JPH03271107A - Article of zinc selenide having improved optical characteristics - Google Patents

Article of zinc selenide having improved optical characteristics

Info

Publication number
JPH03271107A
JPH03271107A JP2406625A JP40662590A JPH03271107A JP H03271107 A JPH03271107 A JP H03271107A JP 2406625 A JP2406625 A JP 2406625A JP 40662590 A JP40662590 A JP 40662590A JP H03271107 A JPH03271107 A JP H03271107A
Authority
JP
Japan
Prior art keywords
zinc selenide
specimen
sample
article
visible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2406625A
Other languages
Japanese (ja)
Inventor
Charles B Willingham
チャールズ・ビー・ウィリンガム
James Pappis
ジェームス・バッピス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of JPH03271107A publication Critical patent/JPH03271107A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/08Sulfides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE: To provide articles of yellowish green and transparent zinc selenide having transmittability in the visible and infrared region of the electromagnetic spectrum by subjecting a specimen consisting of the zinc selenide to a pressurization treatment using an inert working fluid.
CONSTITUTION: The specimen of the zinc selenide is put into a heat isothermal compression furnace and after the inside of this furnace is evacuated, the specimen is pressurized by inert gas, such as argon, to heat the specimen and to annihilate the impurities, defects, etc., included in the specimen. As a result, the articles of the yellowish green and transparent zinc selenide having the transmittability in the visible and infrared region of the electromagnetic spectrum are obtd. The resulted articles of the zinc selenide having the improved optical property are adequately used for applications, etc., where a large-quantity spectrum performance is required. The time for subjecting the specimen to the isothermal pressurization treatment is required to be made longer as the concn. of the impurities or defect contained therein is higher or the thickness of the starting specimen is larger.
COPYRIGHT: (C)1991,JPO

Description

【発明の詳細な説明】 [0001] 本発明は光学的特性の改良されたセレン化亜鉛の物品に
関するものである。更に詳しくは、本発明は電磁スペク
トルの可視及び赤外領域において実質的に透過性を有し
ており、かつ、黄緑色で透明なセレン化亜鉛の物品に関
するものである[0002] 硫化亜鉛およびセレン化亜鉛のミサイルのドームのよう
に長波長の赤外線に対して透過能を有することが要求さ
れる用途に使用される。硫化亜鉛は対空FLIRシステ
ムの窓用の主要材料である。これらの化合物は約10マ
イクロメートル以下の電磁スペクトルの赤外領域におい
て透明で、化学的および機械的に最も耐久性がある材料
の一つであって、これを使用する寸法で入手することが
出来、スペクトルの可視領域において滞在的な透過能を
持っている。これらの化合物の一つの問題点はこれらが
電磁スペクトルの可視領域および近赤外領域において適
当な透過能を持っていないことである。もしその可視領
域および近赤外領域の波長に対する透明性が改善される
ならば、これらの化合物の用途は更に附加開発されるで
あろう。もっと具体的に言うと、その場合には多量スペ
クトル性能を要求する用途に使用することが出来るであ
ろう。その遠赤外領域の波長に限界があることは、この
材料の本質的性質であって多重金子吸収(mu 1 t
 i−phononabsorption)と関係があ
るのに対して、その短波長領域の限界はいくつかの不明
確な性格の非本質的効果で測定せられている状況である
DETAILED DESCRIPTION OF THE INVENTION [0001] The present invention relates to zinc selenide articles with improved optical properties. More particularly, the present invention relates to articles of zinc selenide that are substantially transparent in the visible and infrared regions of the electromagnetic spectrum and are yellow-green and transparent.[0002] Zinc Sulfide and Selenium It is used in applications that require the ability to transmit long-wavelength infrared rays, such as zinc oxide missile domes. Zinc sulfide is the primary material for windows in airborne FLIR systems. These compounds are transparent in the infrared region of the electromagnetic spectrum below about 10 micrometers and are among the most chemically and mechanically durable materials available in the dimensions used. , which has persistent transmission power in the visible region of the spectrum. One problem with these compounds is that they do not have adequate transmission power in the visible and near infrared regions of the electromagnetic spectrum. The uses of these compounds could be further developed if their transparency to wavelengths in the visible and near-infrared ranges could be improved. More specifically, it could then be used in applications requiring high spectral performance. The fact that there is a limit to the wavelength in the far infrared region is an essential property of this material, and multiple gold absorption (mu 1 t
i-phononabsorption), whereas the limit in the short wavelength region is determined by some non-essential effects of an unclear nature.

[0003] 加熱等圧圧縮(HIP)は不活性な作動流体を用いて熱
および圧力を同時にかけることである。硫化亜鉛および
セレン化亜鉛の試料のHIP処理を行なうと細孔が消滅
する以上の改良が行なわれことが発見された。これによ
って2ミクロンより短い波長における透明性が改善され
る。硫化亜鉛の試料はまたその有効スペクトル帯全域に
亘って透過特性が改善されることが見出された。硫化亜
鉛およびセレン化亜鉛の透明性に限界があるのは散乱お
よび吸収の機構によるものである。2マイクロメートル
以下の波長では透過能を制限する主な機構は散乱であっ
て吸収ではない。HIP処理を行なうことによって、多
孔度が減少するか又は細孔が消滅することによってだけ
でなく、不純物が拡散によって外へ出て来るように作用
するため第二の相の包含を減少または消滅させ、また硫
化亜鉛の場合には硫化亜鉛の非立方晶同質異像(non
−cubic  polymorphs)をその立方晶
系へ変換することを促進することによって散乱が少なく
なることが見出されている。総体的に見て、吸収はHI
P法によって存在する。可能性がある吸収を行なつ物質
を拡散させることによって減少される。またHIP法に
よって両ZnSおよびZn5eの成分原子比を化学量論
的な値にすることが出来ることも見出された。
[0003] Hot isostatic compression (HIP) is the simultaneous application of heat and pressure using an inert working fluid. It has been discovered that HIP treatment of zinc sulfide and zinc selenide samples results in improvements beyond the disappearance of pores. This improves transparency at wavelengths shorter than 2 microns. The zinc sulfide sample was also found to have improved transmission properties across its effective spectral band. The limited transparency of zinc sulfide and zinc selenide is due to scattering and absorption mechanisms. At wavelengths below 2 micrometers, the primary mechanism limiting transmission is scattering, not absorption. The HIP process not only reduces the porosity or eliminates the pores, but also reduces or eliminates the inclusion of the second phase because the impurities act to diffuse out. , and in the case of zinc sulfide, non-cubic homomorphism of zinc sulfide (non-cubic polymorphism)
It has been found that scattering is reduced by promoting the conversion of -cubic polymorphs) to their cubic system. Overall, absorption is HI.
Exists due to P law. Possible absorption is reduced by diffusing substances. It has also been found that the atomic ratio of both ZnS and Zn5e can be brought to stoichiometric values by the HIP method.

[0004] 本発明は更に物品の表面の化学ポテンシャルを調節し、
製品を加熱し等圧を作用させることによってZnSおよ
びZn5eの製品を処理する方法を提供するものである
。前記化学ポテンシャルの調節は製品を不活性材料の箔
に包み、更に若干の蒸気の交換を許容することによって
行なうことが好ましい。
[0004] The invention further comprises adjusting the chemical potential of the surface of the article;
A method is provided for processing ZnS and Zn5e products by heating and applying isobaric pressure to the products. Adjustment of the chemical potential is preferably carried out by wrapping the product in a foil of inert material and still allowing some exchange of vapor.

[0005] 本発明のその他の目的および利点は、以下の記載により
明らかになるであろう。処理前後のZnSの試料の透過
スペクトルを示す添付図を参照されたい。
[0005] Other objects and advantages of the present invention will become apparent from the following description. Please refer to the attached figure showing the transmission spectra of a sample of ZnS before and after treatment.

[0006] 加熱等圧加圧法(HIP)、すなわち不活性作動流体に
よって加熱と加圧を同時に行なう方法は、粉末金属の加
圧成型素地および成型物の冶金的な製造において使用さ
れており、この方法によってこれらの破壊強度および耐
疲労性が改善される。本発明においては、同様のHIP
装置を用いて硫化亜鉛およびセレン化亜鉛の試料の処理
を行なう。処理すべき試料を通常の設計のHIP炉中に
入れる。
[0006] Hot isostatic pressing (HIP), a method of simultaneously heating and pressurizing with an inert working fluid, is used in the metallurgical production of powder metal compacts and moldings; The method improves their fracture strength and fatigue resistance. In the present invention, similar HIP
The equipment is used to process samples of zinc sulfide and zinc selenide. The sample to be processed is placed in a HIP furnace of conventional design.

炉内を排気した後、アルゴンのような不活性ガスで加圧
する。加熱を行なって、温度および圧力を安定にする。
After the furnace is evacuated, it is pressurized with an inert gas such as argon. Apply heat to stabilize temperature and pressure.

圧力および温度は種々の不純物および試料内の欠陥がほ
とんど消滅するに十分な期間保持される。処理される試
料は化学蒸着法(CVD)による硫化亜鉛ならびに加熱
圧縮した硫化亜鉛を包含していた。CVD法によるセレ
ン化亜鉛の試料も同様に処理された。通常入手し得る硫
化亜鉛およびセレン化亜鉛の試料は着色しており半透明
である。硫化亜鉛について云うと、着色は材料中の原子
の比率が厳密な化学量論的比率からずれているために起
こるのである。また材料の体積内の欠陥によって光が散
乱を起すために試料は透明でなく半透明となる。これら
種々のタイプの欠陥の全部についての正確な性質は分っ
ていない。色および光を散乱させる欠陥のタイプおよび
その相対的な割合はこの材料め調製に使用した技術およ
び調製の処理条件によって定まる。散乱を起す欠陥の存
在のために、2ミクロン以下の波長においてその透明度
が著しく制限される。更に試料の調製法に依存して種々
の波長の位置に若干の吸収帯が存在する。透過帯の長波
長側の限界はその材料の本質的性質であって多重金子吸
収現象に依るものである。約2μmないし長波長側の限
界までの間の波長に対しては透過能は主として不純物に
関連する吸収現象によって制限される。これらの材料の
可視領域および近赤外領域における透明度の制限は、不
完全な特性吸収および散乱現象が組み合わさって原因と
なるものであるが、散乱による制限の方が極めて大きい
。透過帯の短波長側の限界は全く本質的な材料特性であ
るが、化学量論量からのずれ、不純物その他の点欠陥の
ため短波長側の限界に近い波長において透明性が失われ
ることがある。加熱等圧圧縮法(HIP)によって材料
の多孔度を減少又は細孔を消滅することだけでなく、散
乱又は吸収に寄与する欠陥の多くを減少又は消滅するこ
とによってこれらの制限を減らすことが出来る。これは
HIP法によって加熱と加圧を同時に行なうことによっ
て起る因子の組合わせに基くも部に拡散して出て来る。
The pressure and temperature are maintained for a sufficient period of time to substantially eliminate various impurities and defects within the sample. The samples treated included chemical vapor deposition (CVD) zinc sulfide as well as heat-pressed zinc sulfide. A CVD zinc selenide sample was similarly treated. Commonly available samples of zinc sulfide and zinc selenide are colored and translucent. In the case of zinc sulfide, the coloration occurs because the ratio of atoms in the material deviates from the strict stoichiometric ratio. Additionally, defects within the volume of the material cause light to scatter, making the sample semitransparent rather than transparent. The exact nature of all of these various types of defects is not known. The types and relative proportions of color and light scattering defects are determined by the technique used to prepare the material and the processing conditions of the preparation. Due to the presence of scattering defects, its transparency is severely limited at wavelengths below 2 microns. Furthermore, there are several absorption bands at different wavelengths depending on the method of sample preparation. The limit on the long wavelength side of the transmission band is an essential property of the material and depends on the multiple gold absorption phenomenon. For wavelengths between about 2 μm and the long wavelength limit, the transmission power is limited primarily by absorption phenomena associated with impurities. The transparency limitations of these materials in the visible and near-infrared regions are due to a combination of imperfect characteristic absorption and scattering phenomena, but the limitations due to scattering are significantly greater. Although the short-wavelength limit of the transmission band is a completely inherent material property, deviations from stoichiometry, impurities, and other point defects can cause loss of transparency at wavelengths near the short-wavelength limit. be. Hot isostatic pressing (HIP) can reduce these limitations not only by reducing the porosity of the material or eliminating pores, but also by reducing or eliminating many of the defects that contribute to scattering or absorption. . This diffuses into the thighs due to a combination of factors caused by simultaneous heating and pressurization using the HIP method.

これらの不純物は、理想的な化合物を形成する元素以外
の元素である汚染性の原子によって形成される実際に存
在する不純物によって構成されていても、又は、原子の
不在又は割込みのような結晶格子中の欠陥によって構成
されていてもよい。いづれにせよこれらの不純物は温度
の関数である一定の速度で試料の表面へ拡散して来るで
あろう。不純物の原子は分離した明瞭な相として硫化物
又はセレン化物内に存在している可能性がある。加えら
れた熱は処理される化合物の第二の相の析出物の包含度
を減らし又は消滅させるのにも役立つ。加えられた圧力
は試料中に処理前に存在している可能性のあるこのよう
な残留細孔を消滅させるのに役立ち、もしこの処理を行
なわなかったら処理中に起こる可能性のある新しい細孔
の生成を抑制する。その外、使用される化合物は使用さ
れる処理温度においてかなり大きい蒸気圧を持っている
から、加圧によって化合物の蒸発を制約する作用をする
。硫化亜鉛の場合には光学的に等方性の立方晶系結晶形
の複屈折性を有する六方晶系形のものよりも密度が大き
い。HIP法の処理の圧力によって、非立方晶系の同質
異像の立方晶系結晶への変換が容易になることがわかっ
た。更に、加圧によって割込み原子や結晶格子欠陥の平
衡濃度が小さくなる。また一般的に不純物の溶解度が減
少する。
These impurities may be constituted by actually present impurities formed by contaminating atoms that are elements other than those forming the ideal compound, or by defects in the crystal lattice such as the absence or interruption of atoms. It may consist of defects inside. In any case, these impurities will diffuse to the surface of the sample at a constant rate that is a function of temperature. Impurity atoms may be present within the sulfide or selenide as separate, distinct phases. The applied heat also serves to reduce or eliminate the inclusion of precipitates in the second phase of the compound being treated. The applied pressure helps to annihilate any such residual pores that may have been present in the sample prior to processing, and eliminates any new pores that may have arisen during processing if this treatment had not been performed. suppresses the generation of In addition, since the compounds used have fairly high vapor pressures at the processing temperatures used, the pressurization serves to limit the evaporation of the compounds. In the case of zinc sulfide, the density is higher than that of the birefringent hexagonal crystal form of the optically isotropic cubic crystal form. It has been found that the pressure of the HIP process facilitates the conversion of non-cubic allomorphs into cubic crystals. Furthermore, the equilibrium concentration of interstitial atoms and crystal lattice defects is reduced by pressurization. Also, the solubility of impurities generally decreases.

[0007] 硫化亜鉛の試料は化学蒸着法(CVD)および加熱圧縮
法によるタイプのものを包含しているものであった。セ
レン化亜鉛の試料はCVD法によるタイプのものであっ
た。加熱圧縮法によるセレン化亜鉛はCVD法によるセ
レン化亜鉛に比べて透過特性が著しく劣るので一般的に
は使用されない。しかし、本処理法によれば加熱圧縮法
によるセレン化亜鉛の特性も同じように良好になるよう
改善される。処理時間の長さは試料の当初の品質によっ
て異なる。試料の品質すなわち透過能が大きい程、透過
性を所定水準まで改善するに要する時間を短くすること
が出来る。加熱圧縮法で調製した硫化亜鉛材料はCVD
法で調製した硫化亜鉛に比して、散乱に影響するような
不純物又は欠陥の濃度が大きいことが見出されている。
[0007] Zinc sulfide samples included chemical vapor deposition (CVD) and hot compression types. The zinc selenide sample was of the CVD type. Zinc selenide produced by the heat compression method is not generally used because its permeation properties are significantly inferior to zinc selenide produced by the CVD method. However, according to the present treatment method, the properties of zinc selenide obtained by the heat compression method are improved to the same extent. The length of processing time depends on the initial quality of the sample. The higher the quality or permeability of the sample, the shorter the time required to improve the permeability to a predetermined level. Zinc sulfide material prepared by heat compression method is CVD
It has been found that compared to zinc sulfide prepared by the method, there is a higher concentration of impurities or defects that affect scattering.

処理時間は出発試料の厚さによっても異る。所定水準ま
で透過性能の改善を行なうためには厚さが大きい種処理
時間を長くしなければならない。
Processing time also depends on the thickness of the starting sample. In order to improve the permeation performance to a certain level, the treatment time for thicker seeds must be increased.

[0008] 前記のように、試料をHIP法で処理することによって
光学素子の光学的特性が改善されることが発見ぜられな
。これは諸刃子の組合わせ効果によるものである。加え
られた熱は不純物が試料の芯部から外表面へ拡散して出
て来ることに有利に作用すると思われる。圧力は化合物
の蒸発を制約すると共に細孔を消滅させその生成を防止
するに役立つ。硫化亜鉛の場合には圧力によって存在し
ているすべての非立方晶系同質異像の結晶が立方晶系に
変えられると考えられている。この事実は作業温度およ
び圧力の選択を行なう場合の指針となる。温度は試料体
からの不純物を拡散して外へ出て来るようにするために
十分高い温度でなければならない。圧力は蒸発を防止し
、試料中の細孔をほとんど消滅させるに十分な圧力でな
ければならない。処理時間の長さは試料の厚さおよびそ
の光学的品質の両方によって決定される。透過能の小さ
い試料は通常、断定の光学的透明性を得るためにより長
い処理時間を必要とする。然し、処理時間の上限は、処
理時間が不合理な程長い場合に結晶粒の成長が過度に起
ることのために制限される。CVD型の硫化亜鉛が、加
熱加圧型の硫化亜鉛よりも著しく高度に光学的改善を受
けることも見出されている。これは恐らく加熱加圧法の
場合にはCVD法のもの程、良く拡散して外へ出て来な
いような大きい寸法の欠陥が生成するという事実による
ものであろう。
[0008] As mentioned above, it has been discovered that the optical properties of an optical element can be improved by treating a sample with a HIP method. This is due to the combined effect of double blades. The applied heat appears to favor the diffusion of impurities from the core of the sample to the outer surface. The pressure serves to constrain evaporation of the compound and to eliminate pores and prevent their formation. In the case of zinc sulfide, it is believed that pressure converts all existing non-cubic polymorphic crystals into cubic crystals. This fact guides the selection of operating temperatures and pressures. The temperature must be high enough to allow impurities from the sample to diffuse out. The pressure must be sufficient to prevent evaporation and nearly eliminate pores in the sample. The length of processing time is determined by both the thickness of the sample and its optical quality. Samples with low transmittance typically require longer processing times to obtain significant optical clarity. However, the upper limit on processing time is limited because excessive grain growth occurs if processing times are unreasonably long. It has also been found that CVD zinc sulfide undergoes optical improvement to a significantly higher degree than hot and pressed zinc sulfide. This is probably due to the fact that in the case of the heating and pressing method, defects of larger size are produced which are better diffused and do not come out than the CVD method.

[0009] CVD法によって製造された6ミリメードルのCVD型
硫化亜鉛試料を、通常のHIP装置を用い、通常(7)
HIP処理法にしたがって990℃、5000psi(
350kg/cm2.lの温度および圧力で3hr処理
すると、試料の光学的特性が眼で認められる程改良され
た。加熱加圧型硫化亜鉛およびCVD型セレン化亜鉛の
試料に対しては30000psi  [”2100kg
/cm2.I (7)圧力および1000℃の温度で著
しい光学的特性の改善が得られた。15ミリメーターの
CVD型硫化亜鉛試料では約1000℃の温度、および
30000psi  〔2100kg/cm2) (7
)圧力で約24hrの処理によって良好な結果が得られ
た。種々の型の試料について処理時間を定めるために7
00℃ないし1050℃の温度範囲および5oooなの
/J場いものでは3hr、厚さの大きいものでは36h
rの範囲の処理時間が適当であった。然し本発明はここ
に開示した操作のパラメーターによって制約されるもの
ではない。温度、圧力および処理時間の組合わせが著し
く異っていても処理された試料の光学的特性はある程度
までは改善されるであろう。実際的な作業上のパラメー
ターは通常具体的応用上の要求によって定まる。所定の
改善を達成するために使用される温度および圧力は著し
く低いであろう。
[0009] A 6 mm CVD type zinc sulfide sample manufactured by the CVD method was processed using a normal HIP device (7).
According to HIP treatment method, 990℃, 5000psi (
350kg/cm2. After treatment for 3 hours at 1 temperature and pressure, the optical properties of the sample were visibly improved. 30000 psi [2100 kg
/cm2. Significant improvements in optical properties were obtained at I (7) pressures and temperatures of 1000°C. For a 15 mm CVD zinc sulfide sample, a temperature of approximately 1000°C and 30000 psi [2100 kg/cm2] (7
) pressure for about 24 hours gave good results. 7 to determine processing times for different types of samples.
Temperature range from 00℃ to 1050℃ and 5ooo/J. 3hr for thick items, 36hr for thick items.
Processing times in the range of r were appropriate. However, the invention is not limited by the operating parameters disclosed herein. Significantly different combinations of temperature, pressure and treatment time will still improve the optical properties of the treated samples to some extent. Practical working parameters are usually determined by specific application requirements. The temperatures and pressures used to achieve a given improvement will be significantly lower.

[0010] HIP法の装置内で温度および圧力をかげるに先立って
予め一部の試料の若干を第二物質の箔で包んだ。この包
装は真空を遮断する包装状態ではないが試料と反応室と
の間の蒸気の交換を制限し、また、処理を促進するため
に試料中の揮発性物質の化学ポテンシャルを調節して、
試料の透過性を高めるのに役立つ。この試料の表面上の
揮発性物質の化学ポテンシャルの調節は、作業に使用さ
れるガス中にドーパント又は蒸気状物質を放出する固体
を使用する等の他の手段によっても実施することが出来
るであろう。種々の型式の物質がこれまで使用されて来
た。石墨、軟鋼、タンタル、銅、および白金の箔がこれ
まで使用されている。白金の包装箔は試料の透過性能の
改善を最も良く行なうことが出来た。これは恐らくその
不活性な性質に依るものであろう。
[0010] Prior to raising the temperature and pressure in the HIP apparatus, some of the samples were wrapped in foil of a second material. Although this packaging is not a vacuum-blocking packaging, it limits the exchange of vapor between the sample and the reaction chamber, and also modulates the chemical potential of volatiles in the sample to facilitate processing.
Helps increase sample permeability. This adjustment of the chemical potential of volatile substances on the surface of the sample can also be carried out by other means, such as by using dopants or solids that release vapors into the gas used in the operation. Dew. Various types of materials have been used in the past. Graphite, mild steel, tantalum, copper, and platinum foil have been used. Platinum packaging foil was able to improve the transmission performance of the samples best. This is probably due to its inert nature.

[0011] 添付図面には厚さ6ミリメードルのCVD型硫化亜鉛試
料の透過スペクトルが示されている。線10は処理前の
当初の試料のスペクトルであり、線20は同一の試料を
HIP法処理に依って1000℃および30000ps
i  (2100kg/cm2.lにおいて3hr処理
したもののスペクトルである。HIP法の処理によって
材料の短波長に対する透過能が著しく改善せられ、また
6マイクロメードルにおける赤外線吸収帯が消滅した。
[0011] The accompanying drawings show the transmission spectra of a 6 mm thick CVD zinc sulfide sample. Line 10 is the spectrum of the original sample before treatment, and line 20 is the same sample subjected to HIP treatment at 1000°C and 30000 ps.
This is the spectrum after processing for 3 hours at 2100 kg/cm2.l. The HIP treatment significantly improved the material's transmittance to short wavelengths, and also eliminated the infrared absorption band at 6 micrometers.

硫化亜鉛における吸収帯は試料の製造方法と作業条件に
よって異なるものであるが、これらはHIP処理によっ
て著しく改善されると思われる。処理を行なわない試料
は肉眼的に橙黄色であって可視波長の像を造るのに使用
出来ない稚子鮮明であった。処理を行なった試料は亜鉛
と硫黄の割合を化学量論的に1対1に調整したものであ
るので無色であり、処理によって光を散乱する欠陥の濃
度を極めて著しく減少しているので水のように透明であ
った。HIP処理法によって2マイクロメートルよりも
大きい波長における透過能が著しく改善された。その他
のZnS試料を、同様に990℃、30000psi 
 C2100kg/cm2)において24hr処理した
。試料の厚さは0.4ないし1.5crnであった。
Although the absorption bands in zinc sulfide vary depending on the sample preparation method and working conditions, these appear to be significantly improved by HIP treatment. The untreated sample was macroscopically orange-yellow and too sharp to be used for imaging at visible wavelengths. The treated sample is colorless because the stoichiometric ratio of zinc and sulfur has been adjusted to 1:1, and the concentration of light-scattering defects is extremely reduced by the treatment, so it is difficult to remove water. It was so transparent. The HIP process significantly improved the transmission power at wavelengths greater than 2 micrometers. Other ZnS samples were similarly heated at 990°C and 30,000 psi.
C2100kg/cm2) for 24 hours. The sample thickness was 0.4 to 1.5 crn.

[0012] 後託の表は添付図の一つと同様のZnS試料の厚さ6ミ
リメードルのものの吸収係数の測定結果をまとめたもの
である。これらの見掛けの吸収能の値は、吸収した光の
割合を試料の厚さで割って算出したものであって、従っ
て吸収能に対する表面の寄与度を示している。
[0012] The following table summarizes the absorption coefficient measurements of a 6 mm thick ZnS sample similar to one of the attached figures. These apparent absorption power values are calculated by dividing the proportion of light absorbed by the thickness of the sample, and thus indicate the contribution of the surface to the absorption power.

[0013] CVD法硫化亜鉛の見掛けの吸収係数(cm ”)波 
 長 (マイクロメーター  −一未一処一理一一  −一処
−現−役一一2.8    4.09xlO−38,6
xlO’3.8    2.19xlO’   2.1
6xlO−39,272,41xlO’   1.29
xlO”10.6    2.54xlO’   1.
92xlO’厚さが6ミリメードルのCVD法セレン化
亜鉛を、同様に、1000℃、  30000psi 
 [2100kg/cyn2.lで3hr処理してスペ
クトルを得た。未処理試料は肉眼で見て黄色で、不鮮明
であった。処理後の色は黄緑色で透明となった。この色
はセレン化亜鉛の割合を化学量論的に正しい割合とした
ことに依るものである。可視領域における透過能は著し
く改善せられた。処理前の厚さ0.5マイクロメーター
の試料の透過能を分光器で測定した結果は5%であった
がこれに対して処理後の試料の透過能は50%であった
。この著しい改善はこの処理によって化学量論的割合が
調整されたことに依るものである。処理前および処理後
の試料の光散乱度の測定値もまた得られている。0.6
328マイクロメーターの光源を与えるためにHe−N
eレーザーを使用した。90℃において散乱した光の入
[0014] 処理前   2×10−3 処理後 4.5xlO’ この結果はこの材料中の不純物のタイプが著しい散乱を
起させる性質を有するものであることを示しており、こ
の現象は低波長部での透過能が低下していること、およ
びHIP法によればこの減少が効果的に行なわれること
を示すものである。
[0013] Apparent absorption coefficient (cm”) wave of CVD zinc sulfide
Long (Micrometer - 1st place 1st place 1st place - 1st place - current role 11th 2.8 4.09xlO-38,6
xlO'3.8 2.19xlO' 2.1
6xlO-39,272,41xlO' 1.29
xlO"10.6 2.54xlO' 1.
Similarly, CVD zinc selenide with a thickness of 6 mm was heated at 1000°C and 30000 psi.
[2100kg/cyn2. 1 for 3 hours to obtain a spectrum. The untreated sample was visually yellow and indistinct. After treatment, the color was yellow-green and transparent. This color is due to the stoichiometrically correct proportion of zinc selenide. The transmission power in the visible region was significantly improved. The transmittance of a 0.5 micrometer thick sample before treatment was measured using a spectrometer and was 5%, whereas the transmittance of the sample after treatment was 50%. This significant improvement is due to the adjustment of the stoichiometry by this treatment. Measurements of light scattering of the samples before and after treatment have also been obtained. 0.6
He-N to provide a 328 micrometer light source
e-laser was used. Input of scattered light at 90°C [0014] Before treatment 2 x 10-3 After treatment 4.5 x lO' This result indicates that the type of impurity in this material is of a nature that causes significant scattering. This phenomenon indicates that the transmittance in the low wavelength region is reduced, and that this reduction is effectively achieved by the HIP method.

[0015] 以上で本発明の記載を完了する。当業者は本発明の精神
および範囲から逸脱することなく多くの変更を行なうこ
とが出来るであろう。従って本発明は添付した特許請求
の範囲によって定義されていること以外によって制限さ
れるものではない。
[0015] This completes the description of the present invention. Many modifications may be made by those skilled in the art without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as defined by the appended claims.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】 図は、厚さ6ミリメードルのCVD型硫化亜鉛試料の処
理前及び処理後の透過スペクトルを示す図である。
FIG. 1 shows the transmission spectra of a 6 mm thick CVD zinc sulfide sample before and after treatment.

【符号の説明】[Explanation of symbols]

10:処理前の肖初試料の透過スペクトル、20:処理
後の試料の透過スペクトル、横軸:波長(マイクロメー
トル) 縦軸:透過率(%)。
10: Transmission spectrum of the initial sample before treatment, 20: Transmission spectrum of the sample after treatment, horizontal axis: wavelength (micrometer), vertical axis: transmittance (%).

【書類名】【Document name】

図面 drawing

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電磁スペクトルの可視及び赤外領域におい
て実質的な透過性を有し、黄緑色で透明であることを特
徴とするセレン化亜鉛の物品。
1. An article of zinc selenide characterized by being transparent and yellow-green in color with substantial transparency in the visible and infrared regions of the electromagnetic spectrum.
【請求項2】該物品が、該物品の光学的透過範囲の実質
的に全体に亙って、該セレン化亜鉛の固有の光学的特性
と実質的に等しい光学透過特性を有する請求項1記載の
物品。
2. The article of claim 1, wherein the article has optical transmission properties substantially equal to the inherent optical properties of the zinc selenide over substantially the entire optical transmission range of the article. goods.
【請求項3】可視及び赤外領域において吸収帯を実質的
に有さない請求項1記載の物品。
3. The article according to claim 1, which has substantially no absorption bands in the visible and infrared regions.
JP2406625A 1980-12-29 1990-12-26 Article of zinc selenide having improved optical characteristics Pending JPH03271107A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22094480A 1980-12-29 1980-12-29
US220944 1980-12-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56216050A Division JPS57135723A (en) 1980-12-29 1981-12-25 Polycrystal zinc sulfide and zinc selenide products with improved optical properties

Publications (1)

Publication Number Publication Date
JPH03271107A true JPH03271107A (en) 1991-12-03

Family

ID=22825678

Family Applications (3)

Application Number Title Priority Date Filing Date
JP56216050A Granted JPS57135723A (en) 1980-12-29 1981-12-25 Polycrystal zinc sulfide and zinc selenide products with improved optical properties
JP2406625A Pending JPH03271107A (en) 1980-12-29 1990-12-26 Article of zinc selenide having improved optical characteristics
JP2406626A Granted JPH03271122A (en) 1980-12-29 1990-12-26 Article of zinc sulfide having improved optical characteristics

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP56216050A Granted JPS57135723A (en) 1980-12-29 1981-12-25 Polycrystal zinc sulfide and zinc selenide products with improved optical properties

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2406626A Granted JPH03271122A (en) 1980-12-29 1990-12-26 Article of zinc sulfide having improved optical characteristics

Country Status (7)

Country Link
JP (3) JPS57135723A (en)
CA (1) CA1181557A (en)
DE (1) DE3150525A1 (en)
FR (2) FR2497361B1 (en)
GB (2) GB2090237B (en)
IT (1) IT1172159B (en)
SE (1) SE8107840L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077931A (en) * 2012-10-11 2014-05-01 Sumitomo Electric Ind Ltd Optical component, and method of producing optical component

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957951A (en) * 1982-09-27 1984-04-03 住友電気工業株式会社 Manufacture of zns polycrystal body
EP0157040A3 (en) * 1983-04-05 1987-11-25 Sumitomo Electric Industries Limited Method of producing transparent polycrystalline zns body
JPS607413A (en) * 1983-06-28 1985-01-16 Matsushita Electric Ind Co Ltd Lens for converging beam
JPH0617280B2 (en) * 1987-03-18 1994-03-09 社団法人生産技術振興協会 ZnSe single crystal production method
JP2737191B2 (en) * 1987-12-28 1998-04-08 東ソー株式会社 Method for producing homogeneous quartz glass block
DE69112347T2 (en) * 1990-11-14 1996-04-25 Raytheon Co Zinc sulfide optical elements.
DE9110969U1 (en) * 1991-09-04 1991-12-05 Wild Leitz Systemtechnik GmbH, 6330 Wetzlar Panoramic periscope for day and night vision
DE4414552C2 (en) * 1994-04-26 2001-06-07 Lukas Kuepper Process for the production of micro-optical elements or a fiber end in the form of a micro-optical element
JP3578357B2 (en) * 1994-04-28 2004-10-20 信越石英株式会社 Method for producing heat-resistant synthetic quartz glass
WO2000041221A2 (en) 1999-01-04 2000-07-13 Infineon Technologies Ag Method and device for shaping surfaces of semiconductors
FR2898962B1 (en) 2006-03-23 2008-05-09 Brandt Ind Sas DOMESTIC GAS COOKING OVEN AND METHOD OF IGNITING AT LEAST ONE GAS BURNER IN SUCH GAS DOMESTIC COOKING OVEN
US7790072B2 (en) 2007-12-18 2010-09-07 Raytheon Company Treatment method for optically transmissive bodies
EP2511236B1 (en) * 2011-04-14 2015-07-01 Rohm and Haas Company Improved quality multi-spectral zinc sulfide
JP5444397B2 (en) * 2012-03-09 2014-03-19 住友電気工業株式会社 Manufacturing method of optical components
US20130271610A1 (en) 2012-04-16 2013-10-17 Keith Gregory ROZENBURG Polycrystalline chalcogenide ceramic material
JP5876798B2 (en) * 2012-09-14 2016-03-02 住友電気工業株式会社 ZnSe polycrystal and method for producing the same
JP6989102B2 (en) * 2017-04-05 2022-01-05 日本電気株式会社 Manufacturing method of zinc sulfide sintered body and zinc sulfide sintered body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113802A (en) * 1979-02-24 1980-09-02 Sumitomo Electric Ind Ltd Production of high-purity sintered body by hot hydrostatic press
JPS55131102A (en) * 1979-03-31 1980-10-11 Sumitomo Electric Ind Ltd Production of high-purity, high-strength znse sintered body by hot forging process
JPS5717411A (en) * 1980-07-02 1982-01-29 Agency Of Ind Science & Technol Manufacture of polycrystalline zinc selenide body
JPS57106507A (en) * 1980-12-22 1982-07-02 Agency Of Ind Science & Technol Manufacture of polycrystalline zinc selenide body

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3131025A (en) * 1959-10-29 1964-04-28 Eastman Kodak Co Zinc sulfide optical element
FR1272294A (en) * 1960-10-26 1961-09-22 Kodak Pathe New optical element and method and apparatus for its manufacture
DE1244433B (en) * 1961-08-21 1967-07-13 Eastman Kodak Co Optical material and process for its manufacture
US3454685A (en) * 1961-08-21 1969-07-08 Eastman Kodak Co Method of forming zinc selenide infrared transmitting optical elements
CH389176A (en) * 1961-08-21 1965-03-15 Kodak Sa Optical element and method for its manufacture
US3177759A (en) * 1961-10-04 1965-04-13 Barnes Eng Co Apparatus for the spectrum examination of materials
FR2286394A1 (en) * 1974-09-30 1976-04-23 Comp Generale Electricite OPTICAL DEVICE
GB1547172A (en) * 1976-06-24 1979-06-06 Nat Res Dev Methods and apparatus for cutting welding drilling and surface treating
DE2949512C2 (en) * 1979-12-08 1982-10-21 W.C. Heraeus Gmbh, 6450 Hanau Process for the aftertreatment of zinc sulphide bodies for optical purposes
JPS5711824A (en) * 1980-06-23 1982-01-21 Matsushita Electric Ind Co Ltd Preparation of semiconductive zinc sulfide
DE3039749C2 (en) * 1980-10-22 1982-08-19 Heraeus Quarzschmelze Gmbh, 6450 Hanau Process for the production of bubble-free, glassy material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113802A (en) * 1979-02-24 1980-09-02 Sumitomo Electric Ind Ltd Production of high-purity sintered body by hot hydrostatic press
JPS55131102A (en) * 1979-03-31 1980-10-11 Sumitomo Electric Ind Ltd Production of high-purity, high-strength znse sintered body by hot forging process
JPS5717411A (en) * 1980-07-02 1982-01-29 Agency Of Ind Science & Technol Manufacture of polycrystalline zinc selenide body
JPS57106507A (en) * 1980-12-22 1982-07-02 Agency Of Ind Science & Technol Manufacture of polycrystalline zinc selenide body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077931A (en) * 2012-10-11 2014-05-01 Sumitomo Electric Ind Ltd Optical component, and method of producing optical component

Also Published As

Publication number Publication date
SE8107840L (en) 1982-06-30
JPH0451489B2 (en) 1992-08-19
GB2125023B (en) 1985-11-13
FR2610730B1 (en) 1990-10-12
JPH03271122A (en) 1991-12-03
CA1181557A (en) 1985-01-29
GB2125023A (en) 1984-02-29
GB2090237B (en) 1985-12-11
GB8323505D0 (en) 1983-10-05
FR2610730A1 (en) 1988-08-12
DE3150525A1 (en) 1982-08-26
GB2090237A (en) 1982-07-07
FR2497361A1 (en) 1982-07-02
IT1172159B (en) 1987-06-18
IT8149921A0 (en) 1981-12-16
JPH0469090B2 (en) 1992-11-05
FR2497361B1 (en) 1989-03-31
JPS57135723A (en) 1982-08-21

Similar Documents

Publication Publication Date Title
JPH03271107A (en) Article of zinc selenide having improved optical characteristics
US4944900A (en) Polycrystalline zinc sulfide and zinc selenide articles having improved optical quality
Wu et al. Annealing temperature dependence of Raman scattering in Ge+-implanted SiO 2 films
US5126081A (en) Polycrystalline zinc sulfide and zinc selenide articles having improved optical quality
Nagli et al. Optical properties of mixed silver halide crystals and fibers
Fridrichová et al. Optical and crystal-chemical changes in aquamarines and yellow beryls from Thanh Hoa province, Vietnam induced by heat treatment
Perez-Robles et al. Characterization of sol–gel glasses with different copper concentrations treated under oxidizing and reducing conditions
US4303635A (en) Zinc sulfide body for optical purposes
Lutz et al. Optical properties of copper-doped silica gels
Hegab et al. Effect of annealing on the optical properties of In2Te3 thin films
Tamura et al. On the possible origin of the photoluminescence from oxidized nanocrystalline silicon
EP0486236B1 (en) Zinc sulfide optical elements
Danchevskaya et al. Role of precursor compaction and water vapour pressure during synthesis of corundum in supercritical water
EA009435B1 (en) The technique of production of fancy red diamonds
Jiménez et al. Eu2+/Eu3+ activated phosphate glasses synthesized via melting with multi-wall carbon nanotubes
WO2002048038A3 (en) Jadeite and its production
Bauhofer et al. New crystallographic determination and optical properties of TeI single crystals
US3408430A (en) Method for improving the visible and infrared transmission of hot pressed magnesium fluoride
Lewis et al. The incorporation of iron impurities in cubic ZnS
Babin et al. Effect of uniaxial stress on exciton luminescence in CsI crystals
Messaddeq et al. Raman investigation of structural photoinduced irreversible changes of Ga~ 1~ 0Ge~ 2~ 5S~ 6~ 5 chalcogenide glasses
Kristianpoller et al. Effects of ultraviolet and visible light on synthetic sapphire
Pak et al. Optical properties of porous glass modified with vanadium (V) oxide
Ediriweera et al. Heat treatment of Geuda stones-spectral investigation
Krishnan Effect of laser fluence on the structural and optical properties of tantalum oxide films ablated by pulsed laser