described in 2 or 3.
JP7096090A 1990-03-20 1990-03-20 Fire sensor Pending JPH03271898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7096090A JPH03271898A (en) 1990-03-20 1990-03-20 Fire sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7096090A JPH03271898A (en) 1990-03-20 1990-03-20 Fire sensor

Publications (1)

Publication Number Publication Date
JPH03271898A true JPH03271898A (en) 1991-12-03

Family

ID=13446592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7096090A Pending JPH03271898A (en) 1990-03-20 1990-03-20 Fire sensor

Country Status (1)

Country Link
JP (1) JPH03271898A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041686A (en) * 2005-08-01 2007-02-15 Oki Denki Bosai Kk Temperature sensor and fire sensor
CN103606240A (en) * 2013-11-27 2014-02-26 宁波振东光电有限公司 Method for fire alarming through distributed type fiber optical temperature sensor system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007041686A (en) * 2005-08-01 2007-02-15 Oki Denki Bosai Kk Temperature sensor and fire sensor
CN103606240A (en) * 2013-11-27 2014-02-26 宁波振东光电有限公司 Method for fire alarming through distributed type fiber optical temperature sensor system

Similar Documents

Publication Publication Date Title
US5627515A (en) Alarm system with multiple cooperating sensors
CN101807335B (en) Digital linear heat detector with thermocouple heat confirmation
JPS5824838B2 (en) fire alarm device
US20080136651A1 (en) Data Fusion Alarm System And Method For Line Type Fire Detector
US3594775A (en) System for detecing frost, snow and ice on a road surface
US3277459A (en) Conductivity-type ice detector
AU2012203454B2 (en) Apparatus and Method for Detecting a Loose Electrical Connection
EP0723693B1 (en) Device for indicating ice formation
CN107545692B (en) Unrecoverable cable type linear temperature-sensing fire disaster detector
US2236891A (en) Fire alarm system
US5464284A (en) Autocalibrating non-contact temperature measuring technique employing dual recessed heat flow sensors
JPH03271898A (en) Fire sensor
US2632885A (en) Fire detection apparatus
US6384731B1 (en) System for detecting a fire event
JP4547312B2 (en) Temperature sensor and fire detector
US2667630A (en) Automatic fire alarm system
US3175206A (en) Fire detector with integrity-testing device
JPH03199934A (en) Distribution-type temperature detecting apparatus, distribution-type fire sensor and fire sensing system
US5764143A (en) Combination temperature unit/intruder sensor utilizing common components
JPH03246430A (en) Distribution type temperature detector and distribution type fire detector and fire detection system
US3429183A (en) Temperature averaging system
CN101285719A (en) Linear temperature-sensing fire disaster detector possessing embient temperature and humidity compensate function
US6020551A (en) Multi-wire self-diagnostic thermocouple
US3530452A (en) Temperature rate of change sensor
CN106355813B (en) The fixed temperature of the compound adaptive environment of multi-parameter, different constant temperature line-type heat detector