JPH03270579A - Infrared ray image pickup device - Google Patents

Infrared ray image pickup device

Info

Publication number
JPH03270579A
JPH03270579A JP2071008A JP7100890A JPH03270579A JP H03270579 A JPH03270579 A JP H03270579A JP 2071008 A JP2071008 A JP 2071008A JP 7100890 A JP7100890 A JP 7100890A JP H03270579 A JPH03270579 A JP H03270579A
Authority
JP
Japan
Prior art keywords
transfer
transfer channel
charge
transferred
infrared ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2071008A
Other languages
Japanese (ja)
Inventor
Yuichiro Ito
雄一郎 伊藤
Shoji Doi
土肥 正二
Isao Tofuku
東福 勲
Kenji Awamoto
健司 粟本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2071008A priority Critical patent/JPH03270579A/en
Publication of JPH03270579A publication Critical patent/JPH03270579A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To realize an infrared ray image pickup device without saturation even in the case of incidence of a strong infrared ray with a wide image pickup temperature range by transferring a charge overflowed from a 1st transfer channel through a 2nd transfer channel and adding the charge transferred through the 1st transfer channel and a part of the overflowed charge transferred through the 2nd transfer channel. CONSTITUTION:A charge in excess of a level depending on a prescribed voltage OFG when much incident luminous quantity reaches is passed through a overflow gate 17 and stored in a transfer clock phi1 supply stage 19a of a 2nd transfer channel 19 when a transfer gate 18 is conductive. The stored charge of each picture element is transferred multiplexedly through the 1st and 2nd transfer channels 14, 19 respectively by using quadrature transfer clocks approx.=1-phi4 and signals transferred through the 1st and 2nd channels are added with a adder 23 in a form of charges and the result is outputted from a terminal 24 as a picture signal. The relation between the incident luminous quantity and an output voltage from the terminal 24 is nonlinear, saturation is prevented even when a strong infrared ray is made incident, the pickup temperature range is widened without losing information from the image pickup object.

Description

【発明の詳細な説明】 〔概要〕 赤外線固体撮像素子を用いて赤外線画像を得る赤外線撮
像装置に関し、 強い赤外線が入射しても飽和することなく、撮像温度範
囲を広くすることを目的とし、赤外線を受光して光電変
換する光電変換部と、該光電変換部で発生した電荷を蓄
積した後、多重化して転送する第1の転送チャネルと、
該第1の転送チャネルで蓄積時に溢れた電荷を蓄積した
後、多重化して転送する第2の転送チャネルと、該第1
の転送チャネルから溢れる電荷の一部を分割して該第2
の転送チャネルに蓄積するか、又は該第2の転送チャネ
ルを転送された電荷の一部を分割して検出する電荷分割
部と、該第1.第2の転送チャネルを転送されて取り出
された電荷を加算して画像信号として出力する加算部と
を有し構成する。
[Detailed Description of the Invention] [Summary] Regarding an infrared imaging device that obtains infrared images using an infrared solid-state imaging device, the purpose of this invention is to widen the imaging temperature range without saturating even when strong infrared rays are incident. a photoelectric conversion unit that receives light and photoelectrically converts it; a first transfer channel that accumulates the charges generated in the photoelectric conversion unit, multiplexes the charges, and transfers the charges;
a second transfer channel that accumulates charges overflowing during accumulation in the first transfer channel and then multiplexes and transfers the charges;
A part of the charge overflowing from the transfer channel is divided and transferred to the second transfer channel.
a charge dividing section that divides and detects a part of the charge accumulated in the first transfer channel or transferred through the second transfer channel; and an addition section that adds the charges transferred and extracted through the second transfer channel and outputs the result as an image signal.

〔産業上の利用分野〕[Industrial application field]

本発明は赤外線撮像装置に関し、赤外線固体撮像素子を
用いて赤外線画像を得る赤外線撮像装置に関する。
The present invention relates to an infrared imaging device, and more particularly, to an infrared imaging device that obtains an infrared image using an infrared solid-state imaging device.

近年、赤外線センサ技術の高性能化の要求に伴い、高品
質な赤外線画像が要求されており、赤外線固体撮像素子
であるIRCCD (i n f r a−red  
charge  coupled  de−v i c
 e)の開発が進んでいるが、IRCCDの撮像可能な
温度範囲が比較的狭く、これを拡大することが要求され
ている。
In recent years, with the demand for higher performance of infrared sensor technology, high-quality infrared images are required, and IRCCD (infrared solid-state image sensor)
charge coupled device
Although the development of e) is progressing, the temperature range that can be imaged by IRCCD is relatively narrow, and there is a need to expand this.

〔従来の技術〕[Conventional technology]

従来のIRCCDを用いた赤外線撮像装置では入射赤外
線光に対しIRCCDの出力電圧は比例しており、入射
光量が少ないときと多いときとで感度が同一とされてい
る。
In a conventional infrared imaging device using an IRCCD, the output voltage of the IRCCD is proportional to the incident infrared light, and the sensitivity is the same when the amount of incident light is small and when it is large.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来装置では、強い赤外線か入射すると光電変換ダイオ
ードで発生する電荷量が電荷結合素子(CCD)で転送
処理できる電荷量を上回ってしまい、CCDの出力信号
はあるレベルで飽和してしまい、どのような強度パター
ンの赤外線が入射しているのかという情報が失われる。
In conventional devices, when strong infrared rays are incident, the amount of charge generated in the photoelectric conversion diode exceeds the amount of charge that can be transferred and processed by the charge-coupled device (CCD), and the output signal of the CCD becomes saturated at a certain level. Information on whether infrared rays with a certain intensity pattern are incident is lost.

更にこの傾向は大気による赤外線の吸収が小さい波長3
〜5μmで強くあられれ、撮像温度範囲を狭くしてしま
うという問題があった。
Furthermore, this tendency is reflected at wavelengths 3, where the absorption of infrared rays by the atmosphere is small.
There was a problem in that strong abrasion occurred at ~5 μm, narrowing the imaging temperature range.

本発明は上記の点に鑑みなされたもので、強い赤外線が
入射しても飽和することなく、撮像温度範囲の広い赤外
線撮像装置を提供することを目的とする。
The present invention has been made in view of the above points, and it is an object of the present invention to provide an infrared imaging device that does not become saturated even when strong infrared rays are incident, and has a wide imaging temperature range.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の赤外線撮像装置は、 赤外線を受光して光電変換する光電変換部と、光電変換
部で発生した電荷を蓄積した後、多重化して転送する第
1の転送チャネルと、第1の転送チャネルで蓄積時に溢
れた電荷を蓄積した後、多重化して転送する第2の転送
チャネルと、 第1の転送チャネルから溢れる電荷の一部を分割して第
2の伝送チャネルに蓄積するか、又は第2の転送チャネ
ルを転送された電荷の一部を分割して検出する電荷分割
部と、 第1、第2の転送チャネルを転送されて取り出された電
荷を加算して画像信号として出力する加算部とを有する
The infrared imaging device of the present invention includes: a photoelectric conversion section that receives infrared rays and converts them photoelectrically; a first transfer channel that accumulates charges generated in the photoelectric conversion section, multiplexes the charges, and transfers them; and a first transfer channel that After accumulating the charge overflowing during accumulation, a second transfer channel multiplexes and transfers the charge; and a part of the charge overflowing from the first transfer channel is divided and accumulated in the second transfer channel, or a charge dividing section that divides and detects a part of the charge transferred through the second transfer channel; and an addition section that adds the charges transferred and extracted from the first and second transfer channels and outputs the result as an image signal. and has.

〔作用〕[Effect]

本発明においては、第1の転送チャネルから溢れた電荷
を第2の転送チャネルで転送し、第1の転送チャネルを
転送された電荷と、第2の転送チャネルを転送された上
記溢れ電荷の一部とを加算するため、第1の転送チャネ
ルから電荷が溢れない入射光電が少ない場合の感度が高
くなり、第1の転送チャネルから電荷か溢れる入射光量
が多い場合の感度は低くなる。これによって強い赤外線
か入射しても出力信号か飽和することがなくなり撮像温
度範囲を広くすることかできる。
In the present invention, the charge overflowing from the first transfer channel is transferred to the second transfer channel, and the charge transferred through the first transfer channel and the overflow charge transferred through the second transfer channel are combined. Since the amount of light is added, the sensitivity is high when there is a small amount of incident photoelectricity that does not cause charges to overflow from the first transfer channel, and the sensitivity is low when there is a large amount of incident light that causes charges to overflow from the first transfer channel. This prevents the output signal from becoming saturated even when strong infrared rays are incident, making it possible to widen the imaging temperature range.

〔実施例〕〔Example〕

第1図は本発明装置の第1実施例の構造図を示す。 FIG. 1 shows a structural diagram of a first embodiment of the device of the present invention.

同図中、光電変換ダイオードIOで入射赤外線の光電変
換により発生した電荷は一定の直流バイアス(IG)を
印加された入カグー)11を通し、更に蓄積モード時に
移送ゲート12を通して、第1の転送チャネル14の転
送りロックφ1供給段14aに蓄積される。移送ゲート
には第2図(A)に示す移送りロックφTのHighレ
ベル(以下Hレベル)期間即ち蓄積モード時に導通し、
Lowレベル(以下Lレベル)期間即ち読み出しモード
時に遮断する。また排出グーH5は第2図(B)の反転
移送りロックφTを供給され読み出しモード時にのみ導
電して入力ゲート12よりの電荷を直流電流16に排出
し吸収させる。なお転送りロックφ1は第2図(C)に
示す如く蓄積モード時はHレベルで一定とされている。
In the figure, charges generated by photoelectric conversion of incident infrared rays in the photoelectric conversion diode IO pass through an input gate (11) to which a constant DC bias (IG) is applied, and then through a transfer gate 12 in the accumulation mode, and are transferred to the first transfer. It is stored in the transfer lock φ1 supply stage 14a of the channel 14. The transfer gate is conductive during the high level (hereinafter referred to as H level) period of the transfer lock φT shown in FIG. 2(A), that is, during the accumulation mode.
It is cut off during the low level (hereinafter referred to as L level) period, that is, during the read mode. Further, the discharge goo H5 is supplied with the anti-transition feed lock φT of FIG. 2(B), conducts only in the read mode, and discharges and absorbs the charge from the input gate 12 into the DC current 16. Note that the transfer lock φ1 is kept at a constant H level in the accumulation mode as shown in FIG. 2(C).

入射光量が多い場合に一定電圧OFGで決まるレベルを
越えた電荷はオーバーフローゲート17を通し、更に移
送ゲート18が第2図(G)に示す移送りロックφ9の
Hレベル時に導通したとき第2転送チヤネル19の転送
りロックφ1供給段19aに蓄積される。また排出ゲー
ト20は蓄積モード内でクロックφ9を反転した波形の
第2図(H)に示す移送りロックφ、−1のHレベル時
に導通してオーバーフローゲート17を通した電荷を直
流電源(OFD)21に排出し吸収させる。
When the amount of incident light is large, the charge exceeding the level determined by the constant voltage OFG passes through the overflow gate 17, and is further transferred to the second transfer when the transfer gate 18 conducts when the transfer lock φ9 is at the H level as shown in FIG. 2(G). It is stored in the transfer lock φ1 supply stage 19a of the channel 19. In addition, the discharge gate 20 becomes conductive when the transfer lock φ, -1 shown in FIG. ) is discharged and absorbed by 21.

第11第2転送チャネル14.19夫々は第2図(C)
〜(F)に示す4相の転送りロックφ1〜φ4によって
各画素の蓄積電荷を多重化して転送し、加算器23で第
1、第2チヤネルを転送された信号を電荷のかたちで加
算して端子24より画像信号として出力する。
The 11th and 2nd transfer channels 14 and 19 are shown in Figure 2 (C).
The accumulated charges of each pixel are multiplexed and transferred by the four-phase transfer locks φ1 to φ4 shown in ~(F), and the signals transferred through the first and second channels are added in the form of charges in the adder 23. and outputs it as an image signal from the terminal 24.

ここで蓄積モード時における移送りロックφ、のHレベ
ル期間と移送りロックφN−のHレベル期間との比を1
:N−1とすると第2転送チヤネルへ転送される電荷は
1/Hに分割されることになる。このため、入射光量と
端子24よりの出力電圧との関係は第3図に示す如く非
線形となり、強い赤外線が入射しても飽和することが防
止され、撮像対象からの情報が失われることがなく撮像
温度範囲が広くなる。
Here, the ratio of the H level period of transfer lock φ and the H level period of transfer lock φN- in the accumulation mode is set to 1.
:N-1, the charge transferred to the second transfer channel will be divided by 1/H. For this reason, the relationship between the amount of incident light and the output voltage from the terminal 24 becomes non-linear as shown in Figure 3, and saturation is prevented even when strong infrared rays are incident, and information from the object to be imaged is not lost. The imaging temperature range becomes wider.

第4図は本発明装置の第2実施例の構造図を示す。FIG. 4 shows a structural diagram of a second embodiment of the device of the present invention.

同図中、光電変換ダイオード30で発生した電荷は一定
の直流バイアス(IG)を印加された入カグー)31を
通し、第5図(A)に示す移送りロックのHレベル時に
導通する移送ゲートを通して第1転送チヤネル33の転
送りロックφ、(第5図(B))供給段33aに蓄積さ
れる。
In the figure, the charge generated in the photoelectric conversion diode 30 is passed through the input gate 31 to which a constant DC bias (IG) is applied, and is transferred to the transfer gate which is conductive when the transfer lock is at H level as shown in FIG. 5(A). The transfer lock φ of the first transfer channel 33 is accumulated in the supply stage 33a (FIG. 5(B)) through the transfer lock φ.

入射光量が多い場合に一定電圧0FG1で決まるレベル
を越えた電荷はオーバーフローゲート34を通して第2
転送チヤネル35の転送りロック−N1供給段35aに
蓄積される。更に一定電圧0FG1 (OFCI<○F
G2)で決まるレベルを越えた電荷はオーバーフローゲ
ート36を通して電圧OFDの端子37から排出される
When the amount of incident light is large, the charge exceeding the level determined by the constant voltage 0FG1 passes through the overflow gate 34 to the second
It is stored in the transfer lock-N1 supply stage 35a of the transfer channel 35. Furthermore, constant voltage 0FG1 (OFCI<○F
Charges exceeding the level determined by G2) are discharged from the terminal 37 of the voltage OFD through the overflow gate 36.

第1、第2転送チャネル33.35夫々は第5図(B)
〜(D)に示す4相のクロックφ9.〜φN4によって
各画像の蓄積電荷を多重化して転送する。転送チャネル
33の検出段にはチャネル幅と同一幅のゲート電極33
bか設けられ、転送チャネル35の検出段にはチャネル
幅を分割する2つのゲート電極35b、35cか設けら
れ、これらのゲート電極33b、35b、35c夫々は
電荷の転送を行うために転送りロックの HレベルとL
レベルとの中間の一定しベルV、とされている。ゲート
電極33bと33bとは共通接続されてフローティング
ゲートアンプを構成する演算増幅器40の反転入力端子
に接続されている。ゲート電極33b、35bで検出さ
れた各転送チャネルの電荷はフローティングゲートアン
プのコンデンサ41が第5図(E)に示すリセットクロ
ックφRのHレベル時(クロックφ。と同期がとられて
いる)に放電された後に積分され、端子42より画像信
号として出力される。
The first and second transfer channels 33 and 35 are shown in FIG. 5(B).
The four-phase clock φ9 shown in ~(D). ~φN4 multiplexes and transfers the accumulated charges of each image. The detection stage of the transfer channel 33 has a gate electrode 33 having the same width as the channel width.
The detection stage of the transfer channel 35 is provided with two gate electrodes 35b and 35c that divide the channel width, and each of these gate electrodes 33b, 35b, and 35c has a transfer lock in order to transfer charges. H level and L
It is assumed that there is a constant level V between the level and the level V. The gate electrodes 33b and 33b are commonly connected and connected to an inverting input terminal of an operational amplifier 40 constituting a floating gate amplifier. The charges in each transfer channel detected by the gate electrodes 33b and 35b are generated when the capacitor 41 of the floating gate amplifier is at the H level of the reset clock φR (synchronized with the clock φ) as shown in FIG. 5(E). After being discharged, it is integrated and output from the terminal 42 as an image signal.

ここで、ゲート電極33bの面積とゲート電極35bの
面積の比をN:1とすると第1の転送チャネルが飽和す
るまでの感度と飽和後の感度とはN:1となる。出力電
圧との関係は第3図に示す如く非線形となり、強い赤外
線が入射しても飽和することが防止され、撮像対象から
の情報が失われることかなく撮像温度範囲か広くなる。
Here, if the ratio of the area of the gate electrode 33b to the area of the gate electrode 35b is N:1, the sensitivity until the first transfer channel is saturated and the sensitivity after the saturation are N:1. The relationship with the output voltage is non-linear as shown in FIG. 3, preventing saturation even when strong infrared rays are incident, and widening the imaging temperature range without losing information from the object to be imaged.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明の赤外線撮像装置によれば、装置の
出力信号と入射赤外線の関係か非線形となり、強い赤外
線が入射しても出力信号が飽和することなく、撮像温度
範囲が広くなり、実用上きわめて有用である。
As described above, according to the infrared imaging device of the present invention, the relationship between the output signal of the device and the incident infrared rays is non-linear, and the output signal does not become saturated even when strong infrared rays are incident, and the imaging temperature range is widened, making it suitable for practical use. Above all, it is extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の第1実施例の構造図、第2図は第
1図の装置の信号タイムチャート、第3図は本発明装置
の特性図、 第4図は本発明装置の第2実施例の構造図、第5図は第
4図の装置の信号タイムチャートである。 図において、 10.30は光電変換ダイオード、 12.18.32は移送ゲート、 14.19,33.35は転送チャネル、16.21は
排出ゲート、 17.34.36はオーバーフローゲート、33b、3
5b、35cはゲート電極を示す。 第1図の装置の信号タイムチャート 第2図 入射光量 入射光量対出力電圧特性 第 図 本発明装置の第2実施例の構造図
FIG. 1 is a structural diagram of the first embodiment of the device of the present invention, FIG. 2 is a signal time chart of the device of FIG. 1, FIG. 3 is a characteristic diagram of the device of the present invention, and FIG. A structural diagram of the second embodiment, and FIG. 5 is a signal time chart of the device of FIG. 4. In the figure, 10.30 is a photoelectric conversion diode, 12.18.32 is a transfer gate, 14.19, 33.35 is a transfer channel, 16.21 is an exhaust gate, 17.34.36 is an overflow gate, 33b, 3
5b and 35c indicate gate electrodes. Fig. 1 Signal time chart of the device Fig. 2 Incident light amount Incident light amount vs. output voltage characteristics Fig. Structure diagram of the second embodiment of the device of the present invention

Claims (1)

【特許請求の範囲】[Claims]  赤外線を受光して光電変換する光電変換部(10、3
0)と、該光電変換部(10、30)で発生した電荷を
蓄積した後、多重化して転送する第1の転送チャネル(
14、33)と、該第1の転送チャネル(14、33)
で蓄積時に溢れた電荷を蓄積した後、多重化して転送す
る第2の転送チャネル(19、35)と、該第1の転送
チャネル(14)から溢れる電荷の一部を分割して該第
2の転送チャネル(19)に蓄積するか、又は該第2の
転送チャネル(35)を転送された電荷の一部を分割し
て検出する電荷分割部(35b、35c)と、該第1、
第2の転送チャネルを転送されて取り出された電荷を加
算して画像信号として出力する加算部(23、40、4
1)とを有することを特徴とする赤外線撮像装置。
A photoelectric conversion unit (10, 3) that receives infrared light and converts it into electricity.
0) and a first transfer channel (10, 30) that accumulates the charges generated in the photoelectric conversion unit (10, 30), multiplexes them, and transfers them.
14, 33) and the first transfer channel (14, 33)
After accumulating the charge overflowing during accumulation, the second transfer channel (19, 35) multiplexes and transfers the charge, and a part of the charge overflowing from the first transfer channel (14) is divided and transferred to the second transfer channel (19, 35). a charge dividing unit (35b, 35c) that divides and detects a part of the charge accumulated in the transfer channel (19) or transferred through the second transfer channel (35);
Adding units (23, 40, 4
1) An infrared imaging device comprising:
JP2071008A 1990-03-20 1990-03-20 Infrared ray image pickup device Pending JPH03270579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2071008A JPH03270579A (en) 1990-03-20 1990-03-20 Infrared ray image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2071008A JPH03270579A (en) 1990-03-20 1990-03-20 Infrared ray image pickup device

Publications (1)

Publication Number Publication Date
JPH03270579A true JPH03270579A (en) 1991-12-02

Family

ID=13448048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2071008A Pending JPH03270579A (en) 1990-03-20 1990-03-20 Infrared ray image pickup device

Country Status (1)

Country Link
JP (1) JPH03270579A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265292A2 (en) * 2001-06-04 2002-12-11 Isetex, Inc. Charge multiplier with logarithmic dynamic range compression implemented in charge domain
EP1152469A3 (en) * 2000-04-28 2005-08-24 Isetex, Inc. High dynamic range charge readout system
JP2006245522A (en) * 2005-02-04 2006-09-14 Tohoku Univ Optical sensor, solid-state imaging device, and operation method of solid-state imaging device
WO2006109683A1 (en) * 2005-04-07 2006-10-19 Tohoku University Light sensor, solid-state image pickup device and method for operating solid-state image pickup device
EP1732134A1 (en) * 2004-02-27 2006-12-13 Sugawa, Shigetoshi Solid-state imagine device, line sensor, optical sensor, and method for operating solid-state imaging device
US8312278B2 (en) 2007-10-30 2012-11-13 China Iwncomm Co., Ltd. Access authentication method applying to IBSS network

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152469A3 (en) * 2000-04-28 2005-08-24 Isetex, Inc. High dynamic range charge readout system
EP1265292A2 (en) * 2001-06-04 2002-12-11 Isetex, Inc. Charge multiplier with logarithmic dynamic range compression implemented in charge domain
EP1265292A3 (en) * 2001-06-04 2005-08-03 Isetex, Inc. Charge multiplier with logarithmic dynamic range compression implemented in charge domain
EP1732134A1 (en) * 2004-02-27 2006-12-13 Sugawa, Shigetoshi Solid-state imagine device, line sensor, optical sensor, and method for operating solid-state imaging device
EP1732134A4 (en) * 2004-02-27 2010-09-22 Nat University Corp Tohoku Unv Solid-state imagine device, line sensor, optical sensor, and method for operating solid-state imaging device
US7820467B2 (en) 2004-02-27 2010-10-26 National University Corporation Tohoku University Imaging device and method that cancels voltage signal noise based on pre-saturated charges and supersaturated charges
US8120016B2 (en) 2004-02-27 2012-02-21 National University Corporation Tohoku University Imaging device
EP2533289A1 (en) * 2004-02-27 2012-12-12 National University Corporation Tohoku Unversity Solid-state imaging device, line sensor, optical sensor and method of operating solid-state imaging device
JP2006245522A (en) * 2005-02-04 2006-09-14 Tohoku Univ Optical sensor, solid-state imaging device, and operation method of solid-state imaging device
WO2006109683A1 (en) * 2005-04-07 2006-10-19 Tohoku University Light sensor, solid-state image pickup device and method for operating solid-state image pickup device
US7821560B2 (en) 2005-04-07 2010-10-26 Tohoku Universityu Optical sensor, solid-state imaging device, and operating method of solid-state imaging device
US8312278B2 (en) 2007-10-30 2012-11-13 China Iwncomm Co., Ltd. Access authentication method applying to IBSS network

Similar Documents

Publication Publication Date Title
TWI389306B (en) Solid-state photographic devices, light detectors, and solid-state photographic devices
JP4374115B2 (en) Active pixel sensor
RU2529882C2 (en) Image forming apparatus and camera system
US5962844A (en) Active pixel image cell with embedded memory and pixel level signal processing capability
TW468089B (en) Variable collection of blooming charge to extend dynamic range
US6838651B1 (en) High sensitivity snap shot CMOS image sensor
US7728897B2 (en) System and method for automatic exposure control and white balancing for CMOS sensors
JP5012188B2 (en) Solid-state imaging device
JPH09181976A (en) Solid-state image pickup element
JP2008017536A (en) Method for obtaining high dynamic range read-out signal of cmos-based pixel structure and such cmos-based pixel structure
TW200307455A (en) Solid-state imaging apparatus and driving method thereof
JP2003198948A (en) Solid-state image pickup device and driving method therefor
JP2007006447A (en) Image pixel of cmos image sensor
JP2005332880A (en) Imaging element and image input processor
JPH03117281A (en) Solid-state image pickup device
JPH02100363A (en) Solid-state image sensing element
JPH03270579A (en) Infrared ray image pickup device
US4985776A (en) Method of driving solid-state imaging element
JPH0697414A (en) Solid-state image sensing device
US4562473A (en) Dark current sensing with a solid-state imager having a CCD line register output
US7718945B2 (en) Solid state imaging device including photodetecting section, row selecting section for changing the electric charge accumulating time of each row, and signal processing section
US5627388A (en) CCD-solid state image sensor using electron and hole signal charges and method for processing signal thereof
JPH09252107A (en) Solid-state image pickup device
Fossum CMOS digital cameras need new figures of merit
Ay A hybrid CMOS APS pixel for wide-dynamic range imaging applications