JPH03271360A - Production of thin film of ferroelectric substance - Google Patents

Production of thin film of ferroelectric substance

Info

Publication number
JPH03271360A
JPH03271360A JP2071277A JP7127790A JPH03271360A JP H03271360 A JPH03271360 A JP H03271360A JP 2071277 A JP2071277 A JP 2071277A JP 7127790 A JP7127790 A JP 7127790A JP H03271360 A JPH03271360 A JP H03271360A
Authority
JP
Japan
Prior art keywords
thin film
lead
oxygen gas
vapor deposition
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2071277A
Other languages
Japanese (ja)
Inventor
Motoo Toyama
外山 元夫
Masahiko Kanehara
金原 昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2071277A priority Critical patent/JPH03271360A/en
Publication of JPH03271360A publication Critical patent/JPH03271360A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high quality thin film of PZT type ferroelectric substance at low substrate temp. with high throughput by using a metal as simple substance as an evaporation source and introducing oxygen gas into a vapor deposition reaction chamber. CONSTITUTION:A thin film of PZT type ferroelectric substance, such as lead titanate, lead titanate-lanthavate, lead zirconate-titanate, and lead titavate- zirconate-lanthavate, is produced by a multicomponent vapor deposition method. In the above producing method, respective compositions of metallic elements are independently controlled by using metals as simple substances, such as titanium and lead, or the oxides of single metals as evaporation sources. Further, at the time of introducing oxygen gas as a reactant gas into a vapor deposition reaction chamber, this oxygen gas is preferentially introduced onto a substrate. At this time, it is preferable that a part or the whole of the oxygen gas is introduced after ionization and the substrate surface is irradiated with the resulting ions, if necessary, in the accelerated state. By this method, reaction at the substrate surface can be accelerated, and the high quality this film of ferroelectric substance can be formed efficiently at low temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、PZT系強誘電体FiJ膜の製造方法に関す
るものであり、不揮発性のランダムアクセスメモリや光
学メモリ、超音波変換機、焦電素子などの製造に利用さ
れる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a PZT-based ferroelectric FiJ film, and is applicable to non-volatile random access memory, optical memory, ultrasonic transducer, pyroelectric Used for manufacturing devices, etc.

〔発明の概要〕[Summary of the invention]

本発明はPZT系強誘電体薄膜の成膜法として蒸着法を
選ぶことにより、安価で、安全かつ高速の成膜工程とし
、多元蒸着法により品質の再現性を高め、かつ酸素ガス
またはイオンを導入することにより、高品質の強誘電体
薄膜を得るものである。
The present invention uses the vapor deposition method as the method for forming PZT-based ferroelectric thin films, resulting in an inexpensive, safe, and high-speed film forming process, improves quality reproducibility using the multi-source vapor deposition method, and uses oxygen gas or ions. By introducing this method, a high quality ferroelectric thin film can be obtained.

〔従来の技術〕[Conventional technology]

PZT系の強誘電体は、キュリー点が高く、自発分極が
大きいことから、圧電素子、電気光学素子等の種々の機
能性素子に、おもにセラミックの形で応用されてきたが
、近年LSIなどでの薄膜製造手段の進歩により、薄膜
の形で得ることが可能となり、半導体メモリにも応用さ
れつつある。
PZT-based ferroelectric materials have a high Curie point and large spontaneous polarization, so they have been applied to various functional elements such as piezoelectric elements and electro-optical elements, mainly in the form of ceramics, but in recent years, they have been applied to LSI etc. Advances in thin film manufacturing methods have made it possible to obtain thin films, and they are now being applied to semiconductor memories.

この種の強誘電体薄膜を製造する方法としては、従来、
CVD法、ゾル−ゲル法、スパッタ法などがあり、例え
ばスパッタ法による成膜例として、Croteau e
t aljpn、J、^ppl、 Phys、、26 
Supplement26−2. (1987)18が
挙げられる。
Conventionally, methods for manufacturing this type of ferroelectric thin film include
There are CVD methods, sol-gel methods, sputtering methods, etc. For example, as an example of film formation by sputtering method, Croteau e
t aljpn, J, ^ppl, Phys,, 26
Supplement26-2. (1987) 18.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の技術の中で強誘電性を得やすいことからよく用い
られる高温スパッタ法は、装置構成が複雑であり、また
成膜速度が毎分2 (nm)程度と遅いため、少なくと
もLSIなどの量産向きではない。
High-temperature sputtering, which is often used among conventional techniques because it is easy to obtain ferroelectric properties, has a complicated equipment configuration and a slow film deposition rate of about 2 (nm) per minute, making it difficult to mass-produce at least LSI devices. It's not the right direction.

CVD法は成膜速度は速いものの、膜厚分布が悪く、毒
性のガスを用いる等の問題がある。ゾル−ゲル法は、1
回の塗布工程では、300(/110)程度の厚さしか
得られず、例えば1 (ns+)の膜厚を得るためには
、工程を3回繰り返すことが必要で、ダストの付着等に
よる歩留まりの悪化が避けられず、アルキル基をファイ
リングにより除去するときに膜にひびが入るなどの問題
も指摘されている。
Although the CVD method has a high film formation rate, it has problems such as poor film thickness distribution and the use of toxic gas. The sol-gel method is 1
In one coating process, a thickness of only about 300 (/110) can be obtained. For example, in order to obtain a film thickness of 1 (ns+), it is necessary to repeat the process three times, and the yield rate due to dust adhesion, etc. Problems such as cracking of the film when removing the alkyl group by filing have also been pointed out.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記に延べた諸問題を解決すべく、反応性の多
元蒸着法を用いてPZT系!lf誘電体薄膜を成膜した
ものである。また、薄膜の品質を向上させるため、必要
に応して反応ガスである酸素をイオン化したものである
In order to solve the above-mentioned problems, the present invention uses a reactive multi-component vapor deposition method to produce a PZT-based film! A lf dielectric thin film is formed. In addition, in order to improve the quality of the thin film, oxygen, which is a reactive gas, is ionized as necessary.

〔作用〕[Effect]

本発明によってPZT系強誘電体を成膜すれば、まず、
蒸着法固有の特徴として、成膜速度が早くなり、装置構
成も簡単で、汚染が少ない。また、多元夷着を採用する
ことにより、各金属元素の組成を独立に制御し、最適の
金属組成を得、酸素ガスの導入により、反応酸素を基板
面に補給または供給する。さらに、導入する酸素をイオ
ン化して供給することにより、基板表面での反応が促進
され、比較的低温でも結晶が成長する。
If a PZT-based ferroelectric film is formed according to the present invention, first,
The unique characteristics of the vapor deposition method are that the film formation rate is high, the equipment configuration is simple, and there is little contamination. In addition, by employing multi-component deposition, the composition of each metal element is independently controlled to obtain the optimum metal composition, and by introducing oxygen gas, reactive oxygen is supplied or supplied to the substrate surface. Furthermore, by supplying ionized oxygen to be introduced, reactions on the substrate surface are promoted, and crystals grow even at relatively low temperatures.

〔実施例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

第1図は本発明によるPZT系強誘電体薄膜製造方法の
実施に用いた2元蒸着装置である。
FIG. 1 shows a binary vapor deposition apparatus used to carry out the method of manufacturing a PZT-based ferroelectric thin film according to the present invention.

真空チャンバ1内に基板2.鉛蒸発源3.チタニウム蒸
発64.酸素イオン源5をそれぞれ粒子あるいはイオン
が基板2の表面に向かうように配置する。基板2は膜厚
分布とm威が均一になるように、モータ6により回転さ
せる。また基板2は、電力ll!7と、ブラシ8を介し
て接続する基板加熱ヒータvA9により、むらなく加熱
されている。
A substrate 2 is placed in a vacuum chamber 1. Lead evaporation source 3. Titanium evaporation64. The oxygen ion sources 5 are arranged so that the particles or ions are directed toward the surface of the substrate 2. The substrate 2 is rotated by a motor 6 so that the film thickness distribution and thickness are uniform. Also, the board 2 has power ll! 7 and a substrate heater vA9 connected via a brush 8, the substrate is heated evenly.

上記の装置を用い、基板2の温度を400 (’C)と
し、基板2として(100)方位のptを用い、酸素ガ
ス流量を標準状態換算で毎分20 (cd)として、チ
タン酸鉛を作製した。鉛とチタニウムの組成比はほぼ1
対1になることが望ましいが、これを実現するために、
本発明者らは、底膜中に四重極質量分析機を用いてモニ
ターし、鉛蒸発H3とチタニウム蒸発源4からのそれぞ
れ鉛とチタニウムの蒸発量を独立に制御した。酸素イオ
ンは酸素イオン源5内の図示されていないグリッドによ
り3000 (nm)に加速した。
Using the above apparatus, the temperature of the substrate 2 was set to 400 ('C), a (100) oriented PT was used as the substrate 2, and the oxygen gas flow rate was set to 20 (cd) per minute converted to standard conditions. Created. The composition ratio of lead and titanium is approximately 1
It is desirable to have a one-on-one relationship, but in order to achieve this,
The present inventors monitored the bottom film using a quadrupole mass spectrometer and independently controlled the amounts of lead and titanium evaporated from the lead evaporation H3 and the titanium evaporation source 4, respectively. Oxygen ions were accelerated to 3000 nm by a grid (not shown) in the oxygen ion source 5.

以上のように制御した条件下でチタン酸鉛を成膜したと
ころ、透明な膜ができ、毎分50(nm)の成膜速度を
得た。これは、スパッタ法の10倍以上である。X線解
析パターンから膜構造を分析したところ、PbTi0z
に対応するパターンが認められ、特に、テトラブチルの
(1001)方位が70%を占め、エピタキシャル成長
が首尾良く行われているものと推定される。本発明者ら
は膜[1(−)の厚さに、上記の方法で作製した試料に
ついてAuの上部電極をつけ、いわゆるSawyer−
Tower回路により電気ヒステリシス曲線を測定した
ところ、残留分極(i15(μC/cya−”)を得た
。高集積ランダムアクセスメモリへの応用には十分な値
である。
When a film of lead titanate was formed under the conditions controlled as described above, a transparent film was formed and a film formation rate of 50 (nm) per minute was obtained. This is more than 10 times the sputtering method. When the film structure was analyzed from the X-ray analysis pattern, it was found that PbTi0z
A pattern corresponding to the above was observed, and in particular, the (1001) orientation of tetrabutyl accounted for 70%, indicating that epitaxial growth was successful. The present inventors attached an Au upper electrode to the sample prepared by the above method to a thickness of 1(-), and added a so-called Sawyer-
When the electrical hysteresis curve was measured using the Tower circuit, a residual polarization (i15 (μC/cya-'')) was obtained. This value is sufficient for application to highly integrated random access memory.

スパッタ法やCVD法では、本実施例のようなエピタキ
シャル成長による良好な結晶性と強誘電性を得るために
は、およそ550 (℃)以上の基板温度が必要である
が、本実施例の場合、300 (’t: )の基板温度
でも、PbTiOsの(001)配向が認められた。
In sputtering and CVD methods, a substrate temperature of approximately 550 (°C) or higher is required to obtain good crystallinity and ferroelectricity through epitaxial growth as in this example. The (001) orientation of PbTiOs was observed even at a substrate temperature of 300 ('t: ).

このようにエピタキシャル成膜の低温化が可能になった
のは、酸素イオンが活性な反応ラジカルとして働くため
と考えられるが、本実施例の場合、。
The reason why epitaxial film formation can be performed at a lower temperature in this way is thought to be because oxygen ions act as active reaction radicals, and in the case of this example.

酸素イオンを加速することにより運動エネルギを与え、
表面反応をさらに促進している。一定の運動エネルギー
を持った酸素イオンは、通常の反応性スパッタリング法
においても存在するが、反応性スパッタリング法の場合
、酸素ガスのみによるスパッタリングでは、スパッタ効
率が悪(、定の成膜速度を得るために通常はアルゴンガ
スをヘースにし、酸素ガスを数10%混合するのが普通
である。そのような場合、基板表面はアルゴンイオンの
衝突で、金属の酸化反応が阻害されているものと考えら
れる。ところが本発明においては、蒸着法によるので、
そのような表面反応には不要かつ有害な不活性ガスおよ
びイオンは存在せず、むしろ金属の酸化反応に十分な量
の酸素が供給されている。この効果は、必ずしも酸素を
イオン化せずとも顕著であり、実際、本発明者らは酸素
イオン源5の代わりに、単に酸素ガスを導入するノズル
を設け、酸素ガスを基板2の表面に供給しながら成膜し
た場合においても、基板温度300(’T:)以上でP
bTiO3のエピタキシャル成長ができることを確認し
た。
Gives kinetic energy by accelerating oxygen ions,
This further promotes surface reactions. Oxygen ions with a certain kinetic energy exist even in normal reactive sputtering methods, but in the case of reactive sputtering methods, sputtering using only oxygen gas has poor sputtering efficiency (i.e., it is difficult to obtain a constant film formation rate). For this reason, it is common to mix argon gas with several 10% oxygen gas.In such cases, it is thought that the oxidation reaction of the metal is inhibited by the collision of argon ions on the substrate surface. However, in the present invention, since the vapor deposition method is used,
In such surface reactions, unnecessary and harmful inert gases and ions are not present, but rather a sufficient amount of oxygen is supplied for the oxidation reaction of the metal. This effect is noticeable even if oxygen is not necessarily ionized, and in fact, the present inventors provided a nozzle for simply introducing oxygen gas instead of the oxygen ion source 5 and supplied the oxygen gas to the surface of the substrate 2. Even when the film is formed at a substrate temperature of 300 (T:) or higher
It was confirmed that bTiO3 could be epitaxially grown.

PZT系強誘電体を用いたI、SIなどの量産の場合、
成膜チャンバー1内の各蒸着源3,4におかれた金属の
表面が酸化することにより工程が不安定になるが、蒸発
源3.4として、金属単体の代わりにそれぞれPbOや
TiO□なとの、金属酸化物を用いれば問題がないだけ
でなく、予め金属を酸化しておくことにより、薄膜の品
質を更に向」ゴすることができる。
For mass production of I, SI, etc. using PZT-based ferroelectric materials,
The process becomes unstable due to oxidation of the surface of the metal placed in each of the evaporation sources 3 and 4 in the film-forming chamber 1, but as the evaporation source 3.4, PbO or TiO□ is used instead of a single metal. Not only is there no problem if a metal oxide is used, but the quality of the thin film can be further improved by oxidizing the metal in advance.

遅蔽板10は気相中での不要な反応を抑えるために設け
た。
The delay plate 10 was provided to suppress unnecessary reactions in the gas phase.

第1図においては、鉛とチタニウムの球発源3と4は真
空チャンバ1内の動径方向に異なった距離をもっておか
れているが、m成分布を均一にする目的で、これらと酸
素イオン源5とをチャンバ1内に同心円上に配置しても
効果がある。
In Figure 1, lead and titanium ball sources 3 and 4 are placed at different distances in the radial direction within the vacuum chamber 1, but in order to make the m-component distribution uniform, these and oxygen ion It is also effective to arrange the source 5 concentrically within the chamber 1.

本実施例はチタン酸鉛の成膜法について延べたが、他の
PZT系薄膜薄膜なわちチタン酸うンクン鉛、チタン酸
ジルコン酸鉛、およびチタン酸ジルコン酸ランタン鉛の
成膜についても同様の効果を有する。
Although this example describes a film formation method for lead titanate, the same method can be applied to the formation of other PZT-based thin films, such as lead titanate, lead zirconate titanate, and lanthanum lead zirconate titanate. have an effect.

〔発明の効果] 以上延べたように、本発明によれば、PZT系の強誘電
体薄膜を、低い基板温度で高いスループ、7トででしか
も高い品質で得ることができる。
[Effects of the Invention] As described above, according to the present invention, a PZT-based ferroelectric thin film can be obtained at low substrate temperature, high sloop, and high quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の強誘電体yi膜の製造装置の一実施例
を示す縦断面図である。 真空チャンバ 基板 鉛蒸発源 チタニウム蒸発源 酸素イオン源 以上
FIG. 1 is a longitudinal sectional view showing an embodiment of the ferroelectric yi film manufacturing apparatus of the present invention. Vacuum chamber substrate Lead evaporation source Titanium evaporation source Oxygen ion source and above

Claims (5)

【特許請求の範囲】[Claims] (1)チタン酸鉛、チタン酸ランタン鉛、チタン酸ジル
コン酸鉛、またはチタン酸ジルコン酸ランタン鉛の強誘
電体薄膜の多元蒸着法による製造方法において、各蒸着
源として金属単体を用い、酸素ガスを蒸着反応室内に導
入することを特徴とする、強誘電体薄膜の製造方法。
(1) In a method for producing ferroelectric thin films of lead titanate, lanthanum lead titanate, lead zirconate titanate, or lanthanum lead zirconate titanate using a multi-source vapor deposition method, an elemental metal is used as each vapor deposition source, and oxygen gas is used. A method for producing a ferroelectric thin film, the method comprising: introducing a ferroelectric thin film into a vapor deposition reaction chamber.
(2)各蒸着源として単一金属の酸化物を用いることを
特徴とする、特許請求の範囲第1項記載の強誘電体薄膜
の製造方法。
(2) A method for producing a ferroelectric thin film according to claim 1, characterized in that a single metal oxide is used as each vapor deposition source.
(3)酸素気体を、基板上に優先的に導入することを特
徴とする、特許請求の範囲第1項および第2項記載の強
誘電体薄膜の製造方法。
(3) A method for manufacturing a ferroelectric thin film according to claims 1 and 2, characterized in that oxygen gas is preferentially introduced onto the substrate.
(4)酸素気体の一部あるいは大多数をイオン化して導
入することを特徴とする、特許請求の範囲第1項、第2
項および第3項記載の強誘電体薄膜の製造方法。
(4) Claims 1 and 2, characterized in that part or most of the oxygen gas is ionized and introduced.
3. A method for producing a ferroelectric thin film according to items 1 and 3.
(5)イオン化した酸素を加速して基板表面に照射する
ことを特徴とする、特許請求の範囲第4項記載の強誘電
体薄膜の製造方法。
(5) A method for manufacturing a ferroelectric thin film according to claim 4, characterized in that ionized oxygen is accelerated and irradiated onto the substrate surface.
JP2071277A 1990-03-20 1990-03-20 Production of thin film of ferroelectric substance Pending JPH03271360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2071277A JPH03271360A (en) 1990-03-20 1990-03-20 Production of thin film of ferroelectric substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2071277A JPH03271360A (en) 1990-03-20 1990-03-20 Production of thin film of ferroelectric substance

Publications (1)

Publication Number Publication Date
JPH03271360A true JPH03271360A (en) 1991-12-03

Family

ID=13456060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2071277A Pending JPH03271360A (en) 1990-03-20 1990-03-20 Production of thin film of ferroelectric substance

Country Status (1)

Country Link
JP (1) JPH03271360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121647A (en) * 1996-06-26 2000-09-19 Tdk Corporation Film structure, electronic device, recording medium, and process of preparing ferroelectric thin films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121647A (en) * 1996-06-26 2000-09-19 Tdk Corporation Film structure, electronic device, recording medium, and process of preparing ferroelectric thin films
US6387712B1 (en) 1996-06-26 2002-05-14 Tdk Corporation Process for preparing ferroelectric thin films

Similar Documents

Publication Publication Date Title
JP4662112B2 (en) Ferroelectric thin film and manufacturing method thereof
JP2002211924A (en) Multiphase lead germanate film and method for depositing the same
JPS62205266A (en) Ferroelectric thin film element and its production
KR100373080B1 (en) C-axis oriented lead germanate film and deposition method
Shimizu et al. Growth and Characterization of Ferroelectric Pb (Zr, Ti) OM3 Thin Films by Mocvd Using A 6 Inch Single Wafer Cvd System
JP4807901B2 (en) Thin film production method
JP2688872B2 (en) Method for producing PZT thin film and sputtering apparatus
JPH0812494A (en) Production of oxide crystal thin film and thin-film element
JPH03271360A (en) Production of thin film of ferroelectric substance
JP3586870B2 (en) Oriented thin film forming substrate and method for producing the same
JP3118702B2 (en) Method for manufacturing non-volatile memory thin film
KR100229358B1 (en) The method of sbt layer
JPH04133369A (en) Dielectric thin-film, thin-film device and manufacture thereof
KR100365038B1 (en) Multi-Phase Lead Germanate Film And Deposition Method
JPS63114966A (en) Apparatus for producing thin film
JPH10287983A (en) Production of titanium-containing ceramic thin film
JP3888400B2 (en) Dielectric thin film manufacturing method
JP2001254176A (en) Process and system for metal organic chemical vapor deposition(mocvd) for lead germanium oxide (pgo) thin film and annealing
JPH064520B2 (en) Manufacturing method of oxide thin film
JPH07111107A (en) Manufacture of thin film of ferroelectric substance
Lu et al. Growth characteristics of ferroelectric PbTiO3 (PT) and Pb (ZrxTi1− x) O3 thin films by novel single-solid-source metalorganic chemical vapor processing
KR100450366B1 (en) Process for Preparing Bismuth Compounds
Kanno et al. Processing and characterization of ferroelectric thin films by multi-ion-beam sputtering
JPH09301798A (en) Production of lead titanate zirconate thin film
JPH06305897A (en) Production of oxide crystal film