JPH03270738A - Apparatus for cooling and grinding molten glass - Google Patents

Apparatus for cooling and grinding molten glass

Info

Publication number
JPH03270738A
JPH03270738A JP7022590A JP7022590A JPH03270738A JP H03270738 A JPH03270738 A JP H03270738A JP 7022590 A JP7022590 A JP 7022590A JP 7022590 A JP7022590 A JP 7022590A JP H03270738 A JPH03270738 A JP H03270738A
Authority
JP
Japan
Prior art keywords
cooling
rolls
pair
glass
molten glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7022590A
Other languages
Japanese (ja)
Inventor
Koichi Wada
耕一 和田
Hirotaka Miyauchi
宮内 啓隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP7022590A priority Critical patent/JPH03270738A/en
Publication of JPH03270738A publication Critical patent/JPH03270738A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/104Forming solid beads by rolling, e.g. using revolving cylinders, rotating discs, rolls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/04Rolling non-patterned sheets continuously
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/16Construction of the glass rollers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crushing And Grinding (AREA)

Abstract

PURPOSE:To shorten a process and to lower a contamination risk by providing a pair of cooling rolls pressing and cooling molten glass and arranging a pair of grinding rolls under the cooling rolls in opposed relationship. CONSTITUTION:The molten glass MG from a melting furnace is continuously injected in the casting part C between a pair of cooling rolls 1, 1' and pressed while quenched by the cooling rolls 1, 1' to become thin flat glass SG. This flat glass SG is successively fed downwardly and pressed by a pair of rotated grinding rolls 2, 2' to be ground into fine glass particles PG which are, in turn, further classified into a predetermined particle size by a vibration classifier 4. By this method, the deterioration of the characteristics of glass particles can be prevented and the enhancement of productivity and the stabilization of quality can be achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融ガラスの冷却粉砕装置に関し、詳細には
、溶融ガラスから連続的にガラス粒子を製造するための
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for cooling and crushing molten glass, and more particularly to an apparatus for continuously producing glass particles from molten glass.

〔従来の技術〕[Conventional technology]

化学工業用の反応容器などのグラスライニング等に用い
られる微細なガラス粒子は、外来異物により汚染されて
特性が劣化しないように、その製造および保管に厳重な
管理が求められる。
Fine glass particles used in the glass lining of chemical industry reaction vessels and the like require strict management in their manufacture and storage to prevent their properties from deteriorating due to contamination by foreign foreign substances.

従来、このようなガラス粒子の製造には、例えば、熔融
ガラスを金属板上に流下させて冷却・固化させる流延法
で得られた板状ないしは塊状のガラスを、外力を加えて
ある程度の大きさに破砕した後、更にボールミル等で粉
砕して所定粒度のガラス粒子を得る極通常な方法や、溶
融ガラスを水中に流下させて、急冷・固化させると共に
、この同化ガラスに外力を加えて数曲程度の大きさに砕
き、これを乾燥機等で水分を除去した後、ボールミル等
で粉砕して所定粒度の微細なガラス粒子を得るいわゆる
水砕法などが採用されていた。
Conventionally, in the production of such glass particles, for example, plate-shaped or lump-shaped glass obtained by a casting method in which molten glass is poured down onto a metal plate, cooled and solidified, is made into a certain size by applying an external force. After crushing the assimilated glass, it is further crushed using a ball mill etc. to obtain glass particles of a predetermined particle size. Alternatively, the molten glass is flowed down into water, rapidly cooled and solidified, and an external force is applied to the assimilated glass. The so-called water pulverization method was used to obtain fine glass particles with a predetermined particle size by crushing the glass into pieces the size of a piece of music, removing moisture using a dryer or the like, and then crushing the glass using a ball mill or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の流延法に係るガラス粒子の製造方法では
、溶解−流延固化一粗砕一粉砕一分級等一方、水砕法で
は、溶解〜水砕−乾燥−粉砕−分級等と、それぞれハツ
チ工程の組み合わせでなり、その工程数が多いため、経
済的でなく生産性を高め難いに加え、その製造過程でガ
ラス粒子が外来異物にて汚染される危険度が高まり、特
に、水を用いて乾燥工程のある水砕法では汚染を受は易
く、汚染防止のために厳密かつ煩雑な管理を強いられ、
これが更に生産性向上の明害要因になるという問題点が
あった。
However, in the method for manufacturing glass particles according to the above-mentioned casting method, the steps of melting, casting, solidification, coarse crushing, crushing, and classification are performed, whereas in the water pulverization method, the steps of melting, granulation, drying, pulverization, classification, etc. are carried out, respectively. Because it involves a combination of processes and has a large number of processes, it is not economical and difficult to increase productivity, and the risk of contamination of glass particles with foreign foreign substances during the manufacturing process increases, especially when using water. The water granulation method, which involves a drying process, is susceptible to contamination and requires strict and complicated management to prevent contamination.
There is a problem in that this further becomes a source of light pollution for improving productivity.

本発明は、上記従来技術の問題点に鑑み、溶融ガラスか
ら微細なガラス粒子を連続的に製造し得て、その工程数
の短縮と、工程数短縮による汚染危険度の低下とが図れ
、もって、その生産性の向上と品質安定化とを併せ達成
し得る溶融ガラスの冷却粉砕装置の提供を目的とするも
のである。
In view of the above-mentioned problems of the prior art, the present invention enables the continuous production of fine glass particles from molten glass, reduces the number of steps, and reduces the risk of contamination due to the reduction in the number of steps. The object of the present invention is to provide a cooling and crushing apparatus for molten glass that can improve productivity and stabilize quality.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は以下の横取とされ
ている。
In order to achieve the above object, the present invention incorporates the following features.

すなわち、本発明に係る溶融ガラスの冷却粉砕装置は、
水平方向に対向配置され、その間に流下・注入される溶
融ガラスを加圧・冷却して薄板状に固化させる対の冷却
ロールと、線対の冷却ロールの下方に対向配置され、対
の冷却ロールから送り出される薄板状の同化ガラスを加
圧・粉砕する対の粉砕ロールとを備えてなるものである
That is, the molten glass cooling and crushing apparatus according to the present invention is as follows:
A pair of cooling rolls are placed opposite each other in the horizontal direction, and pressurize and cool the molten glass flowing down and injected between them to solidify it into a thin plate. It is equipped with a pair of crushing rolls that pressurize and crush the thin plate-like assimilated glass sent out from the crushing roll.

また、対の冷却ロールが、溶融ガラスに加える面圧を計
測する圧力センサーと、該圧力センサーの計測値に基づ
いて、溶融ガラスに加える面圧を常に一定とする加圧力
調整機構とを構設してなるものとされても良い。
In addition, the pair of cooling rolls is equipped with a pressure sensor that measures the surface pressure applied to the molten glass, and a pressure adjustment mechanism that constantly keeps the surface pressure applied to the molten glass constant based on the measured value of the pressure sensor. It may be assumed that the

また、対の粉砕ロールそれぞれが、その加圧ロール面に
、互いに噛み合う凹凸を有するものとされても良い。
Further, each of the pair of grinding rolls may have irregularities on its pressure roll surface that engage with each other.

また、対の粉砕ロールが、双方とも平滑ロールに形成さ
れ、かつ、互いに異なる回転周速をもって回転させられ
て良い。
Further, the pair of grinding rolls may both be formed as smooth rolls, and may be rotated at mutually different circumferential speeds.

〔作用〕[Effect]

本発明に係る溶融ガラスの冷却粉砕装置においては、水
平方向に対向配置された対の冷却ロールを備えるので、
この対の冷却ロール間に流下・注入される溶融ガラスを
受け、該溶融ガラスを加圧・冷却して薄板状に固化させ
て、順次下方に向けて送り出すことができる。また、線
対の冷却ロールの下方には、対の粉砕ロールを備えるの
で、線対の粉砕ロールによって、対の冷却ロールから送
り出される薄板状の同化ガラスを、連続的に粉砕してガ
ラス粒子とすることができる。就中、溶解ガラスを対の
冷却ロールで薄板状に加圧すると、加圧された溶融ガラ
スは冷却ロールとの接触・熱交換によって、急速冷却さ
れて固化するが、この場合の薄板状の同化ガラスは、加
圧と急速冷却による高い内部歪みを付与されて保有し、
−窓以上の外部応力が加えられたとき、あたかも強化ガ
ラスのように、微細なりランクを無数に生しるものとな
るので、これを対の粉砕ロールで加圧することで、容易
に微細なガラス粒子に粉砕し得る。
The molten glass cooling and crushing apparatus according to the present invention includes a pair of cooling rolls arranged horizontally opposite each other.
The molten glass flowing down and injected is received between the pair of cooling rolls, and the molten glass is pressurized and cooled to solidify into a thin plate shape, and the molten glass can be sequentially sent downward. Furthermore, since a pair of crushing rolls is provided below the wire pair of cooling rolls, the thin plate-like assimilated glass sent out from the pair of cooling rolls is continuously crushed by the wire pair of crushing rolls into glass particles. can do. In particular, when molten glass is pressed into a thin plate shape by a pair of cooling rolls, the pressurized molten glass is rapidly cooled and solidified by contact with the cooling rolls and heat exchange. Glass has a high internal strain due to pressurization and rapid cooling,
- When an external stress greater than that of a window is applied, it will form countless fine particles, just like tempered glass. Can be ground into particles.

また、対の冷却ロールに、溶融ガラスに加える面圧を計
測する圧力センサーと、該圧力センサーの計測41fに
基づいて面圧を調整する加圧力調整機構を構設し、熔融
ガラスに加える面圧を常に一定として、線対の冷却ロー
ルから送り出される薄板状の同化ガラスの厚さを一定に
制御することで、下方の対の粉砕ロールよる粉砕を、安
定かつ高い再現性をもって行わせ得る。
In addition, a pressure sensor that measures the surface pressure applied to the molten glass and a pressing force adjustment mechanism that adjusts the surface pressure based on the measurement 41f of the pressure sensor are installed on the pair of cooling rolls. By keeping constant and controlling the thickness of the thin plate-shaped assimilated glass sent out from the wire pair of cooling rolls to a constant value, the grinding by the lower pair of grinding rolls can be performed stably and with high reproducibility.

また、対の粉砕ロールのロール面に互いに噛み合う凹凸
を設け、薄板状の同化ガラス両面から位相の異なる圧力
を加えることで、加圧する薄板状の同化ガラスに剪断応
力を負荷して、その粉砕を確実かつ効率的なものとし得
る。
In addition, the roll surfaces of the pair of crushing rolls are provided with concavities and convexities that engage with each other, and by applying pressures with different phases from both sides of the thin plate-like assimilated glass, shear stress is applied to the thin plate-like assimilated glass to be pressurized, and the pulverization is carried out. It can be made reliable and efficient.

また、平滑ロールとされた対の粉砕ロールを、互いに異
なる回転周速をもって回転させ、蕩板状の同化ガラスの
両面に速度変化をつけることで、加圧する薄板状の同化
ガラスに剪断応力を負荷して、その粉砕を確実かつ効率
的なものとし得る。
In addition, by rotating a pair of crushing rolls, which are used as smooth rolls, at different circumferential speeds and varying the speed on both sides of the assimilated glass plate, shear stress is applied to the thin plate-shaped assimilated glass to be pressurized. Therefore, the pulverization can be performed reliably and efficiently.

〔実施例〕〔Example〕

以下に、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本実施例の溶解ガラスの冷却粉砕装置の構成を
示す概念説明図である。
FIG. 1 is a conceptual explanatory diagram showing the configuration of the molten glass cooling and crushing apparatus of this embodiment.

第1図において、(D(1’)は冷却ロールであって、
これら冷却ロール(1)(1“〉は、装置最上部に位置
し、対をなして水平方向に対向配置されてあり、その加
圧ロール部を、例えば銅等の熱伝導性に優れる金属材料
からなる円筒状に形成され、中心孔を有する両軸部を介
して、その内部に冷却水を導入・循環させる構成とされ
ている。また、これら冷却ロール(1)(1’)は、こ
こでは図示を省略したロル軸両端部に配したロードセル
等の圧力センサーを内部に設ける一方、その内部に法人
する冷却水の圧力を任意に調整できる構成とされ、その
ロール面に負荷される面圧を検出すると共に、該面圧に
対抗する背圧を調整し得るものとされている。
In FIG. 1, (D(1') is a cooling roll,
These cooling rolls (1) (1") are located at the top of the device, and are arranged in pairs to face each other in the horizontal direction. The pressure rolls are made of a metal material with excellent thermal conductivity, such as copper, for example. The cooling roll (1) (1') is formed into a cylindrical shape, and is configured to introduce and circulate cooling water into the interior through both shaft parts having a center hole. In this case, pressure sensors such as load cells placed at both ends of the roll shaft (not shown) are installed inside, and the pressure of the cooling water incorporated inside can be adjusted arbitrarily, and the surface pressure applied to the roll surface can be adjusted. It is said that it is possible to detect the surface pressure and to adjust the back pressure that opposes the surface pressure.

(2)(2’)は粉砕ロールであって、これら粉砕ロー
ル(202°)は、例えば表面硬化処理を施した硬質合
金鋼からなる平滑ロールであって、対の冷却ロール(I
HI’)の所定間隔を隔てた下方に平行に、対をなして
対向配置されである。
(2) (2') are crushing rolls, and these crushing rolls (202°) are smooth rolls made of, for example, hard alloy steel subjected to surface hardening treatment, and are paired with cooling rolls (I
They are arranged in pairs and in parallel below and spaced apart from each other by a predetermined distance from HI'.

(3)(3’)はスクレーパであって、これらスクレー
パ(3H3“)は、その掻刃を粉砕ロール(2)(2”
)のロール下面に当接させて、これら粉砕ロール(2)
(2’)の直下方に対向配置されている。
(3) (3') are scrapers, and these scrapers (3H3") use their scraping blades as crushing rolls (2) (2").
) in contact with the lower surface of the rolls (2).
(2') are arranged opposite to each other directly below.

(4)は振動分級機であって、該振動分級@(4)は、
メツシュの異なるフルイを複数段に設けたもので、対の
粉砕ロール(2)(2°)下方に配設されている。
(4) is a vibration classifier, and the vibration classifier @ (4) is
It has multiple stages of sieves with different meshes, and is placed below the pair of crushing rolls (2) (2°).

なお、ここでは図示を省略したが、本実施例の冷却粉砕
装置は、最上部の注入口と振動分級機(4)の粒子取出
口を除く、全外郭をケースでカバリングされている。
Although not shown here, the entire outer shell of the cooling pulverizer of this embodiment is covered with a case except for the injection port at the top and the particle outlet of the vibration classifier (4).

上記構成を具備する本実施例の冷却粉砕装置においては
、第1図中の実線矢印方向に回転させられている対の冷
却ロール(IDI’)間に形成されるV字状空間からな
る鋳込部Cに、溶解炉Fからの熔解ガラスMGが所定流
量をもって連続的に注入される。そして、回転する対の
冷却ロール(1)(1’)のロール面に接触した溶解ガ
ラスMGは、これら低温なる冷却ロール(1)(1°)
との熱交換にて、急速冷却されながら加圧を受けて、そ
の回転に伴って薄板ガラスSGとされて、順次下方に向
けて送り出され、続く下方で点線矢印方向に回転させら
れている対の粉砕ロール(2)(2°)で加圧されて、
微細なガラス粒子PGに粉砕され、下方の振動分級i(
4]にて所定範囲の粒度に分級されるのである。
In the cooling crushing apparatus of this embodiment having the above-mentioned configuration, the casting machine consists of a V-shaped space formed between a pair of cooling rolls (IDI') rotated in the direction of the solid arrow in FIG. Molten glass MG from melting furnace F is continuously injected into section C at a predetermined flow rate. The molten glass MG in contact with the roll surfaces of the rotating pair of cooling rolls (1) (1') is heated at a temperature of 1°.
Through heat exchange with the glass, it is rapidly cooled and pressurized, and as the glass rotates, it is turned into thin glass SG, which is sent downward one after another, and then rotated downward in the direction of the dotted arrow. Pressurized by the crushing roll (2) (2°),
The glass particles are crushed into fine glass particles PG and subjected to downward vibrational classification i (
4], the particles are classified into particle sizes within a predetermined range.

なお、対の冷却ロール(1)(1′)にて加圧・冷却さ
れてなる薄板ガラスSGは、急速冷却歪みと加圧応力と
によって高い内部歪みを付与されて保有し一定以上の強
さの外部応力を加えられたとき、微細なりラックを無数
に生しるので、対の粉砕ロール(2)(2’)によって
加圧されるとき、容易に粉砕されて微細なガラス粒子P
Gとなる。
The thin glass SG that is pressurized and cooled by the pair of cooling rolls (1) and (1') is given a high internal strain by rapid cooling strain and pressurized stress, and has a strength above a certain level. When an external stress of
It becomes G.

また、本実施例では、対の冷却ロール(1)(1”)内
の背圧を検出・調整し、溶解ガラスMGに加える面圧を
常に一定に制御するので、これら冷却ロール(1)(1
’)から送り出される薄板ガラスSGの厚さを安定させ
て、粉砕ロール[2)(2’)による粉砕を、安定かつ
再現性の高いものとすることができる。
In addition, in this example, the back pressure within the pair of cooling rolls (1) (1") is detected and adjusted, and the surface pressure applied to the molten glass MG is always controlled to be constant. 1
By stabilizing the thickness of the thin glass SG sent out from the pulverizing rolls [2) (2'), it is possible to make the pulverization by the pulverizing rolls [2] (2') stable and highly reproducible.

次に、具体的な実施例について述べると、上記構成の下
で、ロール径20c+m、ロール長さを40cmとした
対の冷却ロール(])(1’)をロール間隔0.h+m
で対向配置し、これらを50rpmで回転させる一方、
ロール径30clll、ロール長さを40cmとした対
の粉砕ロール(2)(2°)をロール間隔0.1+am
で対向配置し、これらを6Orpmで回転させて、これ
により溶解ガラスMGから連続的にガラス粒子PGを得
た。
Next, a specific example will be described. Under the above configuration, a pair of cooling rolls (]) (1') with a roll diameter of 20 c+m and a roll length of 40 cm are used with a roll spacing of 0. h+m
while rotating them at 50 rpm,
A pair of grinding rolls (2) (2°) with a roll diameter of 30 clll and a roll length of 40 cm, with a roll spacing of 0.1 + am.
These were placed facing each other and rotated at 6 Orpm, thereby continuously obtaining glass particles PG from molten glass MG.

また、このときの熔解ガラスMGの注入量は、対の冷却
ロール(11(1”)から送り出される薄板ガラスSG
の幅が約50問となるように制御した。
In addition, the injection amount of molten glass MG at this time is the same as that of the thin glass SG sent out from the pair of cooling rolls (11 (1")).
The width was controlled to be approximately 50 questions.

得られたガラス粒子PGの粒度分布は、70μ鋼を中心
とし150μ釦から数μmの範囲内にある微細なもので
、その粒子は比較的にシャープな形状を呈するものであ
った。
The particle size distribution of the obtained glass particles PG was fine, centered on 70μ steel, within a range of several μm from 150μ steel, and the particles had a relatively sharp shape.

以上に述べたように、本実施例の溶解ガラスの冷却粉砕
装置によれば、同一装置内において熔解ガラスから連続
的に微細なガラス粒子を得ることができ、従来技術に比
較して格段に工程数の削減が図れると共に、その製造過
程における外来異物汚染によるガラス粒子の特性劣化を
未然かつ確実に防ぎ得て、品質の安定化を図ることがで
きる。
As described above, according to the molten glass cooling and crushing apparatus of this embodiment, fine glass particles can be continuously obtained from molten glass in the same apparatus, and the process is significantly improved compared to the conventional technology. In addition to reducing the number of glass particles, deterioration of the characteristics of the glass particles due to contamination by foreign foreign substances during the manufacturing process can be prevented and the quality can be stabilized.

なお、以上に述べた本実施例の冷却粉砕装置の構成は一
例であって、例えば、その別の実施態様の説明断面図で
ある第2図に示すように、対の粉砕ロール(5)(5’
)を、それぞれのロール面(6)(6’)に互いに噛み
合う歯車状凹凸を設けたものとして、薄板ガラスSGを
加圧して粉砕するのみでなく、ロール面(6)(6’)
およびガラス粒子PG相互間の擦り合い効果にて、より
微細なガラス粒子PGを得るものとされても良い。
It should be noted that the configuration of the cooling crushing apparatus of this embodiment described above is just one example, and for example, as shown in FIG. 2, which is an explanatory cross-sectional view of another embodiment, a pair of crushing rolls (5) ( 5'
) is provided with gear-like unevenness that meshes with each other on each roll surface (6) (6'), and not only the thin glass SG is crushed by pressurizing it, but also the roll surface (6) (6')
Further, finer glass particles PG may be obtained by the rubbing effect between the glass particles PG.

また、本実施例のように、平滑ロールを対の粉砕ロール
として用い、これらを互いに異なる回転周速をもって回
転させることも、加圧する薄板ガラスSGの両面に速度
変化をつけて該薄板ガラスSGに剪断応力をも負荷させ
ることができ、その粉砕を確実かつ効率的なものとし得
て好ましい。
Furthermore, as in this embodiment, smooth rolls may be used as a pair of crushing rolls and these may be rotated at different peripheral speeds. It is preferable that shearing stress can also be applied, and the crushing can be ensured and efficient.

また、上述した具体例においては、対の粉砕ロールの回
転周速を、対の冷却ロールの回転周速より早いものとし
たが、これは対の粉砕ロールによる粉砕が、対の冷却ロ
ールからの薄板ガラスの送り出し速度(すなわち回転周
速)より遅いとき、対の冷却ロールと対の粉砕ロールと
の間で遅滞した薄板ガラスSGが破損・欠落する懸念が
生しるからで、これらの回転周速については、用いる粉
砕ロールの形態を考慮して、対の粉砕ロールの回転周速
が、対の冷却ロールの回転周速と同しもしくはそれより
早く、かつ、対の粉砕ロールが薄板ガラスSGを過剰に
引き下ろして、該薄板ガラスSGを破断させたり、上方
の溶解ガラスMGにブレイクを生しさせたりしない早さ
に設定される。
In addition, in the specific example described above, the peripheral speed of rotation of the pair of crushing rolls was set higher than the peripheral speed of rotation of the pair of cooling rolls, but this means that the crushing by the pair of crushing rolls is faster than the rotational peripheral speed of the pair of cooling rolls. This is because when the feeding speed of the thin glass is slower than the rotating peripheral speed, there is a risk that the thin glass SG delayed between the pair of cooling rolls and the pair of crushing rolls will be damaged or missing. Regarding the speed, considering the form of the crushing rolls used, the peripheral rotational speed of the pair of crushing rolls is the same as or faster than the rotational peripheral speed of the pair of cooling rolls, and the pair of crushing rolls is made of thin glass SG. It is set at a speed that does not cause the thin glass SG to break or the molten glass MG above to break due to excessive pulling down.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明に係る溶融ガラスの冷却粉
砕装置によれば、同一装置内において溶解ガラスから連
続的に微細なガラス粒子を得ることができ、その工程数
を大幅に短縮し得ると共に、外来異物汚染によるガラス
粒子の特性劣化をも未然かつ確実に防ぎ得、もって、そ
の生産性の向上と品質安定化とを図ることができる。
As described above, according to the molten glass cooling and crushing apparatus according to the present invention, fine glass particles can be continuously obtained from molten glass in the same apparatus, and the number of steps can be significantly shortened. At the same time, deterioration of the properties of glass particles due to contamination with foreign foreign substances can be prevented in advance, thereby improving productivity and stabilizing quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の溶解ガラスの冷却粉砕装置の
構成を示す概念説明図、 第2図は本発明の溶解ガラスの冷却粉砕装置に用いる粉
砕ロールの別の実施態様の説明断面図でである。 (1)(1’)−一冷却ロール、 (2J(2’)−粉
砕ロール、(3H3’)−−スクレーパ、 (4)−振
動分級機、F−溶解炉、     C−鋳込部、 MG−一溶解ガラス、   SG−薄板ガラス、PC−
−ガラス粒子。 第1図
FIG. 1 is a conceptual explanatory diagram showing the configuration of a cooling and crushing apparatus for molten glass according to an embodiment of the present invention. FIG. 2 is an explanatory cross-sectional view of another embodiment of a crushing roll used in the cooling and crushing apparatus for molten glass according to the present invention. It is. (1) (1') - Cooling roll, (2J (2') - Grinding roll, (3H3') - Scraper, (4) - Vibratory classifier, F - Melting furnace, C - Casting section, MG -Fused glass, SG-Thin glass, PC-
- Glass particles. Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)水平方向に対向配置され、その間に流下・注入さ
れる溶融ガラスを加圧・冷却して薄板状に固化させる対
の冷却ロールと、該対の冷却ロールの下方に対向配置さ
れ、対の冷却ロールから送り出される薄板状の固化ガラ
スを加圧・粉砕する対の粉砕ロールとを備えてなること
を特徴とする溶融ガラスの冷却粉砕装置。
(1) A pair of cooling rolls that are arranged horizontally to face each other and pressurize and cool the molten glass flowing down and injected between them to solidify it into a thin plate; A cooling and crushing device for molten glass, comprising a pair of crushing rolls that pressurize and crush thin plate-shaped solidified glass sent out from a cooling roll.
(2)対の冷却ロールが、溶融ガラスに加える面圧を計
測する圧力センサーと、該圧力センサーの計測値に基づ
いて、溶融ガラスに加える面圧を常に一定とする加圧力
調整機構とを構設してなることを特徴とする第1請求項
記載の溶融ガラスの冷却粉砕装置。
(2) The pair of cooling rolls includes a pressure sensor that measures the surface pressure applied to the molten glass, and a pressure adjustment mechanism that constantly keeps the surface pressure applied to the molten glass constant based on the measured value of the pressure sensor. 2. The molten glass cooling and crushing apparatus according to claim 1, further comprising:
(3)対の粉砕ロールそれぞれが、その加圧ロール面に
、互いに噛み合う凹凸を有することを特徴とする第1請
求項および第2請求項記載の溶融ガラスの冷却粉砕装置
(3) The molten glass cooling and crushing apparatus according to claim 1 and claim 2, wherein each of the pair of crushing rolls has irregularities that engage with each other on the pressure roll surface.
(4)対の粉砕ロールが、双方とも平滑ロールに形成さ
れ、かつ、互いに異なる回転周速をもって回転させられ
ることを特徴とする第1請求項および第2請求項記載の
溶融ガラスの冷却粉砕装置。
(4) The molten glass cooling and crushing apparatus according to claim 1 and claim 2, wherein the pair of crushing rolls are both formed as smooth rolls and are rotated at mutually different circumferential speeds. .
JP7022590A 1990-03-20 1990-03-20 Apparatus for cooling and grinding molten glass Pending JPH03270738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7022590A JPH03270738A (en) 1990-03-20 1990-03-20 Apparatus for cooling and grinding molten glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7022590A JPH03270738A (en) 1990-03-20 1990-03-20 Apparatus for cooling and grinding molten glass

Publications (1)

Publication Number Publication Date
JPH03270738A true JPH03270738A (en) 1991-12-02

Family

ID=13425399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7022590A Pending JPH03270738A (en) 1990-03-20 1990-03-20 Apparatus for cooling and grinding molten glass

Country Status (1)

Country Link
JP (1) JPH03270738A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010079302A (en) * 2001-07-06 2001-08-22 홍순걸 A handling equipement of food waste as well as organic refuse matter
KR100804773B1 (en) * 2006-11-22 2008-02-19 주식회사 휘닉스피디이 Cullet manufacture equipment using roller
JP2008237967A (en) * 2007-03-26 2008-10-09 Inoue Mfg Inc Roll mill
JP2011111354A (en) * 2009-11-25 2011-06-09 Nippon Electric Glass Co Ltd Method for producing glass flake and apparatus for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010079302A (en) * 2001-07-06 2001-08-22 홍순걸 A handling equipement of food waste as well as organic refuse matter
KR100804773B1 (en) * 2006-11-22 2008-02-19 주식회사 휘닉스피디이 Cullet manufacture equipment using roller
JP2008237967A (en) * 2007-03-26 2008-10-09 Inoue Mfg Inc Roll mill
JP2011111354A (en) * 2009-11-25 2011-06-09 Nippon Electric Glass Co Ltd Method for producing glass flake and apparatus for producing the same

Similar Documents

Publication Publication Date Title
JP2009531172A (en) Apparatus and method for crushing coarsely crushed polycrystalline silicon
JPH029706A (en) Method for pulverizing a solid silicon lump
CN107245590A (en) Copper graphene composite material and preparation method
TW201211284A (en) Indium target and method for manufacturing same
Goswami et al. Role of feed rate and temperature in attrition grinding of cumin
CN101215680A (en) Aluminum alloy die-casting die steel surface shot blasting strengthening treatment method
JPH03270738A (en) Apparatus for cooling and grinding molten glass
Takehara et al. Effect of Homogenization Heat Treatment on Elongation Anisotropy in Cold-Rolled and Annealed Al–Si Alloy Sheets Fabricated from Vertical-Type High-Speed Twin-Roll Cast Strips
JPH0638680A (en) Device and method for moistening and dissolving dry particle
JPS6048266B2 (en) Copper wire manufacturing method
CN108344776A (en) A kind of grain muller of the online grain moisture content instrument of resistance-type
FR2541910A1 (en) HIGH STRENGTH CRUSHING BAR AND MANUFACTURING METHOD THEREOF
JP3324272B2 (en) Manufacturing method of bearing steel
US20020128128A1 (en) Roller-type reducing apparatus
KR101347728B1 (en) Horizontal pin mill apparatus
CN106427379B (en) A kind of spoke plate
JPH01309760A (en) Continuous casting method
JP4214634B2 (en) Rotary quench casting equipment
WO2008131488A1 (en) Crushing method and assembly
KR20070108600A (en) Method and device for manufacturing al alloy material included high si
JP3358974B2 (en) Glass processing method
SU940828A1 (en) Apparatus for granulating high viscous melts
SU899171A1 (en) Method of working a1-si alloys
Özçetin et al. Novel Methods for Roll Texturing: EDT and Sandblast Applications for Aluminium Twin-Roll Cast and Cold Rolling
Sadovnichij et al. Investigation of non-uniformity of temperature field during heating the sheet billets at batch-type furnaces