JPH03270876A - Manufacture of electrodeposition grinding element - Google Patents

Manufacture of electrodeposition grinding element

Info

Publication number
JPH03270876A
JPH03270876A JP6401790A JP6401790A JPH03270876A JP H03270876 A JPH03270876 A JP H03270876A JP 6401790 A JP6401790 A JP 6401790A JP 6401790 A JP6401790 A JP 6401790A JP H03270876 A JPH03270876 A JP H03270876A
Authority
JP
Japan
Prior art keywords
abrasive grains
plating
core
irradiated
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6401790A
Other languages
Japanese (ja)
Inventor
Hajime Fukami
肇 深見
Akimitsu Kamiya
昭充 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP6401790A priority Critical patent/JPH03270876A/en
Publication of JPH03270876A publication Critical patent/JPH03270876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To make uniform the distribution density of abrasive grains in an electrodeposition grinding element by applying electroless plating to the abrasive grains provisionally fixed surface while the laser beam irradiation area on this provisional fixed surface is displaced appropriately, thus forming a regularly performed plating layer, allowing a core to hold the abrasive grains firmly, performing thereupon a dressing process, and allowing the abrasive grains to slip off and be removed from the laser beam non-irradiated area. CONSTITUTION:Plating is applied to a core of a grinding element 21 under the plating liquid where abrasive grains 23, 23' are floating, and a provisionally fixed plating layer 24 is formed, and thereby the abrasive grains are held provisionally in the core to form an abrasive grains provisional fixed surface. Then this surface of the core 21 with abrasive grains fixed is irradiated pulsedly with laser beam by a laser 14 at certain intervals. Further the plating is applied to the abrasive grains provisional fixed surface while themlaser beam irradiated area of the surface is varied appropriately, and a regularly performed plating layer 25 is yielded. Thereby the abrasive grains 23, 23' are retained by the core 21 firmly, followed by a dressing process which causes slipping-off and removal of the abrasive grains 23' from the laser beam irradiated area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、研削盤等の工作機械に用いられる電着砥石
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an electrodeposited grindstone used in machine tools such as grinders.

〔従来の技術] 電着砥石は砥石面に一層だけ砥粒が分布されており、砥
粒の分布密度は、研削効率からち低過ぎることは避けな
けりばならないが、高過ぎると研削抵抗が大きくなり不
適当である。そこで、電着砥石の製造において、砥粒の
分布密度の制御が行われる。
[Prior art] Electroplated grindstones have abrasive grains distributed in only one layer on the grinding wheel surface, and the distribution density of abrasive grains must not be too low in terms of grinding efficiency, but if it is too high, the grinding resistance will increase. It is too large and inappropriate. Therefore, in the production of electrodeposited grindstones, the distribution density of abrasive grains is controlled.

従来の技術による電着砥石の製造方法においては、マス
キング材を用いた砥粒の分布密度の制御が行われている
In a conventional method for manufacturing an electrodeposited grindstone, the distribution density of abrasive grains is controlled using a masking material.

砥粒の所望分布密度に応じて微小孔が分布開口したシー
ド、即ちマスキング材により砥石コアの砥石面をマスキ
ングし、その微小孔内に入った砥粒のみを砥石コアに電
着するのである。
The grinding wheel surface of the grinding wheel core is masked with a seed, that is, a masking material, which has micropores distributed in accordance with the desired distribution density of the abrasive grains, and only the abrasive grains that have entered the micropores are electrodeposited onto the grinding wheel core.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の技術による電着砥石の製造方法におけるように、
マスキング材を用いて砥粒の分布密度の制御を行うと、
砥石面において、全面的には砥粒の分布密度は所望密度
になる。
As in the manufacturing method of electroplated grinding wheels by conventional technology,
When the distribution density of abrasive grains is controlled using masking material,
On the grinding wheel surface, the distribution density of the abrasive grains becomes a desired density over the entire surface.

しかし、マスキング材の微小孔の寸法や分布を成る程度
以上に微細均一にする加工、即ち微細なマスキングパタ
ーンの加工が困難である。そのため、マスキング材の微
小孔の部分的分布が不均一で、一つの微小孔に入る砥粒
の数が増える結果、砥石面において、部分的には砥粒の
分布密度が不均一となる。
However, it is difficult to process the masking material to make the size and distribution of the micropores more fine and uniform than possible, that is, to process a fine masking pattern. Therefore, the local distribution of micropores in the masking material is uneven, and the number of abrasive grains that enter one micropore increases, resulting in a partially uneven distribution density of abrasive grains on the grinding wheel surface.

〔課題を解決するための手段〕[Means to solve the problem]

この発明による電着砥石の製造方法は、砥粒が浮遊する
メッキ液中において砥石コアに対しメッキを施し、仮付
メッキ層を形成させることにより砥石コアに砥粒を仮保
持して砥粒仮付面を形成する砥粒仮付工程と、それに続
いて砥粒仮付済の砥石コアの砥粒仮付面にレーザ光を適
宜の周期でパルス的に照射しすると共に、砥粒仮付面の
レーザ光照射域を適宜変位させながら砥粒仮付面に対し
メッキを施し、本性メッキ層を形成させることにより砥
石コアに砥粒を本格的に保持させ、更にドレッシングを
施してレーザ光非照射域の砥粒を脱落除去する砥粒本行
工程とから構成されている。
The method for producing an electrodeposited grindstone according to the present invention involves plating the grindstone core in a plating solution in which abrasive grains are suspended, and forming a temporary plating layer to temporarily hold the abrasive grains on the grindstone core. There is an abrasive grain tacking process to form a tacking surface, and then a laser beam is irradiated in pulses at an appropriate period to the abrasive grain tacking surface of the grindstone core to which the abrasive grains are tacking, and the abrasive grain tacking surface is Plating is applied to the temporary attachment surface of the abrasive grains while appropriately displacing the laser beam irradiation area to form an actual plating layer to fully retain the abrasive grains on the grinding wheel core, and then dressing is applied to prevent laser beam irradiation. This process consists of an abrasive grain main process in which the abrasive grains in the area are removed.

更に、砥粒の粒度が微小な場合には、上記の砥粒仮付工
程及び砥粒本行工程のうち、砥粒仮付工程を省略し、上
記の砥粒本行工程のメッキをメッキ液中に砥粒を散布し
てメッキ液を撹拌し、メッキ液中に砥粒を浮遊させて行
なう方法もある。
Furthermore, if the grain size of the abrasive grains is minute, the abrasive grain temporary application process and the abrasive grain main process described above may be omitted, and the plating in the above abrasive grain main process may be performed using a plating solution. Another method is to disperse abrasive grains into the plating solution, stir the plating solution, and suspend the abrasive grains in the plating solution.

〔作  用〕[For production]

砥粒本行工程において、にレーザ光を適宜の周期でパル
ス的に照射しすると共に、砥粒仮付面のレーザ光照射域
を適宜変位させると、そのレーザ光照射域は、砥粒仮付
面上に適宜の走査パーターンを描く、ところで、レーザ
光の照射域は加熱され、無電解メッキは、レーザ光の照
射域では促進される。そこで、走査パターンに応じた照
射域の本性メッキ層が他の区域の本性メッキ層より遥か
に厚くなる。従って、レーザ光の照射域の本性メッキ層
が本付けに十分な厚さに達したときでち、他の区域の本
付メッキ層の厚さは、砥粒を保持するのには不十分であ
る。
In the abrasive grain main process, when laser light is irradiated in pulses at an appropriate period and the laser light irradiation area on the abrasive grain tacking surface is appropriately displaced, the laser light irradiation area is When a suitable scanning pattern is drawn on the surface, the area irradiated with the laser beam is heated, and electroless plating is promoted in the area irradiated with the laser beam. Therefore, the intrinsic plating layer in the irradiation area corresponding to the scanning pattern becomes much thicker than the intrinsic plating layer in other areas. Therefore, when the actual plating layer in the area irradiated with the laser beam reaches a sufficient thickness for proper attachment, the thickness of the actual plating layer in other areas is insufficient to hold the abrasive grains. be.

そのような状態の砥粒本行済の砥石をドレッシングを行
うと、本性メッキ層の厚さが薄く、砥粒の保持力が不十
分なレーザ光非照射域の砥粒のみが除去され、上記の走
査パターンに応じた照射域にのみに砥粒が分布した電着
砥石が得られる。
When dressing a grindstone that has been subjected to abrasive grain correction in such a state, only the abrasive grains in the non-laser beam irradiated area where the original plating layer is thin and the abrasive grain retention strength is insufficient are removed, resulting in the above-mentioned An electrodeposited grindstone is obtained in which abrasive grains are distributed only in the irradiation area according to the scanning pattern.

〔実 施 例〕〔Example〕

この発明の一実施例を図面に従って説明する。 An embodiment of this invention will be described with reference to the drawings.

電着砥石の製造には、砥粒仮付工程とそれに続く砥粒本
行工程とがある。
The production of electrodeposited grindstones includes an abrasive grain temporary attachment process and a subsequent abrasive grain main process.

砥粒仮付工程においては、先ず、適宜形成された砥石コ
ア21に対し脱脂等の前処理を行い、砥石コア21の砥
石面相当域に下地メッキを施し、金属メッキ基層22を
形成する。
In the abrasive grain tacking process, first, the appropriately formed whetstone core 21 is subjected to pretreatment such as degreasing, and base plating is applied to an area of the whetstone core 21 corresponding to the whetstone surface to form a metal plating base layer 22.

次に、メッキ槽のメッキ液中に砥粒23.23・・・を
散布してメッキ液を撹拌し、メッキ液中に砥粒を浮遊さ
せると共に、そのメッキ槽のメッキ液中に上記の金属メ
ッキ基層22で被覆された砥石コア21を浸漬して、メ
ッキ厚さ4〜6μmに電気メッキ、又は無電解メッキを
施す。すると、砥粒が砥石コアの金属メッキ基層22の
表面に仮付メッキ層24で仮付けされる。それから、砥
石コア21をメッキ槽から取出し、水洗して仮付けされ
ない余分な砥粒を洗い流す。
Next, the abrasive grains 23, 23... are sprinkled into the plating solution in the plating tank and the plating solution is stirred to suspend the abrasive grains in the plating solution. The grindstone core 21 coated with the plating base layer 22 is immersed to perform electroplating or electroless plating to a plating thickness of 4 to 6 μm. Then, the abrasive grains are temporarily attached to the surface of the metal plating base layer 22 of the grindstone core with the temporary plating layer 24. Then, the grindstone core 21 is taken out from the plating tank and washed with water to wash away excess abrasive grains that are not temporarily attached.

次の砥粒本行工程は、第1図に示すような砥粒水付装置
において行われる。
The next abrasive grain processing step is carried out in an abrasive water applicator as shown in FIG.

前記砥粒水付装置は、基台1上に設けられたX軸線方向
案内2にX軸線テーブル3が滑動自在に載置され、更に
X軸線テーブル3上に設けられたY軸線方向案内4にY
軸線テーブル5が滑動自在に載置されている。そして、
XIdI線テーブル3は、サーボモータ6により送りね
じ機#I7を介してX軸線方向に変位され、Y軸線テー
ブル5は、サーボモータ8により送りねじ機構(図示し
ない)を介してY軸線方向に変位されるようになってい
る。
The abrasive water applying device has an X-axis table 3 slidably placed on an X-axis direction guide 2 provided on a base 1, and a Y-axis direction guide 4 provided on the X-axis table 3. Y
An axis table 5 is slidably mounted. and,
The XIdI line table 3 is displaced in the X-axis direction by a servo motor 6 via a feed screw mechanism #I7, and the Y-axis table 5 is displaced in the Y-axis direction by a servo motor 8 via a feed screw mechanism (not shown). It is supposed to be done.

YIliI線テーブル5上には、無電解メッキのメンキ
槽10が載置されている。メッキ槽10内には、円筒形
の砥石コア21をY軸線方向の軸線回りに回転自在に支
承する支承手段(図示しない)が設けられており、メッ
キ槽10上に設けられた砥石回転用モータ11によりベ
ルト・プーリ機構12を介して回転駆動されるようにな
っている。
A coating tank 10 for electroless plating is placed on the YIliI wire table 5. A support means (not shown) for rotatably supporting the cylindrical grindstone core 21 around an axis in the Y-axis direction is provided in the plating bath 10, and a grindstone rotation motor provided on the plating bath 10 is provided. 11 through a belt/pulley mechanism 12.

メッキ槽10のX軸線方向に対向した一側壁には、メッ
キ槽10内の支承手段に支承された場合の砥石コア21
の外周面に対向する部位範囲において、メッキ槽lOの
X1111線方向に対向したー@壁の一部は、ガラス等
から成る使用レーザが透過可能な透明窓13となってい
る。そして、基台1等の固定側に設けられたアルゴンイ
オンレーザ14から角度調整ミラー15及びレンズ16
を介して投射されるレーザ光が透明窓13を通してメッ
キ槽10内の砥石コア21の外周面に対し法線方向に照
射するようになっている。
On one side wall of the plating tank 10 facing in the X-axis direction, a grindstone core 21 is mounted when supported by a support means in the plating tank 10.
In a region facing the outer peripheral surface of the plating tank 10, a part of the wall facing the direction of the X1111 line is a transparent window 13 made of glass or the like through which the laser used can pass. Then, an angle adjusting mirror 15 and a lens 16 are connected to the argon ion laser 14 provided on the fixed side of the base 1 etc.
The laser beam projected through the transparent window 13 is irradiated onto the outer peripheral surface of the grindstone core 21 in the plating tank 10 in the normal direction.

サーボモータ6、サーボモータ8、砥石回転用モータ1
1及びアルゴンイオンレーザ14は、夫々マイクロコン
ピュータ17に接続されて制御されるようになっている
Servo motor 6, servo motor 8, grindstone rotation motor 1
1 and the argon ion laser 14 are each connected to and controlled by a microcomputer 17.

上記の砥粒本件装置において行われる砥粒本行工程は、
メッキ槽10内の支承手段に砥粒仮付済の砥石コア21
を支承させ、メッキ槽10内にメッキ液を満たされたメ
ッキ液に砥粒仮付済の砥石コア21を浸漬させる。する
と、砥石コア21の仮付メッキ層24の上に更に無電解
メッキが施され、本付メッキ層25が形成され、その結
果、仮付されている砥粒23は、所定の厚さになるまで
無電解メッキで形成された本付メッキ層25により本格
的に砥石コア21に固着される。
The abrasive grain main process performed in the above abrasive grain device is as follows:
Grinding wheel core 21 with abrasive grains temporarily attached to the support means in the plating tank 10
The grindstone core 21 to which abrasive grains have been temporarily attached is immersed in the plating solution filled in the plating tank 10. Then, electroless plating is further performed on the temporary plating layer 24 of the grinding wheel core 21 to form the main plating layer 25, and as a result, the temporarily applied abrasive grains 23 have a predetermined thickness. It is fully fixed to the grindstone core 21 by the plating layer 25 formed by electroless plating.

上記の本付メッキ層25の形成、即ち無電解メッキにお
いて、マイクロコンピュータ17の制御のもとでアルゴ
ンイオンレーザ14を作動させて、適宜の可変周期のレ
ーザパルス光を角度調整ミラー15及びレンズ16を介
し、レンズ透明窓13を透過させて砥石コア21の外周
面に照射すると共に、マイクロコンピュータ17の制御
のもとで夫々適宜の速度でサーボモータ6.8及び砥石
回転用モータ11を駆動する。
In the formation of the above-mentioned plating layer 25, that is, in electroless plating, the argon ion laser 14 is operated under the control of the microcomputer 17, and the laser pulse light of a suitable variable period is applied to the angle adjustment mirror 15 and the lens 16. The light is transmitted through the lens transparent window 13 and irradiated onto the outer peripheral surface of the grindstone core 21, and the servo motor 6.8 and the grindstone rotation motor 11 are driven at appropriate speeds under the control of the microcomputer 17. .

すると、X軸線テーブル3は送りねじ機構7により適宜
の位置に変位し、砥石コア21の外周面は。
Then, the X-axis table 3 is displaced to an appropriate position by the feed screw mechanism 7, and the outer peripheral surface of the grindstone core 21 is.

レンズ16に対し適宜の距離となり、Y軸線テーブル5
は適宜の速度で送りねじ機構9により送られ、砥石コア
21は、ベルト・プーリ機構12を介して適宜の低速度
で回転する。
The Y-axis table 5 is set at an appropriate distance to the lens 16.
is fed by the feed screw mechanism 9 at an appropriate speed, and the grindstone core 21 is rotated at an appropriate low speed via the belt/pulley mechanism 12.

その結果、砥石コア21の外周面とレンズI6との距離
に応じた大きさのパルスレーザ光の照射スポットが砥石
コア21の外周面上を走査する。その走査パーターンは
、Y軸線テーブル5の送り速度、砥石コア21の回転速
度及びパルスレーザ光の照射周期により第3図(a)〜
(d)に示すように種々に変化され得る。
As a result, an irradiation spot of the pulsed laser beam whose size corresponds to the distance between the outer peripheral surface of the grindstone core 21 and the lens I6 scans the outer peripheral surface of the grindstone core 21. The scanning pattern is determined by the feed speed of the Y-axis table 5, the rotation speed of the grindstone core 21, and the irradiation period of the pulsed laser beam as shown in FIG.
Various changes can be made as shown in (d).

そして、そのように砥粒23の付着パターンを変えるこ
とにより、砥粒23の集中度や砥石の切味を変えること
ができる。
By changing the adhesion pattern of the abrasive grains 23 in this manner, the degree of concentration of the abrasive grains 23 and the sharpness of the grindstone can be changed.

ところで、レーザ光の照射域は加熱され、無電解メッキ
は、レーザ光の照射域では促進される。
Incidentally, the area irradiated with the laser beam is heated, and electroless plating is promoted in the area irradiated with the laser beam.

そこで、照射スポットの走査パターンに応じた照射域の
本付メッキ層25が他の区域の本付メッキ層25より遥
かに厚くなる。従って、レーザ光の照射域の本付メッキ
層25が本付けに十分な厚さに達したときでも、他の区
域の本付メッキ層25の厚さは、砥粒23゛を保持する
のには不十分である。
Therefore, the actual plating layer 25 in the irradiation area corresponding to the scanning pattern of the irradiation spot becomes much thicker than the actual plating layer 25 in other areas. Therefore, even when the actual plating layer 25 in the laser beam irradiation area reaches a thickness sufficient for actual attachment, the thickness of the actual attachment plating layer 25 in other areas is insufficient to hold the abrasive grains 23. is insufficient.

そのような状態の砥粒本行済の砥石をアルミナ、又は炭
化珪素のスティック等によりドレッシングを行う。
The abrasive-treated abrasive stone in such a state is dressed with an alumina or silicon carbide stick.

すると、本付メッキ層25の厚さが薄く、砥粒の保持力
が不十分なレーザスポット光非照射域の砥粒23′のみ
が除去され、上記の走査パターンに応じた照射域にのみ
に砥粒23が分布した電着砥石が得られる(第2図)。
Then, only the abrasive grains 23' in the area not irradiated with the laser spot light, where the thickness of the plated layer 25 with the book is thin and the abrasive retention force is insufficient, are removed, and the abrasive grains 23' are only removed in the irradiated area according to the above-mentioned scanning pattern. An electrodeposited grindstone in which abrasive grains 23 are distributed is obtained (FIG. 2).

砥粒の粒度が微小な場合には、上記の砥粒仮付工程及び
砥粒本行工程のうち、砥粒仮付工程を省略し、無電解メ
ッキ液に砥粒を散布してメッキ液を撹拌し、メッキ液中
に砥粒を浮遊させた上、上記の砥粒本行工程の無電解メ
ッキを砥粒が浮遊しているメッキ液中において行なう方
法もある。
If the particle size of the abrasive grains is minute, the abrasive grain tacking process of the above abrasive grain tacking process and abrasive grain main process is omitted, and the abrasive grains are sprinkled on the electroless plating solution. There is also a method in which the abrasive grains are suspended in the plating solution by stirring, and then the electroless plating of the abrasive grain main process described above is performed in the plating solution in which the abrasive grains are suspended.

〔発明の効果] この発明の電着砥石の製造方法によれば、電着砥石の砥
粒の分布密度を所望の大きさに、しかも全面的には勿論
のこと、部分的にも均一密度にすることが容易にできる
[Effects of the Invention] According to the method for manufacturing an electrodeposited grindstone of the present invention, the distribution density of the abrasive grains of the electrodeposition grindstone can be made to a desired size, and the density can be made uniform not only over the entire surface but also partially. can be easily done.

更には、その分布状態を所望のパターンを描くようにす
ることも可能である6
Furthermore, it is also possible to make the distribution state draw a desired pattern6.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施例における電着砥石の製造方
法の砥粒本件工程を行う装置の概略構成図、 第2図は、この発明の実施例における電着砥石の製造方
法による電着砥石の断面部分図、第3図は、この発明の
実施例におけるパルスレーザ光の照射スポットの走査パ
ーターン概略図である。
FIG. 1 is a schematic configuration diagram of an apparatus for carrying out the abrasive grain process of the method for producing an electroplated grindstone in an embodiment of the present invention, and FIG. FIG. 3, a partial cross-sectional view of the grindstone, is a schematic diagram of a scanning pattern of an irradiation spot of pulsed laser light in an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)砥粒が浮遊するメッキ液中において砥石コアに対
しメッキを施し、仮付メッキ層を形成させることにより
砥石コアに砥粒を仮保持して、砥粒仮付面を形成し、次
いで、砥粒仮付済の砥石コアの砥粒仮付面にレーザ光を
適宜の周期でパルス的に照射すると共に、砥粒仮付面の
レーザ光照射域を適宜変位させながら砥粒仮付面に対し
無電解メッキを施し、本付メッキ層を形成させることに
より砥石コアに砥粒を本格的に保持させ、更にドレッシ
ングを施してレーザ光非照射域の砥粒を脱落除去する電
着砥石の製造方法
(1) Plating the grinding wheel core in a plating solution in which the abrasive grains are suspended, forming a temporary plating layer to temporarily hold the abrasive grains on the grinding wheel core to form an abrasive grain temporary adhesion surface, and then The abrasive grain tacking surface of the grinding wheel core to which the abrasive grains have been tacked is irradiated with laser light in pulses at an appropriate period, and the abrasive grain tacking surface is irradiated with the abrasive grain tacking surface while appropriately displacing the laser beam irradiation area of the abrasive grain tacking surface. This is an electroplated grindstone in which the abrasive grains are fully retained in the grinding wheel core by applying electroless plating to form a plating layer, and then dressing is applied to remove the abrasive grains from areas not irradiated with the laser beam. Production method
(2)砥石コアの砥石面にレーザ光を適宜の周期でパル
ス的に照射すると共に、砥石面のレーザ光照射域を適宜
変位させながら砥粒が浮遊するメッキ液中において砥石
コアに対し無電解メッキを施し、本付メッキ層を形成さ
せることにより砥石コアに砥粒を保持させ、更にドレッ
シングを施してレーザ光非照射域の砥粒を脱落除去する
電着砥石の製造方法
(2) The grinding wheel surface of the grinding wheel core is irradiated with laser light in pulses at appropriate intervals, and the grinding wheel core is electrolessly irradiated in a plating solution in which abrasive grains are suspended while appropriately displacing the laser beam irradiation area on the grinding wheel surface. A method for producing an electroplated whetstone, in which the abrasive grains are retained in the whetstone core by plating and forming a plating layer, and the abrasive grains in areas not irradiated with laser light are removed by dressing.
JP6401790A 1990-03-16 1990-03-16 Manufacture of electrodeposition grinding element Pending JPH03270876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6401790A JPH03270876A (en) 1990-03-16 1990-03-16 Manufacture of electrodeposition grinding element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6401790A JPH03270876A (en) 1990-03-16 1990-03-16 Manufacture of electrodeposition grinding element

Publications (1)

Publication Number Publication Date
JPH03270876A true JPH03270876A (en) 1991-12-03

Family

ID=13245973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6401790A Pending JPH03270876A (en) 1990-03-16 1990-03-16 Manufacture of electrodeposition grinding element

Country Status (1)

Country Link
JP (1) JPH03270876A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193269A (en) * 1996-12-27 1998-07-28 Asahi Diamond Ind Co Ltd Electrodeposition tool and manufacture therefor
US6306025B1 (en) 1997-06-13 2001-10-23 Nec Corporation Dressing tool for the surface of an abrasive cloth and its production process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193269A (en) * 1996-12-27 1998-07-28 Asahi Diamond Ind Co Ltd Electrodeposition tool and manufacture therefor
US6306025B1 (en) 1997-06-13 2001-10-23 Nec Corporation Dressing tool for the surface of an abrasive cloth and its production process

Similar Documents

Publication Publication Date Title
US4212900A (en) Surface alloying method and apparatus using high energy beam
US4155721A (en) Bonding process for grinding tools
US4639378A (en) Auto-selective metal deposition on dielectric surfaces
US4817341A (en) Cutting tool having concentrically arranged outside and inside abrasive grain layers and method for production thereof
CN1549756A (en) Method for fabricating polishing pad using laser beam and mask
JP3992168B2 (en) Electrodeposition blade manufacturing method
DE69729779T2 (en) Method and device for polishing
EP0421350A1 (en) Method of and apparatus for electropolishing and grinding
JPH03270876A (en) Manufacture of electrodeposition grinding element
JP2012196755A (en) Method and device for producing base body with hard material particle
JP3754488B2 (en) Method for manufacturing fixed abrasive wire and spiral coating apparatus
EP0004449B1 (en) Bonding process for grinding tools
JP5072749B2 (en) Electrodeposition tool production equipment
JPH04250978A (en) Manufacture of electrodeposited grinding wheel
CZ78699A3 (en) Surface treatment process of workpieces
JPS62152676A (en) Manufacture of diamond grindstone
JP3053492B2 (en) Eddy current polishing method and eddy current polishing device
JP3532065B2 (en) Plating method and apparatus
JP2929793B2 (en) Electroplated wheel manufacturing equipment
JP2001335336A (en) Material treating method, disc type material treating method, glass material and glass disc
JPS61112320A (en) Developing treating device for semiconductor substrate
JP3280580B2 (en) Method and apparatus for manufacturing grinding wheel
US5288382A (en) Optical fine processing apparatus
JPH0673810B2 (en) Abrasive grain characteristic control method
JPH02205481A (en) Method and device for adjusting abrasive grain density of electrodeposition grindstone