JPH03271117A - Spherical rare earth of oxalate and production thereof - Google Patents

Spherical rare earth of oxalate and production thereof

Info

Publication number
JPH03271117A
JPH03271117A JP2070085A JP7008590A JPH03271117A JP H03271117 A JPH03271117 A JP H03271117A JP 2070085 A JP2070085 A JP 2070085A JP 7008590 A JP7008590 A JP 7008590A JP H03271117 A JPH03271117 A JP H03271117A
Authority
JP
Japan
Prior art keywords
oxalate
rare earth
spherical
oxalic acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2070085A
Other languages
Japanese (ja)
Inventor
Tsugio Kaneko
金古 次雄
Tsuneo Kimura
木村 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP2070085A priority Critical patent/JPH03271117A/en
Publication of JPH03271117A publication Critical patent/JPH03271117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To improve fluidity by maintaining <= a specific temperature and collecting rare earth of oxalate of reaction product of rare earth element ion and oxalate ion. CONSTITUTION:An aqueous solution of one or more of chloride, nitrate, sulfate, etc., of rare earth element such as Y and lanthanide with atomic number 57-71 having >=0.05mol/l concentration is prepared. The temperature of the solution is maintained at >= the freezing point of the aqueous solution and <=20 deg.C and reacted with 1.5-3.0mol based on 1mol of total amount of the rare earth of an aqueous solution of oxalic acid or oxalate while stirring for 1-120 minutes. After the reaction is over, particles of rare earth of oxalate are filtered and separated from the mother liquor while maintaining the solution at <=20 deg.C, washed, then dehydrated by using a dehydrating solvent and dried to give particles of nonagglmomerative spherical crystalline rare earth of oxalate having <=200mum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は球状蓚酸希土に関するものである。詳しくは、
高純度で微細な非凝集性の球状結晶質蓚酸希土およびそ
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to spherical rare earth oxalate. For more information,
The present invention relates to a highly pure, fine, non-agglomerated, spherical crystalline rare earth oxalate and a method for producing the same.

[従来の技術] 蓚酸希土は、酸化物、硫化物、またはハロゲン化物のよ
うな希土類化合物に変えて、あるいはそのままの形で電
子材料やセラミック材料として多用されている。このよ
うな用途においては、1、高純度であること。
[Prior Art] Rare earth oxalate is often used as electronic materials and ceramic materials, either in the form of rare earth compounds such as oxides, sulfides, or halides, or in its original form. For such uses, 1. It must be highly pure.

2、嵩密度が大きく、容積当たりの充填量が多いこと。2. It has a large bulk density and a large amount of filling per volume.

3、流動性が良く、充填操作や反応操作が容易であるこ
と、等が要求されている。
3. Good fluidity and easy filling and reaction operations are required.

従来、蓚酸希土は希土類イオンと蓚酸イオンとの反応に
よって製造されているが、得られる蓚酸希土は形が不定
で嵩密度が小さく、粒径も不揃いで粒径分布も広いもの
であった。このため粒度を揃えるには、分級するとか場
合によっては粉砕液分級する等の操作が必要で、操作が
煩雑である上に装置からの不純物の混入という不都合が
あった。
Conventionally, rare earth oxalate has been produced by the reaction between rare earth ions and oxalate ions, but the resulting rare earth oxalate has an irregular shape, a low bulk density, irregular particle sizes, and a wide particle size distribution. . Therefore, in order to make the particle size uniform, operations such as classification and, in some cases, classification of the pulverized liquid, are required, which is not only complicated, but also causes the inconvenience of contamination with impurities from the equipment.

特公昭57−47133には、イツトリウムイオンと蓚
酸イオンとの反応によって生成した蓚酸イツトリウムを
、水の存在下90〜100°Cの温度で保持した後乾燥
する方法が示されているが、この方法によっても得られ
る蓚酸イツトリウムは立方体に近い形状である。しかも
効果を確実にするだけの時間保持を行うと、粒度分布は
広いままで粒度が大きい法にシフトするので、微細な蓚
酸イツトリウムを得るには粉砕、分級が必要となる。
Japanese Patent Publication No. 57-47133 discloses a method in which yttrium oxalate produced by a reaction between yttrium ions and oxalate ions is held at a temperature of 90 to 100°C in the presence of water and then dried. Yttrium oxalate obtained also by this method has a shape close to a cube. Moreover, if the process is held for a long enough time to ensure its effectiveness, the particle size distribution will remain wide and shift to a method with larger particle sizes, so pulverization and classification will be necessary to obtain fine yttrium oxalate.

[発明の目的] 本発明者らは、前記要求に応えるべく鋭意研究を重ねた
結果、希土類イオンと蓚酸イオンとの反応を特定の条件
で行うときは、非凝集性の球状蓚酸着生を得ることがで
きることを知得して本発明を完成した。
[Purpose of the Invention] As a result of extensive research to meet the above requirements, the present inventors have found that when the reaction between rare earth ions and oxalate ions is carried out under specific conditions, non-agglomerated spherical oxalate deposits can be obtained. The present invention was completed by learning that it is possible to do this.

すなわち本発明は、工業的価値の大きい球状蓚酸着生を
提供することを目的とするものであり、その要旨とする
こところは、平均粒径が200pm以下の非凝集性球状
結晶質蓚酸着生、および希土類イオンと蓚酸イオンとを
反応させる方法において、上記反応開始から生成蓚酸希
土粒子の取得迄の間、温度を20°C以下に保つことを
特徴とする球状結晶質蓚酸着生の製造法である。
That is, the purpose of the present invention is to provide a spherical oxalic acid deposit that has great industrial value. , and a method of reacting rare earth ions and oxalate ions, characterized in that the temperature is maintained at 20°C or less from the start of the reaction until the obtained rare earth oxalate particles are obtained. It is the law.

[発明の構成J 本発明において希土類とは、イツトリウム及び原子番号
が57〜71のランタノイドをいう。
[Structure of the Invention J In the present invention, rare earths refer to yttrium and lanthanoids having an atomic number of 57 to 71.

非凝集とは、個々の粒子が独立して存在しており、実質
的に凝集部分がないことを意味する。
Non-agglomerated means that the individual particles exist independently and are substantially free of agglomerated portions.

本発明における球状とは、真球および短径に対する長径
の比が1.5以下の略々球形の粒子を意味する。本発明
の蓚酸着生は全てのものが球状であることが望ましいが
、工業的な製造において厳密に球状粒子のみを製造する
ことは困難であり、また全ての粒子が球状であるものの
みに限られるものではなく、流動性と嵩密度を損わない
範囲で異なる形状の蓚酸希土粒子が混在することは許さ
れる。
In the present invention, spherical means a true sphere and a substantially spherical particle having a ratio of the major axis to the minor axis of 1.5 or less. It is desirable that all particles of oxalic acid deposited in the present invention be spherical, but it is difficult to strictly produce only spherical particles in industrial production, and it is limited to particles in which all particles are spherical. However, it is permissible for rare earth oxalate particles of different shapes to coexist within a range that does not impair fluidity and bulk density.

平均粒径は体積基準で表したもので(Dso)、200
μm以下のものが容易に生成され得る。工業的用途には
、通常1〜1100p、特に5〜501.Im程度の物
が好まれる。平均粒径があまりに小さいものは取り扱い
が困難となり、流動性も悪くなる。逆にあまりにも大き
いものは工業的な製造が困難となる。
The average particle size is expressed on a volume basis (Dso), 200
A size smaller than μm can be easily produced. For industrial use, it is usually 1 to 1100p, especially 5 to 501. Im grade is preferred. If the average particle size is too small, it will be difficult to handle and the fluidity will be poor. On the other hand, if it is too large, it will be difficult to manufacture it industrially.

本発明の球状蓚酸着生は、粒径とその形状によって極め
て流動性がよく、傾斜法による安息角50度以下で従来
品の50〜70度に比して小さい。また、嵩密度も不定
形の蓚酸着生に比して50%以上大きい。
The spherical oxalic acid deposits of the present invention have extremely good fluidity due to their particle size and shape, and the angle of repose measured by the inclination method is 50 degrees or less, which is smaller than the 50 to 70 degrees of conventional products. Furthermore, the bulk density is 50% or more greater than that of irregularly shaped oxalic acid deposits.

このような球状蓚酸着生を製造するには、例えば、希土
類イオンと蓚酸イオンとを、20’C以下の温度で反応
させ、引続き生成蓚酸希土粒子の取得迄の量温度を20
°C以下に保って球状の蓚酸希土粒子を得る方法があげ
られる。
In order to produce such spherical oxalic acid deposits, for example, rare earth ions and oxalate ions are reacted at a temperature of 20'C or lower, and the temperature is then lowered to 20°C until the produced rare earth oxalate particles are obtained.
A method for obtaining spherical rare earth oxalate particles by keeping the temperature below °C is mentioned.

希土類イオンとしては、通常、希土類元素の塩化物、硝
酸塩、硫酸塩等のような水に可溶性の希土類化合物の水
溶液があげられ、希土類元素の種類は1種であっても2
種以上であってもよい。希土類化合物の濃度は特に限定
的でないが、濃度があまり低いと処理液量が増加する為
工業的には不利となるので、通常、0.05mol /
 e以上、好ましくは0.1〜0.5mol /ぞの範
囲から選ぶのがよい。
Rare earth ions usually include aqueous solutions of water-soluble rare earth compounds such as chlorides, nitrates, sulfates, etc. of rare earth elements.
It may be more than one species. The concentration of the rare earth compound is not particularly limited, but if the concentration is too low, the amount of treatment liquid will increase, which is disadvantageous industrially, so it is usually 0.05 mol /
It is preferable to select from the range of e or more, preferably 0.1 to 0.5 mol/zo.

蓚酸イオントしては、蓚酸、または蓚酸アンモニウム、
蓚酸ナトリウム、蓚酸カリウム等のような蓚酸塩の水溶
液があげられる。これら蓚酸イオンの使用量は、通常、
希土類総量に対してモル比で1.5〜3.0の範囲がら
選ぶのがよい。但しモル比で1.0以下(場合により0
.5以下)の範囲から選べば、特に小粒径(ザブp程度
)の粒子を得ることができる。
Oxalate ions include oxalic acid or ammonium oxalate,
Examples include aqueous solutions of oxalate salts such as sodium oxalate, potassium oxalate, and the like. The amount of these oxalate ions used is usually
The molar ratio relative to the total amount of rare earths is preferably selected from a range of 1.5 to 3.0. However, the molar ratio is 1.0 or less (0 in some cases)
.. If the particle diameter is selected from the range of 5 or less), particles with a particularly small particle size (about the size of P) can be obtained.

反応を行うには、先ず希土類化合物の水溶液を調製し、
液温を該水溶液の凝固点以上20°C以下に保った状態
で、これに蓚酸または蓚酸塩の水溶液を加えるのがよい
。この際の温度は特に重要であり、低温はど球形度の良
いものが得られる傾向があるので、好ましくは該水溶液
の凝固点以上で10℃以下の範囲とするのがよい。
To carry out the reaction, first prepare an aqueous solution of the rare earth compound,
It is preferable to add an aqueous solution of oxalic acid or oxalate to the solution while keeping the temperature of the solution at a temperature above the freezing point of the aqueous solution and below 20°C. The temperature at this time is particularly important, and since a product with good sphericity tends to be obtained at a low temperature, it is preferably within a range of at least the freezing point of the aqueous solution and at most 10°C.

蓚酸または蓚酸塩の水溶液を希土類化合物の水溶液に供
給する速度は、得られる蓚酸着生の粒径に影響を与える
ので、通常、全量の添加時間が1〜120分、好ましく
は2〜60分の範囲から選ぶのがよい。添加時間は長く
なる栓球状蓚酸着生の平均粒子径が大きくなる傾向があ
るが、120分をこえると球形の結晶が得られにくくな
る傾向がある。逆に添加時間が極端に短い場合には粒子
が微細となり球状粒子がなりにくい。
The rate at which oxalic acid or an aqueous solution of oxalate is supplied to an aqueous solution of a rare earth compound affects the particle size of the resulting oxalic acid deposits, so the total addition time is usually 1 to 120 minutes, preferably 2 to 60 minutes. It is best to choose from a range. As the addition time increases, the average particle size of the plug-spherical oxalic acid deposits tends to increase, but if the addition time exceeds 120 minutes, it tends to become difficult to obtain spherical crystals. On the other hand, if the addition time is extremely short, the particles become fine and spherical particles are difficult to form.

反応の際の攪拌の強度については、生成する蓚酸着生の
平均粒径および粒度分布に関係があり、攪拌強度を犬に
する程平均粒径が小さく、粒度分布がシャープになる傾
向がある。
The intensity of stirring during the reaction is related to the average particle size and particle size distribution of the oxalic acid deposits produced, and the higher the stirring intensity, the smaller the average particle size and the sharper the particle size distribution.

この希土類イオンと蓚酸イオンとの反応では、−回の操
作で得られる蓚酸着生の平均粒径は最大50、mが限度
であるが、これより大きい平均粒径の球状粒子を望む場
合には、既に得られた球状蓚酸着生を種晶として添加し
て同様の反応を繰り返せばよい。かくすることにより、
200μmをこえる球状蓚酸着生を得ることが可能であ
るが、粒径が大きくなるに従って攪拌翼との衝突等によ
る球状蓚酸着生の破損の割合が増加するので、球状結晶
質蓚酸着生の平均粒径は200μm以下、好ましくは1
〜1100pとなるようにするのがよい。
In this reaction between rare earth ions and oxalate ions, the maximum average particle size of oxalic acid deposits obtained in one operation is limited to 50 m, but if spherical particles with a larger average size are desired. The same reaction may be repeated by adding the already obtained spherical oxalic acid deposits as seed crystals. By doing so,
It is possible to obtain spherical oxalic acid deposits exceeding 200 μm, but as the particle size increases, the rate of breakage of spherical oxalic acid deposits due to collision with stirring blades, etc. increases, so the average size of spherical crystalline oxalic acid deposits The particle size is 200 μm or less, preferably 1
It is preferable to set the value to 1100p.

生成した球状蓚酸着生は、母液から分離し洗浄、脱水す
る。分離は濾過、傾斜、遠心分離等が採用できる。洗浄
は通常蓚酸希土量の数倍の水を用いる分散洗浄で十分で
ある。脱水はメタノール、エタノール等のアルコール類
やアセトン等の脱水溶媒を用いて蓚酸着生の付着水を置
換除去する。
The formed spherical oxalic acid deposits are separated from the mother liquor, washed, and dehydrated. For separation, filtration, tilting, centrifugation, etc. can be used. Dispersion cleaning using water several times the amount of rare earth oxalate is usually sufficient for cleaning. For dehydration, water adhering to oxalic acid is replaced and removed using an alcohol such as methanol or ethanol or a dehydrating solvent such as acetone.

この球状蓚酸着生の分離、洗浄および脱水の操作も全操
作を通じて20°C以下、好ましくは0〜10°Cで行
うことが肝要である。球状蓚酸着生は付着水のある状態
では温度が高いと結晶形が変わる等不安定である為、付
着水を実質的に除去するまでは低い温度に保つ必要があ
る。
It is important that the entire operation of separating, washing and dehydrating the spherical oxalic acid deposits be carried out at a temperature below 20°C, preferably from 0 to 10°C. Spherical oxalic acid deposition is unstable in the presence of adhered water, as the crystal form changes when the temperature is high, so it is necessary to maintain the temperature at a low temperature until the adhered water is substantially removed.

脱水した球状蓚酸着生は高温下においても安定であるの
で、任意に乾燥や焼成を行うことができる。
Since the dehydrated spherical oxalic acid deposits are stable even at high temperatures, they can be dried or fired as desired.

この方法に寄る時は、高純度で嵩密度が大きく非凝集性
の球状蓚酸着生を得ることができ、球状蓚酸着生の平均
粒径および粒度分布を広い範囲で制御できる。
When using this method, it is possible to obtain non-agglomerated spherical oxalic acid deposits with high purity and large bulk density, and the average particle size and particle size distribution of the spherical oxalic acid deposits can be controlled within a wide range.

[実施例] 以下、実施例によって本発明を具体的に説明するが、本
発明はその要旨をこえない限り以下の実施例に限定され
るものではない。
[Examples] Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例1゜ 濃度0.15mol / eの硝酸イツトリウム水溶液
(PH= 0.5.凝固点−2,5°C)Rを4枚の邪
魔板と冷却ジャケットを設けた容量1.5eのガラス製
セパラブルフラスコに仕込み、強撹拌下(4板パドル翼
、600r、p、m )液温をo’cに保持した。
Example 1 A yttrium nitrate aqueous solution (PH = 0.5, freezing point -2.5°C) with a concentration of 0.15 mol/e was poured into a glass separator with a capacity of 1.5 e equipped with four baffles and a cooling jacket. The mixture was charged into a bull flask, and the liquid temperature was maintained at o'c under strong stirring (4 paddle blades, 600 r, p, m).

濃度0.8mol / eの蓚酸水溶液0.4eを定量
性ポンプを用いて該水溶液中に15分かかって供給した
0.4 e of an oxalic acid aqueous solution having a concentration of 0.8 mol/e was fed into the aqueous solution over a period of 15 minutes using a quantitative pump.

蓚酸供給終了時より30分経過した時点で蓚酸イツトリ
ウムスラリーをヌッチェにより減圧濾過した。
Thirty minutes after the end of the oxalic acid supply, the yttrium oxalate slurry was filtered under reduced pressure using a Nutsche filter.

引き続き、予め10℃以下に冷却した脱塩水1eを用い
て振りかけ水洗し、更に10’C以下に冷却したメタノ
ール(試薬特級品)1eにより蓚酸イツトリウムケーキ
に付着した水分を除去後、100’Cで乾燥を行なった
Subsequently, the yttrium oxalate cake was sprinkled and washed with demineralized water 1e previously cooled to 10°C or lower, and then water adhering to the yttrium oxalate cake was removed with methanol (special grade reagent) 1e cooled to 10°C or lower, and then heated to 100°C. Drying was carried out.

得られた粉末の形状をSEMにより観察したところ、第
1図に示した真球に近く凝集の無い球晶であることが分
かった。蓚酸イツトリウムの平均粒径は11.5.で粒
度分布は第2図に示す如く、8〜18.と極めてシャー
プなものであった。
When the shape of the obtained powder was observed by SEM, it was found that it was a spherulite that was close to the perfect sphere shown in FIG. 1 and had no agglomeration. The average particle size of yttrium oxalate is 11.5. As shown in Figure 2, the particle size distribution is 8 to 18. It was extremely sharp.

この蓚酸イツトリウム粉末の粉体物性として安息角と嵩
密度を測定した所、安息角(傾斜法)は45度であり、
嵩密度は1.05g / ccであった。
When the angle of repose and bulk density of this yttrium oxalate powder were measured, the angle of repose (inclination method) was 45 degrees.
The bulk density was 1.05 g/cc.

実施例2゜ 濃度0.144mol / eの硝酸イツトリウムと硝
酸ユウロピウムの混合水溶液(pH= 0.4.凝固点
−3°C2Eu / Y = 0.026原子比)Ie
を用いる外は実施例1と同様に実施した。得られた蓚酸
着生の形状をSEMにより観察した結果を、第3図に示
した。蓚酸着生混合物の粒形は、はぼ球形で、その平均
粒径は16.8μmであった。
Example 2 A mixed aqueous solution of yttrium nitrate and europium nitrate with a concentration of 0.144 mol/e (pH = 0.4, freezing point -3°C2Eu/Y = 0.026 atomic ratio) Ie
The same procedure as in Example 1 was carried out except that . The shape of the oxalic acid deposits obtained was observed by SEM, and the results are shown in FIG. The particle shape of the oxalic acid epiphyte mixture was spherical, and the average particle size was 16.8 μm.

実施例3゜ 原料溶液の硝酸イツトリウム水溶液1eに対して98%
硫酸を80m6添加する以外は実施例1と同様に行い、
平均粒径65μmのほぼ球形の蓚酸イツトリウムを得た
。その結果を第4図に示した。
Example 3゜98% based on the raw material solution yttrium nitrate aqueous solution 1e
The same procedure as in Example 1 was carried out except that 80 m6 of sulfuric acid was added.
Almost spherical yttrium oxalate with an average particle size of 65 μm was obtained. The results are shown in Figure 4.

比較例1゜ 実施例工で液温を常温(25°C)で行なう以外は実施
例1通りに行なって蓚酸イツトリウム粉末を得た。
Comparative Example 1 Yttrium oxalate powder was obtained in the same manner as in Example 1, except that the liquid temperature was kept at room temperature (25°C).

得られた粉末の形状をSEMにより観察した結果を第5
図に示した。このものは明らかに岩石を破砕した様な不
定形で鋭角部分を有する1〜30.の粉末であり、平均
粒径は9.6μであった。
The results of observing the shape of the obtained powder using SEM are shown in the fifth section.
Shown in the figure. This item has an irregular shape that clearly looks like crushed rock, and has sharp edges. powder, and the average particle size was 9.6μ.

尚、安息角(傾斜法)は、63度であり、嵩密度は0.
56g / ccであった。
The angle of repose (tilt method) is 63 degrees, and the bulk density is 0.
It was 56g/cc.

[発明の効果] 本発明の球状蓚酸着生は、高純度で嵩密度がおおきく流
動性が良いので、電子材料やセラミック用として好適で
あり、また、希土類の硫化物やハロゲン化物等の原料と
してもすぐれているので、工業的価値は極めて大きい。
[Effects of the Invention] The spherical oxalic acid deposits of the present invention have high purity, large bulk density, and good fluidity, so they are suitable for electronic materials and ceramics, and can also be used as raw materials for rare earth sulfides and halides. Because of its excellent properties, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明実施例1の方法によって製造した蓚酸
イツトリウムの粒子構造の走査型電子顕微鏡写真(SE
M)である。 第2図は、本発明実施例1の方法によって製造した蓚酸
イツトリウムの粒度分布を示す図である。 第3.4.5図は、それぞれ実施例2,3.比較例1の
方法によって製造した蓚酸イツトリウムの粒子構造の走
査型電子顕微鏡写真(SEM)である。 鮪托 ml 鰺← 愈 貝ヒ
FIG. 1 is a scanning electron micrograph (SE
M). FIG. 2 is a diagram showing the particle size distribution of yttrium oxalate produced by the method of Example 1 of the present invention. 3.4.5 shows examples 2 and 3, respectively. 1 is a scanning electron micrograph (SEM) of the particle structure of yttrium oxalate produced by the method of Comparative Example 1. Tuna ml Mackerel ← Sea bream

Claims (2)

【特許請求の範囲】[Claims] (1)平均粒径が200μm以下の非凝集性球状結晶質
蓚酸希土。
(1) Non-agglomerated spherical crystalline oxalic acid rare earth having an average particle size of 200 μm or less.
(2)希土類イオンと蓚酸イオンとを反応させて蓚酸希
土を製造する方法において、上記反応開始から生成蓚酸
希土粒子の取得迄の間、温度を20℃以下に保つことを
特徴とする球状結晶質蓚酸希土の製造法。
(2) A method for producing rare earth oxalate by reacting rare earth ions and oxalate ions, characterized in that the temperature is maintained at 20°C or less from the start of the reaction until the obtained rare earth oxalate particles are obtained. Method for producing crystalline rare earth oxalate.
JP2070085A 1990-03-20 1990-03-20 Spherical rare earth of oxalate and production thereof Pending JPH03271117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2070085A JPH03271117A (en) 1990-03-20 1990-03-20 Spherical rare earth of oxalate and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2070085A JPH03271117A (en) 1990-03-20 1990-03-20 Spherical rare earth of oxalate and production thereof

Publications (1)

Publication Number Publication Date
JPH03271117A true JPH03271117A (en) 1991-12-03

Family

ID=13421348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2070085A Pending JPH03271117A (en) 1990-03-20 1990-03-20 Spherical rare earth of oxalate and production thereof

Country Status (1)

Country Link
JP (1) JPH03271117A (en)

Similar Documents

Publication Publication Date Title
KR950003421B1 (en) Method for the production of mixed ammonium rare earth oxalates and their application to the production of rare earth oxides
KR100427005B1 (en) Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use
CA1278417C (en) Process for manufacture of metal oxide
JPH0669892B2 (en) Rare earth element trifluoride having novel morphological characteristics and method for producing the same
Huizing et al. Hydrates of manganese (II) oxalate
JP2980504B2 (en) Cerium carbonate and cerium carbonate having novel morphology and method for producing cerium oxide
US4201760A (en) Molten salt synthesis of lithium meta-aluminate powder
US3852427A (en) Sodium bicarbonate spherulites from sodium d esquicarbonate
JPH09183620A (en) Bismuth oxycarbonate powder and its production
JP2001270775A (en) Method of producing yag transparent sintered body
US5665323A (en) Preparation of ammonium rare earth double oxalates and rare earth oxides produced therefrom
JPH09221322A (en) Indium oxide-tin oxide powder and its production
RU2389690C2 (en) Tungstic acid powder consisting of spherical particles and method of preparing said powder
EP0075354B1 (en) Process for the preparation of magnesium nitrate hexahydrate
JPH03271117A (en) Spherical rare earth of oxalate and production thereof
JPH03271118A (en) Spherical rare earth oxide and production thereof
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
JP3300576B2 (en) Method for producing spherical rare earth oxide
US5043319A (en) Synthesis of lanthanum-alkaline earth-copper-oxygen superconductive material
JPS58213633A (en) Production of aluminum oxide
JP3280689B2 (en) Method for producing round rare earth oxide
JP2789751B2 (en) Production method of raw material alumina for Bernoulli single crystal
JPH1179742A (en) Production of yttria/gadolinia/europia coprecipitated single-dispersed spherical particles and yttria/gadolinia/ europia coprecipitated single-dispersed spherical particles obtained by same
JP6939741B2 (en) Method for producing rare earth compound particles
JPH0624743A (en) Production of spherical zinc oxide powder