JPH03270708A - Deodorizing filter - Google Patents

Deodorizing filter

Info

Publication number
JPH03270708A
JPH03270708A JP2069736A JP6973690A JPH03270708A JP H03270708 A JPH03270708 A JP H03270708A JP 2069736 A JP2069736 A JP 2069736A JP 6973690 A JP6973690 A JP 6973690A JP H03270708 A JPH03270708 A JP H03270708A
Authority
JP
Japan
Prior art keywords
ferric oxide
hydrated ferric
foamed body
particles
deodorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2069736A
Other languages
Japanese (ja)
Other versions
JP3174565B2 (en
Inventor
Hiroshi Fujita
浩 藤田
Kozo Iida
耕三 飯田
Shigehisa Yamamoto
恵久 山本
Toshiharu Harada
俊治 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Toda Kogyo Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Toda Kogyo Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP06973690A priority Critical patent/JP3174565B2/en
Publication of JPH03270708A publication Critical patent/JPH03270708A/en
Application granted granted Critical
Publication of JP3174565B2 publication Critical patent/JP3174565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the adsorbing capacity to a sulfur compound by supporting a hydrated ferric oxide particulate powder having a stripe like microstructure and formed into a bamboo leaf shape having a specific aspect ratio on a synthetic resin foamed body having open voids. CONSTITUTION:Alkali carbonate is added to an aqueous ferrous salt solution in an amount of one equivalent or more with respect to a ferrous salt to be reacted with the ferrous salt and oxygen gas is passed through the formed FeCO3-containing aqueous solution to oxidize FeCO3 to obtain a hydrated ferric oxide particulate powder. A synthetic resin foamed body having air permeable open voids is impregnated with a slurry containing the aforementioned hydrated ferric oxide particulate powder having a stripe like microstructure and showing a bamboo leaf shape having a long axis diameter of 0.2-1.0mum and an aspect ratio of 3-10 and a binder. The adhesion amount of the slurry is controlled by squeezing the foamed body by a roller and hydrated ferric oxide particles are bonded to the surface of the foamed body or infiltrated into the foamed body to prepare a deodorizing filter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は硫化水素、メルカプタン等の硫黄化合物を極め
てよく吸着する脱臭フィルターに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a deodorizing filter that extremely well adsorbs sulfur compounds such as hydrogen sulfide and mercaptans.

〔従来の技術〕[Conventional technology]

屋外では工場、養鶏場、養豚場、し尿処理場、コミ捨て
場等の悪臭が、屋内ではトイレ、押し入れ、ちゅう房等
の臭いが発生しやすく快適な生活環境を乱す原因になる
ため性能の高い脱臭剤が求められている。また老人ホー
ム、潜水艦や自動車など密閉された空間でも体臭等がこ
もるため脱臭剤による対策が必要である。
Odors from factories, poultry farms, pig farms, human waste treatment plants, garbage dumps, etc. can occur outdoors, while odors from toilets, closets, and sewage rooms can easily occur indoors and disturb a comfortable living environment. drugs are needed. In addition, body odor is trapped in closed spaces such as nursing homes, submarines, and automobiles, so it is necessary to take measures using deodorizers.

このため、従来から、洋の東西を問わず香水、香油の使
用あるいは“香を焚く”など、いわゆる心地よい香りで
不快感を低減させる方法が多用されてきた。又最近では
活性炭による物理吸着法、化学物質による反応吸着法が
実用化されてきた。前者については活性炭が大きな比表
面積を有することを利用しており、後者は悪臭成分その
ものを、別の化学物質に変換させる方法で、−11Qに
大きな設備を必要とし、工場などの悪臭防止対策として
利用されている。
For this reason, both in the East and the West, methods have been widely used to reduce discomfort with a so-called pleasant scent, such as the use of perfumes, scented oils, or "burning incense." Recently, physical adsorption methods using activated carbon and reactive adsorption methods using chemical substances have been put into practical use. The former takes advantage of the large specific surface area of activated carbon, while the latter converts the malodorous components themselves into other chemical substances, which requires large equipment and is used as a measure to prevent malodors in factories, etc. It's being used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、活性炭は吸着容量が小さく、また再放出
するため永続性に欠ける。一方化学物質による反応吸着
剤としてはアスコルビン酸に鉄を併用したものや次亜塩
素酸を固定したものが著名であるが、前者は高価であり
、又後者は毒性のある塩素が発生するため用途に限界が
ある。更にこれらの脱臭剤はその形状が粒状又は粉状で
あることから特定の用途に対しては扱いにくいという問
題がある。
However, activated carbon has a small adsorption capacity and is not durable because it re-releases. On the other hand, as reaction adsorbents for chemical substances, those that use iron in combination with ascorbic acid and those that immobilize hypochlorous acid are well-known, but the former is expensive, and the latter generates toxic chlorine, so it is not suitable for use. There are limits to Furthermore, since these deodorizing agents are in the form of granules or powder, they are difficult to handle for specific purposes.

例えば、作業、居住環境改善のため設置されている強制
換気方式の悪臭除去装置や空気浄化装置に適用されてい
る脱臭剤の大部分は粒状であるので、通気圧損が大きく
多大なファン動力を要する。
For example, most of the deodorizers used in forced ventilation type odor removal equipment and air purification equipment installed to improve work and living environments are in the form of granules, so they have a large ventilation pressure loss and require a large amount of fan power. .

このため、これらの装置に適用する場合には、圧損を少
なくするために、脱臭剤の層をできるだけ薄くする手段
、また取扱いを容易にするため活性炭、ゼオライトなど
の粒状の脱臭剤をネットに挟み込んで一種のフィルター
状にする手段が提案され、既に実用化されている。
Therefore, when applying to these devices, it is necessary to make the deodorizer layer as thin as possible to reduce pressure loss, and to sandwich granular deodorizers such as activated carbon or zeolite between nets to make handling easier. A method of creating a type of filter was proposed and has already been put into practical use.

また活性炭の粉末を不織布や合成樹脂の多孔発泡体に担
持したフィルターも開発され、既に実用化されているが
、(特公昭46−21002号、特公昭47−2998
3号、特開昭51−11085号各公報〉いずれも活性
炭を担持したものであり、このため脱臭効果が低い。
In addition, filters in which activated carbon powder is supported on non-woven fabric or porous synthetic resin foam have been developed and have already been put into practical use.
No. 3 and JP-A No. 51-11085> All of them support activated carbon, and therefore have low deodorizing effects.

一方、含水酸化第二鉄粒子粉末が硫黄系悪臭物質や硫黄
酸化物等の硫黄化合物に対する吸着能が優れていること
が知られている。含水酸化第二鉄粒子粉末を硫黄化合物
用脱臭剤として用いる先行技術文献としては、特公昭4
6−20688号公報や特開昭50−60492号公報
等が挙げられる。
On the other hand, it is known that hydrous ferric oxide particles have excellent adsorption ability for sulfur-based malodorous substances and sulfur compounds such as sulfur oxides. As a prior art document using hydrous ferric oxide particles as a deodorizing agent for sulfur compounds, there is
Examples include JP-A No. 6-20688 and JP-A-50-60492.

しかしながら、針状含水酸化第二鉄粒子粉末の場合、特
にそれが微細であればある程、粒子と粒子がくっついて
いて重なり合って凝集するために、緻密で空隙率の小さ
なものとなって空気の透過性が悪くなり、大気やガス中
の硫黄系悪臭物質や硫黄系酸化物等の硫黄化合物との接
触面積が小さなものとなり、吸着能が低下してしまうと
いう問題点がある。
However, in the case of acicular hydrated ferric oxide particles, especially the finer they are, the particles stick together, overlap, and agglomerate, resulting in a dense powder with a small porosity and a high density of air. There is a problem in that the permeability becomes poor and the contact area with sulfur compounds such as sulfur-based malodorous substances and sulfur-based oxides in the atmosphere or gas becomes small, resulting in a decrease in adsorption capacity.

なお、前掲各公報に示されている純T−オキシ水酸化鉄
粒子粉末やいがぐり状含水酸化第二鉄粒子粉末は、その
粒子形態に起因して硫黄化合物の吸着能に優れたものと
はいえない。
Although the pure T-iron oxyhydroxide particles and the burr-shaped hydrated ferric oxide particles shown in the above-mentioned publications have excellent adsorption ability for sulfur compounds due to their particle morphology, do not have.

本発明者らは、かかる従来の欠点を解決するため、実験
検討を重ねた結果、スジ状の超微細構造を有している長
軸径0.2〜L 0μmで軸比(長軸径/短軸径〉3〜
10の笹の葉状を呈した含水酸化第二鉄粒子粉末が、硫
化水素やメルカプタンなどの悪臭物質に対し極めて優れ
た脱臭効果を示すことを見出しそれに基〈発明を既に提
案した(特願昭63〜136902)。
In order to solve such conventional drawbacks, the present inventors have repeatedly conducted experimental studies and found that the axial ratio (major axis diameter/ Short axis diameter〉3~
It was discovered that hydrated ferric oxide particles having the shape of a bamboo leaf of No. 10 exhibit an extremely excellent deodorizing effect on malodorous substances such as hydrogen sulfide and mercaptan. ~136902).

本発明は更に上記既提案を発展させ、既提案の脱臭剤を
利用して優れた悪臭を除去しつる効果を有する脱臭フィ
ルターを提供しようとするものである。
The present invention further develops the above-mentioned proposal and aims to provide a deodorizing filter that uses the previously proposed deodorizing agent and has an excellent odor removal and hanging effect.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は既提案の含水酸化第二鉄粒子粉末を粘結剤とと
もに連通気孔からなる合成樹脂の発泡体に含浸、添着し
てなる担持体が悪臭物質を除去する脱臭フィルターとし
て優れていることを見出し本発明を完成するに至った。
The present invention has demonstrated that a carrier formed by impregnating and adhering the previously proposed hydrous ferric oxide particles together with a binder to a synthetic resin foam consisting of continuous pores is excellent as a deodorizing filter for removing malodorous substances. Heading: The present invention has been completed.

すなわち、本発明は、通気性のある連通気孔からなる合
成樹脂発泡体にスジ状の超微細構造を有する長軸径0.
2〜1.0μmで軸比(長軸径/短軸径)3〜10の笹
の葉状を呈した含水酸化第二鉄粒子粉末と粘結剤を加え
たスラリーを含浸し、スラリーの付着量をローラで絞り
とることによってコントロールし、発泡体の表面や内部
に、上記含水酸化第二鉄粒子を付着、充填させて脱臭フ
ィルターを製造する方法である。
That is, the present invention provides a synthetic resin foam with a long axis diameter of 0.5 mm having a streak-like ultrafine structure in a synthetic resin foam consisting of continuous air-permeable pores.
A slurry of hydrated ferric oxide particles with a bamboo leaf shape of 2 to 1.0 μm and an axial ratio (major axis diameter/minor axis diameter) of 3 to 10 and a binder was impregnated, and the amount of slurry adhered was determined. This is a method for producing a deodorizing filter by controlling the foam by squeezing it with a roller, and then attaching and filling the hydrous ferric oxide particles to the surface or inside of the foam.

〔作用〕[Effect]

まず、本発明において最も重要な点はスジ状の超微細構
造を有している長軸径0.2〜1.0μmで軸比(長軸
径/短軸径)3〜10の笹の葉状を呈した含水酸化第二
鉄粒子粉末を脱臭剤として用いた場合には、比表面積が
大きく、かつ、ガスとの接触面積が大きいことに起因し
て大気中の硫黄系悪臭物質を効率よく吸着するという事
実である。
First, the most important point in the present invention is that it has a striped ultrafine structure, has a long axis diameter of 0.2 to 1.0 μm, and an axial ratio (major axis diameter/short axis diameter) of 3 to 10. When hydrated ferric oxide particles exhibiting a The fact is that

更に本発明に使用する含水酸化第二鉄粒子粉末は笹の葉
を呈して丸味を帯びている粒子であるから、ミクロ的に
みて粒子と粒子がくっついて重なり合うことが少ないた
め、空隙率が大きく空気の透過性もよいためガスとの接
触面積が大きい。このため本発明に使用する含水酸化第
二鉄粒子粉末はガス中の硫黄系悪臭物質を効率よく吸着
し、脱臭剤として極めて優れる素材である。
Furthermore, since the hydrous ferric oxide particles used in the present invention are rounded particles that resemble bamboo leaves, microscopically, the particles are less likely to stick together and overlap, resulting in a large porosity. It also has good air permeability, so the contact area with gas is large. Therefore, the hydrated ferric oxide particles used in the present invention efficiently adsorb sulfur-based malodorous substances in gas, and are an extremely excellent material as a deodorizing agent.

長軸径1.0μm以上の粒子は比表面積が小さくなり不
適当であり、長軸径0.2μの以下の粒子はあまりに微
細なため粒子間の凝集が生じて好ましくない。また軸比
3以下の粒子はスジ状の超微細構造を有している笹の葉
状を呈するという粒子の特徴が小さくなり、軸比10以
上の粒子は針状に近くなり好ましくない。
Particles with a major axis diameter of 1.0 μm or more are unsuitable because of their small specific surface area, and particles with a major axis diameter of 0.2 μm or less are too fine and cause agglomeration between the particles, which is undesirable. Further, particles with an axial ratio of 3 or less have a small characteristic of bamboo leaf-like particles having a striped ultrafine structure, and particles with an axial ratio of 10 or more are undesirable because they become nearly acicular.

本発明に使用する含水酸化第二鉄粒子粉末は次のような
製造法によって容易に得られる。即ち、第一鉄塩水溶液
に第一鉄塩に対して1当量以上の炭酸アルカリを加え、
反応させてFeCO3を得、得られたFeCO3を含む
水溶液中に酸素含有ガスを通気して酸化反応することに
より得られる。
The hydrous ferric oxide particles used in the present invention can be easily obtained by the following manufacturing method. That is, adding 1 equivalent or more of alkali carbonate to the ferrous salt aqueous solution,
It is obtained by reacting to obtain FeCO3, and then passing an oxygen-containing gas into the resulting aqueous solution containing FeCO3 to cause an oxidation reaction.

上記製造方法において、第一鉄塩水溶液としては硫酸第
一鉄水溶液、塩化第−鉄水溶液等が用いられる。第一鉄
塩水溶液に炭酸アルカリを加えFeCO3を得る場合、
炭酸アルカリに水酸化アルカリを併用して使用してもよ
い。炭酸アルカリとしては炭酸ナトリウム、炭酸カリウ
ム、炭酸水素アンモニウム等を単独で、又はこれらと水
酸化アルカリを併用して使用する場合は、水酸化ナトリ
ウム、水酸化カリウム、水酸化アンモニウム等が用いら
れる。また、場合により非酸化性雰囲気下で熟成しても
よい。酸化反応時の溶液のPHは7〜11である。pH
7以下、又はpH11以上である場合には笹の葉状を呈
した含水酸化第二鉄を得ることはできない。
In the above manufacturing method, as the ferrous salt aqueous solution, a ferrous sulfate aqueous solution, a ferrous chloride aqueous solution, etc. are used. When adding alkali carbonate to a ferrous salt aqueous solution to obtain FeCO3,
Alkali carbonate and alkali hydroxide may be used in combination. As the alkali carbonate, sodium carbonate, potassium carbonate, ammonium hydrogen carbonate, etc. are used alone, or when these and alkali hydroxide are used in combination, sodium hydroxide, potassium hydroxide, ammonium hydroxide, etc. are used. Further, depending on the case, ripening may be performed in a non-oxidizing atmosphere. The pH of the solution during the oxidation reaction is 7-11. pH
If the pH is below 7 or above 11, it is not possible to obtain hydrated ferric oxide having a bamboo leaf shape.

酸化時における反応温度は30〜80℃にするのがよい
。30℃以下では笹の葉状を呈した含水酸化第二鉄粒子
を得ることができず、8゜℃以上である場合には粒状の
黒色沈澱が混在してくるからである。
The reaction temperature during oxidation is preferably 30 to 80°C. This is because if the temperature is below 30°C, hydrous ferric oxide particles having a bamboo leaf shape cannot be obtained, and if the temperature is above 8°C, granular black precipitates are mixed.

酸化手段は、酸素含有ガス(例えば空気)を液中に通気
することにより、また当該通気ガスや機械的操作等によ
り攪拌しながら行う。このようにして得られた沈澱は通
常、常法により濾別、水洗、乾燥、粉砕して微粒子の粉
末とする。
The oxidation means is carried out by aerating an oxygen-containing gas (for example, air) into the liquid, or while stirring with the aerated gas or mechanical operation. The precipitate thus obtained is usually filtered, washed with water, dried, and ground into fine powder by conventional methods.

この時、乾燥は150℃以下、好ましくは120℃で5
時間程度行うことが望ましい。150℃以上の温度、又
は長時間加熱乾燥すると、酸化が進み結晶成長が起って
比表面積が減少し吸着能が低下する。
At this time, drying is carried out at 150°C or lower, preferably at 120°C for 5
It is desirable to do this for about an hour. When dried at a temperature of 150° C. or higher or by heating for a long time, oxidation progresses, crystal growth occurs, the specific surface area decreases, and the adsorption capacity decreases.

なお本発明に使用する場合は必ずしも乾燥、粉砕する必
要はなく、洗浄後のスラリー状又はケーキ状で用いても
よい。
Note that when used in the present invention, it is not necessarily necessary to dry or crush it, and it may be used in the form of a slurry or cake after washing.

次に、この含水酸化第二鉄粒子(以下脱臭素材という)
をフィルター基材に担持する方法について説明する。ま
ず本発明に使用するフィルター基材は連通気孔からなる
三次元網目構造の合成樹脂発泡体でこのうち、好ましく
適用できるのはセル範囲(in”当りの穴の個数)17
以上23以下が好ましい。フィルターとしての通気抵抗
を考えると気孔径が大きい方がよいが、目付量(g/+
n2)が少なくなり、その分だけガスとの接触面積が減
って吸着性能が悪くなる。
Next, this hydrated ferric oxide particles (hereinafter referred to as deodorizing material)
A method for supporting the filter base material on the filter base material will be explained. First, the filter base material used in the present invention is a synthetic resin foam with a three-dimensional network structure consisting of continuous pores, of which the cell range (number of holes per inch) is preferably 17.
It is preferably 23 or less. Considering the ventilation resistance as a filter, it is better to have a larger pore diameter, but the basis weight (g/+
n2) decreases, the contact area with the gas decreases accordingly, and the adsorption performance deteriorates.

逆に気孔径が小さいと通気抵抗が大きくなるためフィル
ターとして好ましくない。このフィルター基材に脱臭素
材を担持するためには粘結材が必要であるが、これらの
物質としては澱粉、CMC,PVA、ゴム乳液(ラテッ
クス〉などが使用できる。このうち、澱粉は含水酸化第
二鉄の粒子間の結合に、又ラテックスはフィルター基材
との付着力を向上させる効果があり両者を併用すること
が好ましい。
On the other hand, if the pore size is small, the ventilation resistance will be large, which is not preferable as a filter. A caking agent is required to support the deodorizing material on this filter base material, and starch, CMC, PVA, rubber latex, etc. can be used as these materials. Among these, starch is a hydrous oxidized Latex has the effect of improving the bonding between ferric iron particles and the adhesion to the filter base material, so it is preferable to use both in combination.

次に本発明におけるフィルター基材への脱臭素材の担持
量及び粘結剤(澱粉、ラテックス)との配合割合につい
て説明する。
Next, the amount of the deodorizing material supported on the filter base material and the blending ratio with the binder (starch, latex) in the present invention will be explained.

まず脱臭素材に対する粘結剤の添加量であるが、脱臭素
材100重量部に対し、澱粉は5〜10重量部の範囲が
好ましい。澱粉は脱臭素材である含水酸化第二鉄粒子間
の結合に効果があり、フィルターに担持した場合、フィ
ルター自体に硬さが発現し、振動や衝撃による担持物の
剥離、脱落が少なくなる。このように澱粉を使用すると
付着力が強まるが、必要以上に加え過ぎると逆に吸着性
能が低下するため好ましくない。またラテックスもフィ
ルター基材との付着力を強める効果がある。このラテッ
クスの添加量は脱臭素材100重量部に対し2.5〜5
重量部の範囲が好ましい。ラテックスの添加量がこの範
囲より少ない場合はフィルター基材との付着力が弱くま
た多い場合は悪臭物質の吸着能力が低下し好ましくない
First, regarding the amount of the binder added to the deodorizing material, it is preferable that the amount of starch is in the range of 5 to 10 parts by weight per 100 parts by weight of the deodorizing material. Starch is effective in bonding between hydrous ferric oxide particles, which are deodorizing materials, and when supported on a filter, the filter itself becomes hard, reducing the likelihood of the supported material peeling off or falling off due to vibration or impact. When starch is used in this way, the adhesion force is strengthened, but if it is added in excess of what is necessary, the adsorption performance will deteriorate, which is not preferable. Latex also has the effect of strengthening the adhesion to the filter base material. The amount of latex added is 2.5 to 5 parts by weight per 100 parts by weight of the deodorizing material.
Parts by weight ranges are preferred. If the amount of latex added is less than this range, the adhesion to the filter base material will be weak, and if it is too much, the adsorption capacity for malodorous substances will decrease, which is not preferable.

次にフィルター基材への担持方法について説明する。Next, a method of supporting the filter base material will be explained.

本発明に使用する脱臭素材(含水酸化第二鉄粒子)に前
記粘結剤と水を加えスラリー状としこのスラリー中に合
成樹脂発泡体を浸漬し、発泡体内部までスラリーを充分
に含浸する。その後ゴムロールで余剰のスラリーを絞り
取り発泡体の内部及び表面に所定量の脱臭素材を添着担
持させる。この場合担持量はローラでの絞り具合で任意
に選定できるが、絞り過ぎると担持量が少なくなり吸着
能力が低下する。逆に、絞りが不足すると発泡体内部に
余剰の脱臭素材が充填されたまま残ることとなり通気抵
抗の上昇を招く。従って担持量は吸着性能及び通気抵抗
の両面から脱臭フィルターの適用分野に応じて決めるべ
きであり、例えば通気抵抗が2m+aH−0(風速1 
m / 66(として)以下を目標とするならば担持量
は20〜40g/lの範囲が好ましい。
The above-mentioned binder and water are added to the deodorizing material (hydrated ferric oxide particles) used in the present invention to form a slurry, and a synthetic resin foam is immersed in this slurry, so that the inside of the foam is sufficiently impregnated with the slurry. Thereafter, excess slurry is squeezed out using a rubber roll, and a predetermined amount of deodorizing material is adhered and carried on the inside and surface of the foam. In this case, the supported amount can be arbitrarily selected by the degree of squeezing by the rollers, but if it is squeezed too much, the supported amount will decrease and the adsorption capacity will decrease. Conversely, if the aperture is insufficient, excess deodorizing material remains filled inside the foam, leading to an increase in ventilation resistance. Therefore, the supported amount should be determined depending on the field of application of the deodorizing filter from both adsorption performance and ventilation resistance.For example, if ventilation resistance is 2m+aH-0 (wind speed 1
If the target is m/66 (as) or less, the supported amount is preferably in the range of 20 to 40 g/l.

この担持量はスラリーを絞り取り乾燥した後の付着重量
を指す。
This supported amount refers to the weight of the slurry after it has been squeezed out and dried.

このようにして得られる脱臭フィルターは、適用分野に
応じ任意の大きさに切断して、そのまま悪臭除去用に用
いることができる。
The deodorizing filter thus obtained can be cut into any size depending on the field of application and used as it is for removing bad odors.

〔実施例1〕 反応容器中に3.53 mol/j!のNa2CL水溶
液201を入れ、次いで1.0 mol/j!のFe5
L水溶液301を添加、混合し温度40℃においてFe
CO3を得た。得られたFeC0−を含む水溶液中に温
度40℃において毎分1501の空気を4.0時間通気
して酸化反応を行い黄褐色沈澱粒子を生成させた。なお
、空気通気中の反応溶液のpHは9.6であった。
[Example 1] 3.53 mol/j in the reaction vessel! of Na2CL aqueous solution 201 and then 1.0 mol/j! Fe5 of
L aqueous solution 301 was added and mixed, and Fe
Obtained CO3. Air was bubbled through the resulting aqueous solution containing FeC0- at a temperature of 40° C. at a rate of 1,501 liters per minute for 4.0 hours to carry out an oxidation reaction and produce yellowish brown precipitated particles. Note that the pH of the reaction solution during air ventilation was 9.6.

生成した黄褐色沈澱粒子を常法により、濾別、水洗、乾
燥、粉砕して黄褐色粒子粉末(a) 2.61kgを得
た。
The produced yellow-brown precipitated particles were separated by filtration, washed with water, dried, and pulverized by a conventional method to obtain 2.61 kg of yellow-brown particle powder (a).

得られた黄褐色粒子粉末(a)はX線回折の結果、含水
酸化第二鉄であることが確認できた。その結果を第1図
に示す。また、得られた黄褐色粒子粉末(a)は第2図
に示すその拡大電子顕微鏡写真(X150.000)の
通り、平均値で長軸径0.25μ田、軸比(長軸径/短
軸径)8、比表面積106m’/gのスジ状の超微細構
造を有している笹の葉状を呈した含水酸化第二鉄粒子か
らなっていることが確認できた。
As a result of X-ray diffraction, it was confirmed that the obtained yellowish brown particles (a) were hydrated ferric oxide. The results are shown in FIG. As shown in the enlarged electron micrograph (X150.000) shown in Fig. 2, the yellowish brown particles (a) obtained had an average major axis diameter of 0.25 μm and an axial ratio (major axis diameter/short axis diameter). It was confirmed that the particles were composed of hydrous ferric oxide particles having a bamboo leaf shape and a striped ultrafine structure with an axial diameter of 8 and a specific surface area of 106 m'/g.

一方、異なった粒子形態の含水酸化第二鉄(b)。On the other hand, hydrated ferric oxide (b) with different particle forms.

(C)を次の方法で調製した。(C) was prepared by the following method.

反応容器中に0.68 mol/iのFe5On水溶液
801を入れ、次いで4.32 mol/iのNa0)
1水溶液101を添加、混合し、続いて温度40℃にお
いて毎分1301の割合で空気を通気しながら4時間反
応を行い黄褐色沈澱粒子を生成させた。なお、空気通気
中の反応溶液のpHは5.8〜4.0であった。
0.68 mol/i Fe5On aqueous solution 801 was placed in the reaction vessel, and then 4.32 mol/i Na0)
101 of an aqueous solution was added and mixed, and then the reaction was carried out for 4 hours at a temperature of 40° C. while blowing air at a rate of 1301 per minute to form yellowish brown precipitated particles. Note that the pH of the reaction solution during air ventilation was 5.8 to 4.0.

生成した黄褐色沈澱粒子を常法により、濾別、水洗、乾
燥、粉砕して黄褐色粒子粉末(5)1.83kgを得た
The produced yellow-brown precipitated particles were filtered, washed with water, dried and pulverized in a conventional manner to obtain 1.83 kg of yellow-brown particle powder (5).

得られた黄褐色粒子粉末(b)はX線回折の結果、含水
酸化第二鉄であることが確認できた。その結果を第3図
に示す。また、得られた黄褐色粒子粉末(b)は第4図
に示すその拡大電子顕微鏡写真(xlOO,000)の
通り、平均値で長軸径0.3μm、軸比(長袖径/短軸
径)10、比表面積95m’/gの針状含水酸化第二鉄
粒子からなっていることが確認できた。
As a result of X-ray diffraction, it was confirmed that the obtained yellowish brown particles (b) were hydrated ferric oxide. The results are shown in FIG. As shown in the enlarged electron micrograph (xlOO,000) shown in Figure 4, the yellowish brown particles (b) obtained have an average long axis diameter of 0.3 μm and an axial ratio (long sleeve diameter/short axis diameter). ) 10. It was confirmed that the material was composed of acicular hydrated ferric oxide particles with a specific surface area of 95 m'/g.

更に別の方法として反応容器中に1.57 mol/l
のPe5o、水溶液51を入れ温度を30℃に調節した
。次いで毎分201の割合で空気を吹き込みながら4t
nol/1のアンモニア水溶液0.21(アンモニアの
量は全Fe量に対し5.0%に該当する。)を加え、黄
褐色の粒子を含む水溶液を得た。この時のpHは約3で
あった。
In yet another method, 1.57 mol/l in the reaction vessel
Pe5o and aqueous solution 51 were added and the temperature was adjusted to 30°C. Then, 4 tons of air was blown at a rate of 201 per minute.
0.21 of a nol/1 ammonia aqueous solution (the amount of ammonia corresponds to 5.0% with respect to the total amount of Fe) was added to obtain an aqueous solution containing yellowish brown particles. The pH at this time was about 3.

引き続き毎分201の割合で空気を通気しながら反応温
度を80℃に調節し、4[IIol/1のアンモニア水
溶液をpH2,5〜4.0の範囲に保持するように加え
酸化反応を5時間行った。
Subsequently, the reaction temperature was adjusted to 80° C. while blowing air at a rate of 201/min, and an ammonia aqueous solution of 4[IIol/1] was added to maintain the pH in the range of 2.5 to 4.0 to continue the oxidation reaction for 5 hours. went.

受戒した黄褐色沈澱粒子を常法により、濾別、水洗、乾
燥、粉砕して黄褐色粒子粉末(C) 629gを得た。
The yellow-brown precipitated particles thus obtained were filtered, washed with water, dried, and pulverized in a conventional manner to obtain 629 g of yellow-brown particle powder (C).

得られた黄褐色粒子粉末(C)は電子顕微鏡観察の結果
、いがぐり状含水酸化第二鉄粒子からなっていることが
確認できた。また、この粒子粉末は、平均値で直径が0
.9.ua+、比表面積85m1 / gであった。
As a result of electron microscopy, it was confirmed that the yellowish brown particles (C) were made of burr-shaped hydrated ferric oxide particles. Moreover, this particle powder has an average diameter of 0.
.. 9. ua+, and the specific surface area was 85 m1/g.

このようにして得られた粒子形態の異なる3種類の含水
酸化第二鉄粒子粉末と比較材として活性炭粉末を用い、
これらの各100重量部に対して各々2.5wt%の澱
粉溶液(コーンスターチ)400重量部とラテックス(
昭和電工:PBTALUS 300) 5重量部を加え
、更に20重量部の水を加えて充分攪拌混合しスラリー
を調製した。この各スラリーに連通気孔からなる合成樹
脂発泡体(ウレタンフオーム;ブリデストン社聾エバー
ライトスコツト ”MR−20(セル数17〜23))
を浸漬し、発泡体内部迄十分にスラリーを含浸させた後
、ゴムローラで余剰スラリーを絞り取り、60℃で乾燥
して添着脱臭フィルターa ’ 、  b / 、  
c/及び活性炭の添着脱臭フィルターを得た。
Using the three types of hydrous ferric oxide particle powders with different particle forms obtained in this way and activated carbon powder as a comparative material,
For each 100 parts by weight of these, 400 parts by weight of a 2.5 wt% starch solution (corn starch) and latex (
Showa Denko: PBTALUS 300) 5 parts by weight were added, and further 20 parts by weight of water were added and thoroughly stirred and mixed to prepare a slurry. Each slurry is made of synthetic resin foam (urethane foam; Brideston Deaf Everlight Scotto "MR-20 (number of cells 17 to 23))" consisting of interconnected holes.
After thoroughly impregnating the inside of the foam with the slurry, the excess slurry is squeezed out with a rubber roller and dried at 60°C to form the attached deodorizing filters a', b/,
A deodorizing filter impregnated with c/ and activated carbon was obtained.

この各フィルターを60X60の大きさに切断し各2枚
を重ね合せ、第5図の循環式吸着評価装置にセットし、
次に濃度5 pptnの硫化水素含有試験ガス1001
の入ったテトラバックを該装置に取付け、つづいて流量
23 Q 1 /cnirIで試験ガスを通気して循環
させた。循環している試験ガスを一定時間毎にサンプリ
ングし、試験ガス中の硫化水素残存濃度をガスクロマト
グラフィーで測定した。この結果を第1表に示す。
Cut each of these filters into a size of 60 x 60, stack two of each, and set them in the circulating adsorption evaluation device shown in Figure 5.
Next, test gas containing hydrogen sulfide with a concentration of 5 pptn 1001
A Tetra Vac containing 100 ml was attached to the apparatus, and the test gas was subsequently circulated through ventilation at a flow rate of 23 Q 1 /cnirI. The circulating test gas was sampled at regular intervals, and the residual concentration of hydrogen sulfide in the test gas was measured by gas chromatography. The results are shown in Table 1.

第1表に示す硫化水素吸着能の値は濃度5ppmの硫化
水素含有ガスをフィルターサンプルに通気し始めて20
分経過後の残存濃度を示した。第1表より笹の葉状の含
水酸化第二鉄粒子(a)を担持したフィルターa′は針
状あるいはいがぐり状の含水酸化第二鉄粒子(b)、(
C)を担持したフィルターb’、c’より硫化水素の吸
着性能が優れることが確認できた。また活性炭を担持し
たフィルターと比較しても硫化水素の吸着性能が優れて
いることが判る。
The hydrogen sulfide adsorption capacity values shown in Table 1 are as follows:
The residual concentration after minutes is shown. From Table 1, filter a' carrying bamboo leaf-shaped hydrated ferric oxide particles (a) has needle-shaped or burr-shaped hydrated ferric oxide particles (b), (
It was confirmed that the hydrogen sulfide adsorption performance was superior to filters b' and c' carrying C). Furthermore, it can be seen that the hydrogen sulfide adsorption performance is superior when compared to filters that support activated carbon.

第1表 〔実施例2〕 実施例1で得た笹の葉状含水酸化第二鉄粒子(a)の1
00重量部に澱粉、ラテックスを第2表のように配合し
、水を加えてスラリー濃度が20〜22wt%となるス
ラリーを調整した。これに実施例1と同じサイズのウレ
タンフォム−を浸漬し、ゴムローラで余剰のスラリーを
絞り取った後、60℃で乾燥し、脱臭フィルター1〜1
0を得た。
Table 1 [Example 2] 1 of the bamboo leaf-shaped hydrated ferric oxide particles (a) obtained in Example 1
00 parts by weight, starch and latex were blended as shown in Table 2, and water was added to prepare a slurry having a slurry concentration of 20 to 22 wt%. Urethane foam of the same size as in Example 1 was immersed in this, and after squeezing out the excess slurry with a rubber roller, it was dried at 60°C.
I got 0.

得られた各々の脱臭フィルターを60X60の大きさに
切断し、各々2枚の重量を測定した後、実施例1と同じ
方法で硫化水素の吸着性能を測定した。
Each of the obtained deodorizing filters was cut into a size of 60 x 60, and the weight of each two pieces was measured, and then the hydrogen sulfide adsorption performance was measured in the same manner as in Example 1.

フィルターの重量から担持量を求めたところ、各フィル
ターサンプルとも1.0 g −1,2gの範囲であっ
た。(60X80X5 tmm2枚)更にフィルターへ
の担持物の付着性を調べるため、ポールタッピング法(
80φの篩いの中に6゜x60x5 tのフィルターサ
ンプルを置き、この上に10個の12φアルミナボール
を乗せてフタをし、振とう機でサンプルにボールをたた
きつける(70回/30分)方法)により剥離の割合を
測定した。
When the supported amount was determined from the weight of the filter, it was in the range of 1.0 g to 1.2 g for each filter sample. (2 pieces of 60X80X5 tmm) Furthermore, in order to examine the adhesion of the supported material to the filter, the pole tapping method (
Place a 6° x 60 x 5 t filter sample in an 80φ sieve, place 10 12φ alumina balls on top of it, close the lid, and use a shaker to hit the sample with the balls (70 times/30 minutes). The rate of peeling was measured.

これらの結果を第2表に併せて示す。These results are also shown in Table 2.

第2表のH2Sの吸着性能の値は実施例1の時と同じよ
うに濃度5 PPff1のH2S含有ガスをフィルター
に通気し始めて20分経過後の残存濃度を示した。
The H2S adsorption performance values in Table 2 indicate the residual concentration 20 minutes after the start of passing the H2S-containing gas at a concentration of 5 PPff1 through the filter, as in Example 1.

第2表より、脱臭フィルター1及び2はH2S吸着能は
よいが、剥離が大きく、脱臭フィルター5.6及び8.
10については付着性はよいが、112Sの吸着性能が
悪いことが判る。
From Table 2, deodorizing filters 1 and 2 have good H2S adsorption ability, but peeling is large, and deodorizing filters 5.6 and 8.
It can be seen that although No. 10 has good adhesion, the adsorption performance of No. 112S is poor.

〔実施例3〕 実施例1で得た笹の葉状含水酸化第二鉄粒子(a)の1
00重量部に澱粉10重量部、ラテックス2.5重量部
を含むスラリーを調整し、これをウレタンフォム−に含
浸させ、ゴムローラで絞りを加減して、第3表に示す担
持量の異なる脱臭フィルター11〜15を得た。この各
フィルターを60X60の大きさに切断し、実施例1で
評価した方法と同じ要領でH,Sの吸着性能を測定した
。同時に、フィルターの通気抵抗を測定しこの結果を併
せて第3表に示した。
[Example 3] 1 of the bamboo leaf-shaped hydrated ferric oxide particles (a) obtained in Example 1
A slurry containing 0.00 parts by weight, 10 parts by weight of starch, and 2.5 parts by weight of latex was prepared, impregnated into urethane foam, and squeezed with a rubber roller to produce deodorizing filters with different supported amounts as shown in Table 3. 11 to 15 were obtained. Each of the filters was cut into a size of 60×60, and the H and S adsorption performance was measured in the same manner as evaluated in Example 1. At the same time, the ventilation resistance of the filter was measured and the results are also shown in Table 3.

H2Sの吸着性能は実施例1の時と同様に20分経過後
の残存濃度で示した。
As in Example 1, the H2S adsorption performance was expressed as the residual concentration after 20 minutes.

なお、比較例として活性炭についても同様の配合でスラ
リーを調製し、担持量を変えたフィルター(16〜18
)のH2S吸着性能及び通気抵抗を測定し、この結果を
第3表に併せて示した。
In addition, as a comparative example, slurry was prepared using the same formulation for activated carbon, and filters (16 to 18
) was measured for H2S adsorption performance and ventilation resistance, and the results are also shown in Table 3.

第1 第2図 (倍率+50.(X)0) 〔発明の効果〕 本発明に係る脱臭フィルターはガス中の硫黄系悪臭物質
の吸着能に優れるため、特に、硫化水素やメルカプタン
などの悪臭を除去する空気浄化装置などの脱臭フィルタ
ーとして最適である。
1 Fig. 2 (Magnification +50.(X)0) [Effects of the Invention] The deodorizing filter according to the present invention has excellent adsorption ability for sulfur-based malodorous substances in gas, so it is particularly effective at absorbing malodors such as hydrogen sulfide and mercaptan. It is ideal as a deodorizing filter for air purification equipment, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られた本発明に使用する含水酸化
第二鉄粒子粉末のX線回折図であり、図中のピークはα
−Fe001(である。第215?Iはその粒子形態を
示す電子顕微鏡写真の拡大写真(8150,000)で
ある。第3図は実施例1で得られた含水酸化第二鉄粒子
のうち本発明の比較例として調製した針状粒子形態の含
水酸化第二鉄粒子粉末のX線回折図であり、図中のピー
クはα−Fe00)1である。第4図はその粒子形態を
示す電子顕微鏡写真の拡大写真(×100.000)で
ある。I(51!lは脱臭フィルターのH,S吸着性能
を評価するために使用した装置のフロー図である。 第3図 2θ 第4図 (情事100,000) 平底2年7月 2S日 第5図
Figure 1 is an X-ray diffraction diagram of the hydrous ferric oxide particles used in the present invention obtained in Example 1, and the peak in the figure is α
-Fe001 (215?I) is an enlarged electron micrograph (8150,000) showing the particle morphology. It is an X-ray diffraction diagram of a hydrous ferric oxide particle powder in the form of acicular particles prepared as a comparative example of the invention, and the peak in the figure is α-Fe00)1. FIG. 4 is an enlarged electron micrograph (×100,000) showing the particle morphology. I (51!l is a flow diagram of the device used to evaluate the H, S adsorption performance of the deodorizing filter. Figure 3 2θ Figure 4 (Amour 100,000) Flat Bottom 2nd July 2S Day 5th figure

Claims (1)

【特許請求の範囲】[Claims] スジ状の超微細構造を有している長軸径0.2〜1.0
μmで軸比(長軸径/短軸径)3〜10の笹の葉状を呈
した含水酸化第二鉄粒子粉末を、連通気孔からなる合成
樹脂の発泡体に担持してなることを特徴とする脱臭フィ
ルター。
Long axis diameter 0.2 to 1.0 with a streak-like ultrafine structure
It is characterized by being made by supporting a hydrated ferric oxide particle powder in the shape of a bamboo leaf with an axial ratio (major axis diameter/minor axis diameter) of 3 to 10 μm on a synthetic resin foam consisting of continuous pores. A deodorizing filter.
JP06973690A 1990-03-22 1990-03-22 Deodorizing filter Expired - Fee Related JP3174565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06973690A JP3174565B2 (en) 1990-03-22 1990-03-22 Deodorizing filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06973690A JP3174565B2 (en) 1990-03-22 1990-03-22 Deodorizing filter

Publications (2)

Publication Number Publication Date
JPH03270708A true JPH03270708A (en) 1991-12-02
JP3174565B2 JP3174565B2 (en) 2001-06-11

Family

ID=13411399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06973690A Expired - Fee Related JP3174565B2 (en) 1990-03-22 1990-03-22 Deodorizing filter

Country Status (1)

Country Link
JP (1) JP3174565B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132814A (en) * 2018-02-02 2019-08-08 パナソニック株式会社 Adsorber, concentrator, and detection device
WO2023210024A1 (en) * 2022-04-28 2023-11-02 国立大学法人金沢大学 Complex and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046585A (en) * 1973-01-26 1975-04-25
JPS5252276A (en) * 1975-10-23 1977-04-26 Ebara Corp Filter for purifying fluid
JPS583622A (en) * 1981-06-29 1983-01-10 Nippon Soda Co Ltd Sheet for supporting active carbon
JPH01305957A (en) * 1988-06-02 1989-12-11 Toda Kogyo Corp Deodorant for sulfurized compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046585A (en) * 1973-01-26 1975-04-25
JPS5252276A (en) * 1975-10-23 1977-04-26 Ebara Corp Filter for purifying fluid
JPS583622A (en) * 1981-06-29 1983-01-10 Nippon Soda Co Ltd Sheet for supporting active carbon
JPH01305957A (en) * 1988-06-02 1989-12-11 Toda Kogyo Corp Deodorant for sulfurized compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132814A (en) * 2018-02-02 2019-08-08 パナソニック株式会社 Adsorber, concentrator, and detection device
WO2023210024A1 (en) * 2022-04-28 2023-11-02 国立大学法人金沢大学 Complex and manufacturing method therefor
WO2023210830A1 (en) * 2022-04-28 2023-11-02 国立大学法人金沢大学 Complex and manufacturing method for same

Also Published As

Publication number Publication date
JP3174565B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
JP4102364B2 (en) Deodorant carbon nanoball with multi-layer structure
JP3704713B2 (en) Deodorizing method, deodorant, method for producing deodorant and deodorizing apparatus
RU2323007C2 (en) Carbon nano-roll for deodorization
JP2003052800A (en) Deodorant composition suitable for deodorization of sulfur-base malodor
JP3977151B2 (en) Deodorants
JP3324856B2 (en) Deodorizer and deodorant composite material
JPH03270708A (en) Deodorizing filter
JP2824594B2 (en) Deodorant composition and deodorant sheet
JP2004024330A (en) Deodorant
JP4562838B2 (en) Gel deodorant
US5603928A (en) Air purification agent and process for production of same
JP2002200149A (en) Deodorant
KR102611597B1 (en) Metal-supported composite using ultra-high temperature plasma and its manufacturing method
JP2837057B2 (en) Method for producing deodorant
JPH03188923A (en) Production of deodorizing filter
JPS61138511A (en) Preparation of deodorizing filter
JPH0642899B2 (en) Deodorant for sulfur compounds
JP3766750B2 (en) Manufacturing method of deodorizing material
JPH08299720A (en) Deodorizing filter
JPH0616835B2 (en) Deodorant
JP2021098177A (en) Adsorbent and method for producing the same
JP2018029878A (en) Deodorizing filter
JPH1057750A (en) Balloon with deodorizing function
JPH01111099A (en) Deodorizing paper
JP2002345936A (en) Deodorant, method of producing the same and deodorant member

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees