JPH03271662A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH03271662A
JPH03271662A JP2070969A JP7096990A JPH03271662A JP H03271662 A JPH03271662 A JP H03271662A JP 2070969 A JP2070969 A JP 2070969A JP 7096990 A JP7096990 A JP 7096990A JP H03271662 A JPH03271662 A JP H03271662A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
expansion valve
predetermined position
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2070969A
Other languages
Japanese (ja)
Other versions
JP2522849B2 (en
Inventor
Kozo Hiyoshi
日吉 孝蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2070969A priority Critical patent/JP2522849B2/en
Publication of JPH03271662A publication Critical patent/JPH03271662A/en
Application granted granted Critical
Publication of JP2522849B2 publication Critical patent/JP2522849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To extract maximum capacity at each operation mode without fail by controlling an expansion valve based on temperature data from each temperature detecting means which is discriminated by a discriminating means. CONSTITUTION:During heating operation, an expansion valve 5 is controlled based on an A/D transformation value of an input port part of an A/D input value included in each of zones II and III in chart (b). That is, the expansion valve 5 is controlled so that a difference of refrigerant temperature between a value detected by a first temperature sensor 10 provided at a first prescribed position and a value detected by a third temperature sensor 12 provided at a third prescribed position becomes a set value (superheating degree). On the other hand, during cooling operation, the expansion valve 5 is controlled based on the A/D transformation value of the input port part of the A/D input value included in each of the zones II or III in chart (a). That is, the expansion valve 5 is controlled so that a difference of refrigerant temperature between the value detected by the first temperature sensor 10 and a value detected by a second temperature sensor 11 provided at a second prescribed position becomes the set value (overheating degree).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷媒圧縮サイクルにより冷暖房を行い得る空
気調和機に係り、特にインバータ制御による冷暖房能力
可変型で冷媒圧縮サイクルを制御する電子式の膨張弁を
有した空気調和機に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air conditioner that can perform heating and cooling using a refrigerant compression cycle, and in particular to an electronic air conditioner that controls the refrigerant compression cycle with a variable cooling and heating capacity controlled by an inverter. The present invention relates to an air conditioner having an expansion valve.

〔従来技術〕[Prior art]

一般に、この種の空気調和機では、電動圧縮機冷媒の循
環方向を切り換える切換弁(四方弁)。
Generally, this type of air conditioner uses a switching valve (four-way valve) that switches the direction of circulation of refrigerant in the electric compressor.

室外熱交換器、上記冷媒の流量を制御する例えば電子式
の膨張弁及び室内熱交換器を順次接続した冷媒圧縮サイ
クルを具備すると共に、上記室外熱交換器と室内熱交換
器に、それぞれ送風機を備えている。
It is equipped with a refrigerant compression cycle in which an outdoor heat exchanger, an electronic expansion valve for controlling the flow rate of the refrigerant, and an indoor heat exchanger are sequentially connected, and a blower is provided in each of the outdoor heat exchanger and the indoor heat exchanger. We are prepared.

そして、上記電動圧vM機の冷媒流入側の第1の所定位
置に設けられる第1の温度センサ(第1の温度検出手段
)、上記膨張弁と上記室内熱交換器との間の第2の所定
位置(例えば上記膨張弁の冷房時における冷媒の出口側
)に設けられる第2の温度センサ(第2の温度検出手段
)及び上記室外熱交換器と上記膨張弁との間の第3の所
定位置(例えば室外熱交換器の冷房時における冷媒の出
口側)に設けられる第3の温度センサ(第3の温度検出
手段〉により検出される上記冷媒圧縮サイクルにおける
冷媒の循環経路上の各所定位置での冷媒の温度データに
基づいて、上記膨張弁が制御されて冷房運転及び暖房運
転が行われる。
A first temperature sensor (first temperature detection means) is provided at a first predetermined position on the refrigerant inflow side of the electric pressure vM machine, and a second temperature sensor is provided between the expansion valve and the indoor heat exchanger. a second temperature sensor (second temperature detection means) provided at a predetermined position (for example, on the refrigerant outlet side during cooling of the expansion valve); and a third predetermined temperature sensor provided between the outdoor heat exchanger and the expansion valve. Each predetermined position on the refrigerant circulation path in the refrigerant compression cycle detected by a third temperature sensor (third temperature detection means) provided at a position (for example, on the refrigerant outlet side during cooling of an outdoor heat exchanger) Based on the refrigerant temperature data, the expansion valve is controlled to perform cooling operation and heating operation.

即ち、冷房・暖房の各運転状態に対し、上記電動圧縮機
の吸入部温度を基準とし、冷房時には上記第2の温度セ
ンサにより検出される冷媒の温度と、暖房時には上記第
3の温度センサにより検出される冷媒温度との差が設定
値(過熱度)となるべく上記膨張弁が制御され、上記切
換弁の切り換え動作により、冷房運転又は暖房運転が行
われる。
That is, for each operating state of cooling and heating, the suction temperature of the electric compressor is used as a reference, and the refrigerant temperature detected by the second temperature sensor during cooling and the third temperature sensor during heating is determined. The expansion valve is controlled so that the difference with the detected refrigerant temperature becomes a set value (superheat degree), and cooling operation or heating operation is performed by switching operation of the switching valve.

尚、この場合、上記各温度センサとしては、例えばNT
Cサーミスタ等が用いられる。
In this case, each temperature sensor mentioned above may be, for example, NT.
A C thermistor or the like is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記空気調和機では、冷媒の循環経路上の各
所定位置における冷媒の温度を検出するための上記各温
度センサは、検知回路の予め定められた所定の端子にそ
れぞれ接続される必要があるため、空気調和機の生産時
に決められた所定の温度センサを決められた部位(接続
端子)へ取り付けなければならず、組立作業に注意を要
し、繁雑であるばかりか作業主スにより間違って取り付
けられる可能性がある。
However, in the air conditioner, each of the temperature sensors for detecting the temperature of the refrigerant at each predetermined position on the refrigerant circulation path needs to be connected to a predetermined terminal of the detection circuit. Therefore, it is necessary to attach a specified temperature sensor determined at the time of production of the air conditioner to a determined part (connection terminal), which requires careful assembly work, which is not only complicated, but also can be caused by mistakes due to the operator. It may be possible to install it.

また、空気調和機の修理等のために、上記各温度センサ
を取り外した時も不用意に誤接続する可能性があり、そ
のまま動作を1!続させた場合には適切な膨張弁制御が
行われず、能力不足となったり、あるいは電動圧縮機の
吐出圧力が異常に高くなって当該空気調和機を破損させ
ることになる等の問題点を有していた。
Furthermore, when the temperature sensors mentioned above are removed for repair of the air conditioner, etc., there is a possibility that they may be accidentally connected incorrectly, and the operation will continue as it is. If the air conditioner is allowed to continue operating, there may be problems such as the expansion valve not being properly controlled, resulting in insufficient capacity, or the discharge pressure of the electric compressor becoming abnormally high, which may damage the air conditioner. Was.

そこで、本発明の目的とするところは、上記各温度セン
サが間違った部位に取り付けられても、各運転モードに
対して必要な箇所(所定位置)の温度データを正確に読
み取り得るようにその箇所に対応する温度センサを自己
判定し、上記膨張弁を正常に制御して常に最大能力を引
き出し得るようにした空気調和機を提供することである
Therefore, an object of the present invention is to enable accurate reading of temperature data at the necessary locations (predetermined locations) for each operation mode even if the above-mentioned temperature sensors are installed in the wrong locations. It is an object of the present invention to provide an air conditioner that self-determines a temperature sensor corresponding to the temperature sensor and normally controls the expansion valve to always draw out the maximum capacity.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を遠戚するために、本発明が採用する主たる手
段は、その要旨とするところが、圧tiM機。
In order to achieve the above object, the main means adopted by the present invention is a pressure TiM machine.

冷媒の循環方向を切り換える切換弁、室外熱交換器、上
記冷媒の流量を制御する膨張弁及び室内熱交換器により
冷媒の循環経路が構成され、上記圧縮機の冷媒流入側の
第1の所定位置に設けられる第1の温度検出手段、上記
膨張弁と上記室内熱交換器との間の第2の所定位置に設
けられる第2の温度検出手段及び上記室外熱交換器と上
記膨張弁との間の第3の所定位置に設けられる第3の温
度検出手段により検出される上記循環経路上の各所定位
置での冷媒の温度データに基づいて上記膨張弁を制御し
、冷房運転及び暖房運転を行うようにした空気調和機に
おいて、当該空気調和機の上記各所定位置での冷房・暖
房運転開始時に予想される基準温度範囲を記憶する記憶
手段と、上記各所定位置に設けられた上記各温度検出手
段により検出される冷媒温度を読み取る読取手段と、上
記読取手段により読み取られた各所定位置の冷媒温度と
上記記憶手段に記憶された上記各所定位置での冷媒の基
準温度範囲とを比較し、上記各所定位置に取り付けられ
た上記各温度検出手段の種類を判別する判別手段と、上
記判別手段により判別された上記各温度検出手段からの
温度データに基づいて上記膨張弁を制御する制御手段と
を具備してなる点に係る空気調和機である。
A refrigerant circulation path is constituted by a switching valve that switches the refrigerant circulation direction, an outdoor heat exchanger, an expansion valve that controls the flow rate of the refrigerant, and an indoor heat exchanger, and a first predetermined position on the refrigerant inflow side of the compressor. a first temperature detection means provided at a second predetermined position between the expansion valve and the indoor heat exchanger, and a second temperature detection means provided at a second predetermined position between the outdoor heat exchanger and the expansion valve. The expansion valve is controlled based on temperature data of the refrigerant at each predetermined position on the circulation path detected by a third temperature detection means provided at a third predetermined position of the cooling operation and heating operation. In the air conditioner configured as above, a storage means for storing a reference temperature range expected at the start of cooling/heating operation at each of the predetermined positions of the air conditioner, and each of the temperature detection units provided at each of the predetermined positions. a reading means for reading the refrigerant temperature detected by the means, and comparing the refrigerant temperature at each predetermined position read by the reading means with a reference temperature range of the refrigerant at each predetermined position stored in the storage means, a determining means for determining the type of each of the temperature detecting means attached to each of the predetermined positions; and a control means for controlling the expansion valve based on temperature data from each of the temperature detecting means determined by the determining means. This is an air conditioner comprising:

〔作用〕[Effect]

本発明に係る空気調和機においては、読取手段により読
み取られた各所定位置の冷媒温度と、記憶手段に記憶さ
れた各所定位置での冷媒の基準温度範囲とが比較され、
上記各所定位置に取り付けられた各温度検出手段の種類
が判別される。
In the air conditioner according to the present invention, the refrigerant temperature at each predetermined position read by the reading means is compared with a reference temperature range of the refrigerant at each predetermined position stored in the storage means,
The type of each temperature detection means attached to each of the predetermined positions is determined.

そして、その判別された上記各温度検出手段からの温度
データに基づいて、膨張弁が制御される。
The expansion valve is then controlled based on the determined temperature data from each of the temperature detection means.

〔実施例〕〔Example〕

以下添付図面を参照して、本発明を具体化した実施例に
つき説明し、本発明の理解に供する。尚、以下の実施例
は、本発明を具体化した一例であって、本発明の技術的
範囲を限定する性格のものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples embodying the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. It should be noted that the following examples are examples embodying the present invention, and are not intended to limit the technical scope of the present invention.

ここに、第1図は本発明の一実施例に係る空気調和機の
構成国、第2図は上記空気調和機における冷媒圧縮サイ
クルに取り付けられた各温度センサにより検出される冷
媒温度を示すものであって、同図(alは冷房運転時に
上記各温度センサにより検出される冷媒の温度変化を示
すグラフ、同図価)は暖房運転時に上記各温度センサに
より検出される冷媒の温度変化を示すグラフ、第3図は
上記各温度センサの対応判定結果の一例を示す図表、第
4図は上記空気調和機を動作させる場合の制御手順を示
すフローチャートである。
Here, FIG. 1 shows the constituent countries of an air conditioner according to an embodiment of the present invention, and FIG. 2 shows the refrigerant temperature detected by each temperature sensor attached to the refrigerant compression cycle in the air conditioner. The figure (al is a graph showing the temperature change of the refrigerant detected by each of the above-mentioned temperature sensors during cooling operation, and the figure price) shows the temperature change of the refrigerant detected by each of the above-mentioned temperature sensors during heating operation. FIG. 3 is a graph showing an example of the correspondence determination results of each temperature sensor, and FIG. 4 is a flowchart showing a control procedure when operating the air conditioner.

この実施例に係る空気調和機では、第1図に示す如く、
電動圧縮811i、冷媒の循環方向を切り換える四方切
換弁6.室外熱交換器3.上記冷媒の流量を制御する電
子式の膨張弁(減圧器)5及び室内熱交換器4により冷
媒の循環経路である冷媒圧縮サイクルが構成されている
In the air conditioner according to this embodiment, as shown in FIG.
Electric compression 811i, four-way switching valve that switches the refrigerant circulation direction6. Outdoor heat exchanger 3. The electronic expansion valve (pressure reducer) 5 that controls the flow rate of the refrigerant and the indoor heat exchanger 4 constitute a refrigerant compression cycle that is a refrigerant circulation path.

上記電動圧1liI機1は、三相誘導電動機2により駆
動され、該三相誘導電動機2は、インバータ13により
駆動制御される。
The electric pressure 1liI machine 1 is driven by a three-phase induction motor 2, and the three-phase induction motor 2 is drive-controlled by an inverter 13.

上記室外熱交換器3及び室内熱交換器4には、それぞれ
に対応して室外用送風機7及び室外用送風機8が備えら
れている。また、上記膨張弁5は、駆動回路14により
駆動される。
The outdoor heat exchanger 3 and the indoor heat exchanger 4 are provided with an outdoor blower 7 and an outdoor blower 8, respectively. Further, the expansion valve 5 is driven by a drive circuit 14.

更に、上記電動圧縮機1の冷媒流入側の第1の所定位置
には、第1の温度センサ10(THa)が設けられ、上
記膨張弁5と上記室内熱交換器4との間の第2の所定位
置(上記膨張弁5の冷房運転時における冷媒の出口側)
に第2の温度センサ11(THb)が設けられ、上記室
外熱交換器3と上記膨張弁5との間の第3の所定位置(
室外熱交換器3の冷房運転時における冷媒の出口側)に
は第3の温度センサ12(THc)が設けられている。
Furthermore, a first temperature sensor 10 (THa) is provided at a first predetermined position on the refrigerant inflow side of the electric compressor 1, and a second temperature sensor 10 (THa) is provided between the expansion valve 5 and the indoor heat exchanger 4. (on the refrigerant outlet side during cooling operation of the expansion valve 5)
A second temperature sensor 11 (THb) is provided at a third predetermined position (THb) between the outdoor heat exchanger 3 and the expansion valve 5.
A third temperature sensor 12 (THc) is provided on the refrigerant outlet side of the outdoor heat exchanger 3 during cooling operation.

上記各温度センサ10,11.12は、例えばNTCサ
ーくスタ等が用いられ、この各温度センサ10,11.
12により検出される上記循環経路上の各所定位置での
冷媒の温度データに基づいて上記膨張弁5が制御され、
冷房運転若しくは暖房運転が行われる。
For each of the temperature sensors 10, 11.12, an NTC circuit or the like is used, for example.
The expansion valve 5 is controlled based on temperature data of the refrigerant at each predetermined position on the circulation path detected by the refrigerant 12;
Cooling operation or heating operation is performed.

同図中において、冷房時における冷媒の循環方向を実線
の矢印で、暖房時における冷媒の循環方向を破線の矢印
でそれぞれ示す。
In the figure, the direction of refrigerant circulation during cooling is shown by solid arrows, and the direction of refrigerant circulation during heating is shown by dashed arrows.

前記インバータ13.四方切換弁6.送風機7゜8及び
膨張弁5等は、ワンチップタイプのマイクロコンピュー
タ(以下マイコンと称す)9により制御され、咳マイコ
ン9は、各入出力端子AD。
The inverter 13. Four-way switching valve6. The blower 7.8, the expansion valve 5, etc. are controlled by a one-chip type microcomputer (hereinafter referred to as microcomputer) 9, and the cough microcomputer 9 has input/output terminals AD.

〜AD、、OUT、〜OU T4 lOU Tn 、 
 I N +等を具備し、その内部に、図示しないプロ
グラムROM (上記膨張弁5の制御に必要な各種デー
タ等を記憶)5デ一タRAM、ALU、各温度センサか
らの温度情報等をデジタル変換するA/D変換器等を有
している。更に、上記マイコン9は、温度検出時間を計
測するタイマ機能をも備えるものである。
~AD,,OUT,~OUT4 lOUTn,
It is equipped with a program ROM (not shown) (stores various data necessary for controlling the expansion valve 5), 5 data RAM, ALU, and digitally stores temperature information from each temperature sensor. It has an A/D converter etc. for conversion. Furthermore, the microcomputer 9 is also provided with a timer function for measuring temperature detection time.

第2図は、上記各温度センサ10.11.12がそれぞ
れ規定位置に取り付けられている時に運転を開始した直
後の冷媒の温度変化を示すものであり、同fli!!i
ta+は冷房運転時、同図価)は暖房運転時にそれぞれ
相当する。
FIG. 2 shows the temperature change of the refrigerant immediately after the start of operation when each of the temperature sensors 10, 11, and 12 is installed at the specified position. ! i
ta+ corresponds to the cooling operation, and ta+ corresponds to the heating operation.

即ち、冷媒圧縮を行う電動圧縮機1をインバータ13で
駆動し、各運転モードで一定時間運転すると、例えば冷
房運転時には、第3の所定位置(室外熱交換器3の冷媒
の出口側)の温度は高温となって行き、第2の所定位置
(膨張弁5の冷媒の出口側)の温度は急速に低下し、そ
の後やや上昇して第1の所定位置(電動圧縮機1の冷媒
の吸入側)の温度と近い状態となる。他方、上記電動圧
縮機1の吸入温度は、運転当初より低下して来るが、そ
の動きは、第2の所定位置における温度変化はど急速且
つ低温にはならない特性を有している。
That is, when the electric compressor 1 that compresses refrigerant is driven by the inverter 13 and operated for a certain period of time in each operation mode, for example, during cooling operation, the temperature at the third predetermined position (the refrigerant outlet side of the outdoor heat exchanger 3) decreases. becomes high in temperature, the temperature at the second predetermined position (the refrigerant outlet side of the expansion valve 5) rapidly decreases, and then rises slightly until it reaches the first predetermined position (the refrigerant suction side of the electric compressor 1). ) is close to the temperature. On the other hand, although the suction temperature of the electric compressor 1 has been decreasing since the beginning of operation, its movement has a characteristic that the temperature change at the second predetermined position is rapid and does not become low.

そして、上記膨張弁5は、冷房運転時では第1の温度セ
ンサ10と第2の温度センサ11.暖房運転時では第1
の温度センサ10と第3の温度センサ12により検出さ
れる各冷媒の温度の差が運転周波数に応して設定された
値となるように、開閉制御される。ここで、例えば第2
の温度センサ11と第3の温度センサ12とが間違って
取り付けられ、例えば冷房運転が行われたとすると、T
HaとTHcとで膨張弁5を制御することとなり、該膨
張弁5を必要以上に絞り過ぎることになる。
The expansion valve 5 is connected to the first temperature sensor 10 and the second temperature sensor 11 . 1st during heating operation
The opening/closing is controlled so that the difference in temperature of each refrigerant detected by the second temperature sensor 10 and the third temperature sensor 12 becomes a value set according to the operating frequency. Here, for example, the second
If the temperature sensor 11 and the third temperature sensor 12 are installed incorrectly and, for example, cooling operation is performed, then T
The expansion valve 5 will be controlled by Ha and THc, and the expansion valve 5 will be throttled down more than necessary.

その結果、能力不足となるばかりか、機器の破損を招く
危険性もある。
As a result, there is a risk of not only insufficient capacity but also damage to the equipment.

そこで、上記各温度センサ10,11.12がその取付
位置を間違って取り付けられた場合やマイコン9への接
続を間違った場合でも、各運転モードにおける必要温度
センサを自己判定させて運転制御を行い得るようにする
のであるが、以下に、その判定手順について説明する。
Therefore, even if the above temperature sensors 10, 11, and 12 are installed in the wrong mounting position or are connected to the microcomputer 9 incorrectly, operation control is performed by self-determining the required temperature sensor for each operation mode. The determination procedure will be explained below.

第2図に示すように、運転開始T1時間経過後には、T
Ha、THb、THc(D各温度が当該空気調和機の上
記各所定位置において冷房・暖房運転開始時に予想され
る基準温度範囲(1,n、Hの各ゾーン)になることを
利用してその判定が行われる。
As shown in FIG. 2, after T1 time has elapsed since the start of operation, T
Ha, THb, THc (D) using the fact that each temperature falls within the standard temperature range (zones 1, n, and H) expected at the start of cooling/heating operation at each predetermined position of the air conditioner. A judgment is made.

そして、この各ゾーンの値は、予め前記ROMに記憶さ
れている。
The values of each zone are stored in the ROM in advance.

即ち、マイコン9の入力端子AD、−AD3に温度セン
サ10〜12がどのように接続されていても、運転開始
T1後の各温度データのA/D変換結果により、冷房時
では、ゾーン■にあるA/D変換値入力をTHc、ゾー
ン■にあるA/D変換値入力をTHa、ゾーン■にある
A/D変換値入力をTHbとし、暖房時では、ゾーンI
にあるA/D変換値入力をTHb、ゾーン■にあるA/
D変換値入力をTHa、ゾーン■にあるA/D変換値入
力をTHcとして判定させる。
That is, no matter how the temperature sensors 10 to 12 are connected to the input terminals AD and -AD3 of the microcomputer 9, depending on the A/D conversion result of each temperature data after the start of operation T1, during cooling, the A certain A/D conversion value input is THc, an A/D conversion value input in zone ■ is THa, an A/D conversion value input in zone ■ is THb, and during heating, zone I is
The A/D conversion value input in zone THb, the A/D conversion value input in zone ■
The D conversion value input is determined to be THa, and the A/D conversion value input in zone ■ is determined to be THc.

この時、T1時間での上記三相電動誘導機2の運転周波
数及び膨張弁5の開度はその運転能力に応して予め設定
された値とし、各温度センサ10〜12の位置の判定が
終了するまで変動させずに動作される。
At this time, the operating frequency of the three-phase electric induction machine 2 and the opening degree of the expansion valve 5 at time T1 are set in advance according to its operating capacity, and the position of each temperature sensor 10 to 12 is determined. It operates without changing until it is finished.

第3図は、上記冷媒圧縮サイクル中に取り付けられた上
記各温度センサ10〜12の上記のような判定法による
対応結果の一例を示したものである。
FIG. 3 shows an example of the results of the above-described determination method for each of the temperature sensors 10 to 12 installed during the refrigerant compression cycle.

引き続き、第4図に基づいて、当該空気調和機を前記マ
イコン9により制御する場合の動作手順について説明す
る。
Subsequently, based on FIG. 4, the operating procedure when the air conditioner is controlled by the microcomputer 9 will be described.

尚、同図中、St、52.・・・は各動作ステップを示
し、この各動作ステップは、前記ROMに予め記憶され
た処理プログラムにより具現化される。
In addition, in the same figure, St, 52. . . . indicates each operation step, and each operation step is realized by a processing program stored in advance in the ROM.

先ず、当該空気調和機を動作させた状態で、運転か若し
くは停止指令が入力されたかの判断が行われる(31)
、上記S1において停止指令が入力されたと判断された
場合、S2において、三相誘導電動機2等を停止させる
所譚停止モードに対応する各処理がなされる。
First, with the air conditioner in operation, it is determined whether an operation or stop command has been input (31).
If it is determined in S1 that a stop command has been input, then in S2 various processes corresponding to the stop mode for stopping the three-phase induction motor 2 and the like are performed.

他方、上記S1において運転状態にあると判断された場
合、S3において、運転モードが冷房か暖房かの判断が
なされる。
On the other hand, if it is determined in S1 that the vehicle is in the operating state, it is determined in S3 whether the operating mode is cooling or heating.

そして、上記S3において、運転モードが冷房であると
判断された場合、S4において冷房用の判定温度(基準
温度範囲であるゾーンI、  I[、II+に対応する
各温度データ)がRAMに設定される。
Then, in S3 above, if it is determined that the operation mode is cooling, the determination temperature for cooling (each temperature data corresponding to zones I, I[, II+, which are the reference temperature range) is set in the RAM in S4. Ru.

他方、上記S3において運転モードが暖房であると判断
された場合、S5において、暖房用の判定温度(基準温
度範囲)がRAMに設定される。その後、電動圧縮機を
初期設定周波数にて駆動させ、膨張弁5の開度を初期値
にセフ)しく36)、T+待時間タイマがセットされる
(S7)。
On the other hand, if it is determined in S3 that the operation mode is heating, then in S5 the determination temperature (reference temperature range) for heating is set in the RAM. Thereafter, the electric compressor is driven at the initial setting frequency, the opening degree of the expansion valve 5 is set to the initial value (36), and the T+waiting time timer is set (S7).

上記T1時間が経過すると(S8)、冷媒の循環経路上
の各所定位置に予め取り付けられた各温度センサ10〜
12により検出される冷媒の温度が入力端子AD、〜A
D、を通して人力され、A/D変換される。そして、こ
のA/D変換によりデジタル値に変換された各値が上記
RAMに記憶される(S9)。
When the above-mentioned T1 time has elapsed (S8), each of the temperature sensors 10-
The temperature of the refrigerant detected by the input terminals AD, ~A
D, it is manually inputted and A/D converted. Then, each value converted into a digital value by this A/D conversion is stored in the RAM (S9).

この場合、上記S9により、上記各所定位置に設けられ
た上記各温度センサ10〜12により検出される冷媒温
度を読み取る読取手段が構成されている。
In this case, S9 constitutes a reading means for reading the refrigerant temperature detected by each of the temperature sensors 10 to 12 provided at each of the predetermined positions.

そして、どの入力端子からの入力値がゾーンI。The input value from which input terminal is Zone I.

■、■のいずれに入っているかの判定が行われ、その結
果に基づいて、第1の所定位置、第2の所定位置及び第
3の所定位置にどの種類の温度センサが取り付けられて
いるかが自動的に判別される(Sl、O)、そして、そ
の結果は、上記RAMに記憶される。
A determination is made as to whether the temperature sensor is in the first predetermined position, the second predetermined position, or the third predetermined position based on the result. It is automatically determined (Sl, O) and the result is stored in the RAM.

この場合、上記S10により、上記読取手段により読み
取られた各所定位置の冷媒温度と予め上記RAMに記憶
された上記各所定位置での冷媒の基準温度範囲とを比較
し、上記各所定位置に取り付けられた上記各温度センサ
10〜12の種類を判別する判別手段が構成されている
In this case, in step S10, the refrigerant temperature at each predetermined position read by the reading means is compared with a reference temperature range of the refrigerant at each predetermined position stored in advance in the RAM, and the refrigerant is attached to each predetermined position. A determining means is configured to determine the type of each of the temperature sensors 10 to 12.

そして、暖房運転時には(Sll)、S12において、
第2図(blにおけるゾーン■、■にそれぞれ含まれる
A/D入力値の入力ボート部のA/D変換値に基づいて
膨張弁5が制御される。
Then, during heating operation (Sll), in S12,
The expansion valve 5 is controlled based on the A/D conversion value of the input port of the A/D input value included in zones ① and ② in FIG. 2 (bl), respectively.

即ち、第1の所定位置に設けられた第1の温度センサ1
0及び第3の所定位置に設けられた第3の温度センサ1
2により検出される冷媒温度の差が設定値(過熱度)と
なるように上記膨張弁5が制御される。
That is, the first temperature sensor 1 provided at the first predetermined position
0 and a third temperature sensor 1 provided at a third predetermined position.
The expansion valve 5 is controlled so that the difference in refrigerant temperature detected by 2 becomes a set value (degree of superheat).

他方、冷房運転時には(Sll)、S13において、第
2図fa)におけるゾーン■、■にそれぞれ含まれるA
/D入力値の入力ボート部のA/D変換値に基づいて上
記膨張弁5が制御される。
On the other hand, during cooling operation (Sll), in S13, the A
The expansion valve 5 is controlled based on the A/D conversion value of the input port of the /D input value.

即ち、上記第1の温度センサ10及び第2の所定位置に
設けられた第2の温度センサ11により検出される冷媒
温度の差が設定値(過熱度)となるように上記膨張弁5
が制御される。
That is, the expansion valve 5 is adjusted so that the difference in refrigerant temperature detected by the first temperature sensor 10 and the second temperature sensor 11 provided at a second predetermined position becomes a set value (superheat degree).
is controlled.

この場合、上記S12.S13により、上記判別手段に
より判別された上記各温度センサ10〜12からの温度
データに基づいて上記膨張弁5を制御する制御手段が構
成されている。
In this case, the above S12. S13 constitutes a control means that controls the expansion valve 5 based on the temperature data from each of the temperature sensors 10 to 12 discriminated by the discrimination means.

そして、S14において、風量や室内設定温度等のその
他の運転モードに即した処理がなされ、当該空気調和機
の運転はS15において停止指令が入力されたと判断さ
れるまで継続される。
Then, in S14, processing is performed in accordance with other operating modes such as air volume and room temperature setting, and operation of the air conditioner continues until it is determined that a stop command has been input in S15.

本実施例に係る空気調和機は上記したように構成されて
いるため、各温度センサ10〜12が間違った部位に取
り付けられても、各運転モードに対して必要な箇所の温
度データを正確に読み取って、膨張弁5を正常に制御し
て常に最大能力を引き出させることができる。
Since the air conditioner according to this embodiment is configured as described above, even if each of the temperature sensors 10 to 12 is installed at the wrong location, the temperature data of the required location for each operation mode can be accurately obtained. By reading this, the expansion valve 5 can be normally controlled to always bring out the maximum capacity.

従って、当該空気調和機においては、冷媒圧縮サイクル
が常に適正に制御され、能力不足や各種機器を破損させ
ることなく、信頼性を向上させることができる。
Therefore, in the air conditioner, the refrigerant compression cycle is always properly controlled, and reliability can be improved without insufficient capacity or damage to various devices.

また、当該空気調和機の製造時においては、上記冷媒循
環経路上における所定位置に対応する各温度センサ10
〜12の誤接続を考慮する必要がなく、組立作業を簡略
化することもできる。
In addition, when manufacturing the air conditioner, each temperature sensor 10 corresponding to a predetermined position on the refrigerant circulation path is
There is no need to consider the incorrect connections of 12 to 12, and the assembly work can also be simplified.

〔発明の効果〕〔Effect of the invention〕

本発明は、上記したように、圧縮機、冷媒の循環方向を
切り換える切換弁、室外熱交換器、上記冷媒の流量を制
御する膨張弁及び室内熱交換器により冷媒の循環経路が
i威され、上記圧縮機の冷媒流入側の第1の所定位置に
設けられる第1の温度検出手段、上記膨張弁と上記室内
熱交換器との間の第2の所定位置に設けられる第2の温
度検出手段及び上記室外熱交換器と上記膨張弁との間の
第3の所定位置に設けられる第3の温度検出手段により
検出される上記循環経路上の各所定位置での冷媒の温度
データに基づいて上記膨張弁を制御し、冷房運転及び暖
房運転を行うようにした空気調和機において、当該空気
調和機の上記各所定位置での冷房・暖房運転開始時に予
想される基準温度範囲を記憶する記憶手段と、上記各所
定位置に設けられた上記各温度検出手段により検出され
る冷媒温度を読み取る読取手段と、上記読取手段により
読み取られた各所定位置の冷媒温度と上記記憶手段に記
憶された上記各所定位置での冷媒の基準温度範囲とを比
較し、上記各所定位置に取り付けられた上記各温度検出
手段の種類を判別する判別手段と、上記判別手段により
判別された上記各温度検出手段からの温度データに基づ
いて上記膨張弁をWi御する制御手段とを具備してなる
ことを特徴とする空気調和機であるから、各温度検出手
段が各所定位置に対して間違って取り付けられても、各
運転モードに対して必要な箇所の温度データを正確に読
み取り得るようにその箇所に対応する温度検出手段を自
己判定し、膨張弁を正常に制御することができる。
As described above, the present invention includes a compressor, a switching valve that switches the refrigerant circulation direction, an outdoor heat exchanger, an expansion valve that controls the flow rate of the refrigerant, and an indoor heat exchanger, in which the refrigerant circulation path is controlled, A first temperature detection means provided at a first predetermined position on the refrigerant inflow side of the compressor, and a second temperature detection means provided at a second predetermined position between the expansion valve and the indoor heat exchanger. and the above based on temperature data of the refrigerant at each predetermined position on the circulation path detected by a third temperature detection means provided at a third predetermined position between the outdoor heat exchanger and the expansion valve. In an air conditioner configured to control an expansion valve to perform a cooling operation and a heating operation, a storage means for storing a reference temperature range expected at the time of starting the cooling/heating operation at each of the predetermined positions of the air conditioner; , reading means for reading the refrigerant temperature detected by each of the temperature detecting means provided at each of the above predetermined positions, and the refrigerant temperature at each of the predetermined positions read by the above-mentioned reading means and each of the above-mentioned predetermined values stored in the storage means. a determination means for determining the type of each of the temperature detection means installed at each of the predetermined positions by comparing the temperature with a reference temperature range of the refrigerant at each predetermined position; and a temperature from each of the temperature detection means determined by the determination means. Since the air conditioner is characterized by comprising a control means for controlling the expansion valve based on the data, even if each temperature detection means is incorrectly attached to each predetermined position, each In order to accurately read the temperature data of a necessary location for the operating mode, the temperature detection means corresponding to the location can be self-determined, and the expansion valve can be normally controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る空気調和機の構成図、
第2図は上記空気調和機における冷媒圧縮サイクルに取
り付けられた各温度センサにより検出される冷媒温度を
示すものであって、同図(alは冷房運転時に上記各温
度センサにより検出される冷媒の温度変化を示すグラフ
、同図(blは暖房運転時に上記各温度センサにより検
出される冷媒の温度変化を示すグラフ、第3図は上記各
温度センサの対応判定結果の一例を示す図表、第4図は
上記空気調和機を動作させる場合の制御手順を示すフロ
ーチャートである。 〔符号の説明〕 1・・・電動圧縮機 4・・・室内熱交換器 6・・・四方切換弁 9・・・マイクロコンピュータ 0・・・第1の温度センサ ト・・第2の温度センサ 2・・・第3の温度センサ 4・・・駆動回路 1乃至315・・・動作ステップ 3・・・室外熱交換器 5・・・膨張弁
FIG. 1 is a configuration diagram of an air conditioner according to an embodiment of the present invention,
Figure 2 shows the refrigerant temperature detected by each temperature sensor attached to the refrigerant compression cycle in the air conditioner, and (al is the temperature of the refrigerant detected by each temperature sensor during cooling operation). Graph showing temperature changes; FIG. The figure is a flowchart showing the control procedure when operating the air conditioner. [Explanation of symbols] 1...Electric compressor 4...Indoor heat exchanger 6...Four-way switching valve 9... Microcomputer 0...First temperature sensor...Second temperature sensor 2...Third temperature sensor 4...Drive circuits 1 to 315...Operation step 3...Outdoor heat exchanger 5 ...expansion valve

Claims (1)

【特許請求の範囲】 1、圧縮機、冷媒の循環方向を切り換える切換弁、室外
熱交換器、上記冷媒の流量を制御する膨張弁及び室内熱
交換器により冷媒の循環経路が構成され、上記圧縮機の
冷媒流入側の第1の所定位置に設けられる第1の温度検
出手段、上記膨張弁と上記室内熱交換器との間の第2の
所定位置に設けられる第2の温度検出手段及び上記室外
熱交換器と上記膨張弁との間の第3の所定位置に設けら
れる第3の温度検出手段により検出される上記循環経路
上の各所定位置での冷媒の温度データに基づいて上記膨
張弁を制御し、冷房運転及び暖房運転を行うようにした
空気調和機において、 当該空気調和機の上記各所定位置での冷房・暖房運転開
始時に予想される基準温度範囲を記憶する記憶手段と、 上記各所定位置に設けられた上記各温度検出手段により
検出される冷媒温度を読み取る読取手段と、 上記読取手段により読み取られた各所定位置の冷媒温度
と上記記憶手段に記憶された上記各所定位置での冷媒の
基準温度範囲とを比較し、上記各所定位置に取り付けら
れた上記各温度検出手段の種類を判別する判別手段と、
上記判別手段により判別された上記各温度検出手段から
の温度データに基づいて上記膨張弁を制御する制御手段
とを具備してなることを特徴とする空気調和機。
[Claims] 1. A refrigerant circulation path is constituted by a compressor, a switching valve that switches the refrigerant circulation direction, an outdoor heat exchanger, an expansion valve that controls the flow rate of the refrigerant, and an indoor heat exchanger, and a first temperature detection means provided at a first predetermined position on the refrigerant inflow side of the machine; a second temperature detection means provided at a second predetermined position between the expansion valve and the indoor heat exchanger; the expansion valve based on temperature data of the refrigerant at each predetermined position on the circulation path detected by a third temperature detection means provided at a third predetermined position between the outdoor heat exchanger and the expansion valve. in an air conditioner configured to perform cooling operation and heating operation by controlling the air conditioner, a storage means for storing a reference temperature range expected at the time of starting the cooling/heating operation at each of the above-mentioned predetermined positions of the air conditioner; reading means for reading the refrigerant temperature detected by each of the temperature detecting means provided at each predetermined position; determination means for determining the type of each of the temperature detection means attached to each of the predetermined positions by comparing the refrigerant with a reference temperature range of the refrigerant;
An air conditioner comprising: control means for controlling the expansion valve based on temperature data from each of the temperature detection means discriminated by the discrimination means.
JP2070969A 1990-03-20 1990-03-20 Air conditioner Expired - Fee Related JP2522849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2070969A JP2522849B2 (en) 1990-03-20 1990-03-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2070969A JP2522849B2 (en) 1990-03-20 1990-03-20 Air conditioner

Publications (2)

Publication Number Publication Date
JPH03271662A true JPH03271662A (en) 1991-12-03
JP2522849B2 JP2522849B2 (en) 1996-08-07

Family

ID=13446862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2070969A Expired - Fee Related JP2522849B2 (en) 1990-03-20 1990-03-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP2522849B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114151937A (en) * 2021-11-04 2022-03-08 珠海拓芯科技有限公司 Control method and device of air conditioner and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114151937A (en) * 2021-11-04 2022-03-08 珠海拓芯科技有限公司 Control method and device of air conditioner and air conditioner

Also Published As

Publication number Publication date
JP2522849B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US4735058A (en) Air conditioning apparatus
JPS62218748A (en) Defrosting controller for air-conditioning machine
JPH03271662A (en) Air conditioner
JPH0735391A (en) Control device for air conditioner
JP2934659B2 (en) Air conditioner dehumidifying operation control method and air conditioner
JPH08226732A (en) Air conditioning equipment
JPS6354557A (en) Air conditioner
JP3149932B2 (en) Air conditioner operation control method
KR100456954B1 (en) Air conditioner, method for detection of sensor position and method for control of sensor position
JPH05223360A (en) Air conditioner
JP3337264B2 (en) Air conditioner defroster
JPH01121650A (en) Injection control device for air conditioner
JP3353929B2 (en) Air conditioner
JPH0719575A (en) Air conditioner
JPS62190359A (en) Defrostation controller
JPS6329169A (en) Air conditioner
JP2615999B2 (en) Air conditioner
KR0186056B1 (en) Overload control method of heat pump airconditioner
JPH04158171A (en) Air conditioner
JP2906628B2 (en) Air conditioner equipped with refrigerant heating device
JPS6325478Y2 (en)
JP3079152B2 (en) Air conditioner
JPH0510624A (en) Air conditioner
JPS6349666A (en) Air conditioner
JPH04165250A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees