JPH03270304A - Multi-frequency common use plane antenna - Google Patents

Multi-frequency common use plane antenna

Info

Publication number
JPH03270304A
JPH03270304A JP2069285A JP6928590A JPH03270304A JP H03270304 A JPH03270304 A JP H03270304A JP 2069285 A JP2069285 A JP 2069285A JP 6928590 A JP6928590 A JP 6928590A JP H03270304 A JPH03270304 A JP H03270304A
Authority
JP
Japan
Prior art keywords
antenna
frequency
radiating element
elements
frequency range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2069285A
Other languages
Japanese (ja)
Other versions
JP2631410B2 (en
Inventor
Misao Haishi
操 羽石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2069285A priority Critical patent/JP2631410B2/en
Publication of JPH03270304A publication Critical patent/JPH03270304A/en
Application granted granted Critical
Publication of JP2631410B2 publication Critical patent/JP2631410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To cover a broad range frequency area by arranging plural radiation elements for high frequency range or radiation elements for medium frequency in the region formed by radiating elements for low frequency range of a microstrip antenna. CONSTITUTION:Two square cutout windows are arranged in the region formed by radiation elements 2 for low frequency range of a microstrip antenna comprising a ground plane 9 and the element 2 opposite to each other via a 1st dielectric body 6. Moreover, each of radiation elements 3 for high frequency range is arranged to each cutout window region while the elements 3 are parted to some degree from the end of each element 3 so that the element 3 does not contribute to the antenna characteristic. In such a case, when the antenna is used as a 2-frequency common use antenna, since the inter-center distance of each radiation element is smaller than the effective wavelength lambda of a wave in the dielectric body, the antenna is able to suppress the grating lobe. Thus, a broader frequency range is covered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、衛星通信等の無線通信II器に使用されるア
レーアンテナまたは広範囲な周波数領域を使用するアン
テナに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an array antenna used in a wireless communication device such as satellite communication or an antenna that uses a wide frequency range.

〔発明の概要〕[Summary of the invention]

本発明の多周波共用平面アンテナは、マイクロストリッ
プアンテナの低域用放射素子の内部領域に複数個の高域
用放射素子または中域用放射素子を配置することにより
、素子単体として有用性の高いアンテナになると共に、
アレーアンテナにとっても有用性の高い素子アンテナと
なる。また容易に多周波を利用することが可能となる。
The multi-frequency shared planar antenna of the present invention is highly useful as a single element by arranging a plurality of high-frequency radiating elements or mid-range radiating elements in the internal area of the low-frequency radiating element of the microstrip antenna. Along with becoming an antenna,
This element antenna is also highly useful for array antennas. Also, it becomes possible to easily utilize multiple frequencies.

〔従来の技術〕[Conventional technology]

従来、通常の標準型マイクロス[リップアンテナの放射
素子はλ/2系の放射素子とし、て扱うことができる。
Conventionally, the radiating element of a standard microslip antenna can be treated as a λ/2-based radiating element.

また前記放射素子の一辺とグランドプレーンを全面短絡
することにより、λ/4系の放射素子(λ:誘電体中の
実効波長)として扱うことができるため、通常の標準型
マイクロストリップアンテナの放射素子に対して、1/
2以下の開口面積で同一共振周波数となる。更に前記放
射素子の一辺とゲランドブ1ノーンとを短絡する短絡導
体の幅寸法を減少させることにより、等価的にインダク
タンスが装荷されるため、共振周波数の低下につながり
、ついてはアンテナ本体の小形化が達成できる6第2図
に示すようにスタック化マイクロストリンブアンテナで
、各放射素子12゜13の一辺を全面短絡または短絡導
体10の幅寸法を制御し、第1の放射素子12と第2の
放射素子13間の結合を利用して、2周波共用特性が得
られていた。
In addition, by short-circuiting one side of the radiating element and the ground plane, it can be treated as a λ/4-based radiating element (λ: effective wavelength in dielectric material), so it can be treated as a radiating element of a normal standard microstrip antenna. For 1/
An aperture area of 2 or less provides the same resonant frequency. Furthermore, by reducing the width of the short-circuiting conductor that short-circuits one side of the radiating element and the Guérande Bone, inductance is equivalently loaded, which leads to a reduction in the resonant frequency, and thus the antenna body can be made smaller. 6 As shown in Fig. 2, in a stacked micro-strinb antenna, one side of each radiating element 12° 13 is short-circuited across the entire surface or the width dimension of the short-circuit conductor 10 is controlled, and the first radiating element 12 and the second radiating element 12 are connected to each other. By utilizing the coupling between the elements 13, dual frequency common characteristics were obtained.

ここで、3周波共用特性を得るためには、スタック化マ
イクロストリップアンテナの第1の放射素子12と同一
平面上にある程度の放射素子間隔を持って第3の放射素
子14を配置し、第2の給電系15を設置することによ
り得ることができた。
Here, in order to obtain three-frequency common characteristics, the third radiating element 14 is arranged on the same plane as the first radiating element 12 of the stacked microstrip antenna with a certain distance between the radiating elements, and the second This could be obtained by installing the power supply system 15.

また2周波共用特性となるアレーアンテナ用の素子アン
テナに関しては、各々共振周波数の異なる放射素子が同
一平面上にある程度の放射素子間隔を持って配置されて
いた。
Furthermore, with respect to element antennas for array antennas that have dual frequency characteristics, radiating elements having different resonance frequencies are arranged on the same plane with a certain distance between the radiating elements.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような3周波共用アンテナまたは2周波共用とな
るアレーアンテナ用の素子アンテナは同一平面上で各々
の放射素子寸法、更にある程度の放射素子間隔を持って
配置されるため、アンテナ本体を小形化することが困難
であるという欠点を有する。またスタック化マイクロス
トリップアンテナに於いて、各放射素子の一辺とグラン
ドプレーンを短絡導体で短絡することは作業上困難であ
り、またコストもかかる。
Element antennas for 3-frequency common antennas or 2-frequency common array antennas as mentioned above are arranged on the same plane with each radiating element dimension and a certain distance between the radiating elements, so the antenna body can be made smaller. It has the disadvantage that it is difficult to Further, in a stacked microstrip antenna, it is difficult to short-circuit one side of each radiating element and the ground plane with a shorting conductor, and it is also costly.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために、本発明に於いては、低域
用放射素子の内部領域に複数個の高域用放射素子または
中域用放射素子を配置するようにした。
In order to solve the above problems, in the present invention, a plurality of high frequency radiating elements or middle frequency radiating elements are arranged in the internal region of the low frequency radiating element.

〔作用〕[Effect]

上記のような槽底に於いて、2周波共用アンテナにした
場合、各放射素子の中心間距離がλよりも小さいため、
グレイティングローブの抑制が可能なアンテナとなり、
3周波共用アンテナにした場合、各々の放射素子寸法を
適切に制御することにより広範囲な周波数領域をカバー
することができる。
When using a dual-frequency antenna at the bottom of the tank as described above, the distance between the centers of each radiating element is smaller than λ, so
The antenna can suppress grating lobes,
When a three-frequency antenna is used, a wide frequency range can be covered by appropriately controlling the dimensions of each radiating element.

〔実施例〕〔Example〕

以下に、この発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.

第1図に於いて、グランドプレーン9と低域用放射素子
2を第1の誘電体6を介し対向させて設置することで槽
底されるマイクロストリップアンテナの低域用放射素子
2の内部領域に方形の切り込み窓を2個配置する。この
切り込み窓を配置することにより、共振周波数の低下か
つ共振周波数の異なる放射素子を配置するスペースを確
保することが可能になる。第3図は第1の誘電体6及び
第2の誘電体7の厚みをhとし、自由空間中の波長をλ
とすると、h/λ=0.01前後、アスペクトレシオが
1.5で、かつ比誘電率εr=2.55の時、低域用放
射素子2の長辺であるaの寸法に対し直交して2等分し
たと想定し、2等分された方形パンチの中心から切り込
み窓の寸法を変化させていった時の共振周波数の偏移を
切り込み窓のない場合の低域用放射素子の共振周波数f
0で規格化し表したものである。この図より低域用放射
素子の短辺をbとし、切り込み窓になっている方形の一
辺の寸法を50とすると、so/b=0.45の時の共
振周波数は切り込み窓がない時に比べて約25%低くな
っていることがわかる。またこの切り込み窓の領域内に
高域用放射素子3または中域用放射素子4を配置してい
るため、アンテナ本体の小形化が達成できる。 第1図
(A)に於いて、低域用放射素子2の内部領域に切り込
み窓が2個配置されており、更に各々の切り込み窓の領
域内に低域用放射素子2の端からアンテナ特性に寄与し
ないようにある程度離して1個づつ高域用放射素子3を
配置する。この時2個の高域用放射素子3に於いて、低
域用放射素子2が電気的に短絡面となる部分に短絡スタ
ブ5を設置することにより、高域用放射素子3の交差偏
波成分が抑制される。次にグランドプレーン9に低域用
放射素子2が電気的に短絡面となる部分に平行になるよ
うに励振用スロット8を2個配置する。更に、グランド
プレーン9とスロット給電用マイクロストリップライン
1bを第2の誘電体7を介し励振用スロット8と直交す
るように対向させて設置することにより、高域用放射素
子3がスロットを介して給電用マイクロストリップライ
ン1bと電磁結合により給電される。このようにして 
各々独立して給電することにより、2周波共用化が実現
される。この時高域用放射素子3の放射素7間の中心間
距離はλ (λ二実効波長)より小さいため、アレーア
ンテナを設計する際、璽要な課題となるグ1ノイナイン
グローブの抑制が実現できる。
In FIG. 1, the internal area of the low-frequency radiating element 2 of the microstrip antenna is formed at the bottom of the tank by installing the ground plane 9 and the low-frequency radiating element 2 facing each other with the first dielectric 6 in between. Place two rectangular cut windows in the area. By arranging this cut window, it is possible to lower the resonant frequency and to secure a space for arranging radiating elements having different resonant frequencies. In FIG. 3, the thickness of the first dielectric 6 and the second dielectric 7 is h, and the wavelength in free space is λ.
Then, when h/λ = around 0.01, aspect ratio is 1.5, and relative dielectric constant εr = 2.55, it is perpendicular to the dimension a, which is the long side of the low-frequency radiating element 2. Assuming that the rectangular punch is divided into two equal parts, the deviation of the resonant frequency when changing the dimensions of the cut window from the center of the square punch divided into two equal parts is calculated as the resonance of the low-frequency radiating element without the cut window. frequency f
It is normalized and expressed by 0. From this figure, if the short side of the low-frequency radiating element is b, and the dimension of one side of the rectangle that is the cut window is 50, the resonance frequency when so/b = 0.45 is compared to when there is no cut window. It can be seen that this is approximately 25% lower. Furthermore, since the high-frequency radiating element 3 or the middle-frequency radiating element 4 is arranged within the region of this cut window, the antenna main body can be made smaller. In FIG. 1(A), two notched windows are arranged in the internal area of the low-frequency radiating element 2, and antenna characteristics are further measured from the end of the low-frequency radiating element 2 within the area of each notched window. The high-frequency radiating elements 3 are arranged one by one at a certain distance so as not to contribute to the noise. At this time, in the two high-frequency radiating elements 3, by installing a shorting stub 5 at the part where the low-frequency radiating element 2 becomes an electrically short-circuited surface, the cross-polarized wave of the high-frequency radiating element 3 is components are suppressed. Next, two excitation slots 8 are arranged in the ground plane 9 so as to be parallel to the portion where the low-frequency radiating element 2 is electrically shorted. Furthermore, by installing the ground plane 9 and the microstrip line 1b for slot power feeding so as to face each other orthogonally to the excitation slot 8 via the second dielectric 7, the high frequency radiating element 3 can be connected via the slot. Power is supplied through electromagnetic coupling with the power supply microstrip line 1b. In this way
By feeding power to each independently, dual frequency sharing is realized. At this time, since the center-to-center distance between the radiating elements 7 of the high-frequency radiating element 3 is smaller than λ (λ two effective wavelengths), it is difficult to suppress the realizable.

第1図(B )に於いて、低域用放射素子2の内部領域
に切り込み窓が2個配置されており、更に各々の切り込
み窓の領域内に低域用放射素子2の端からアンテナ特性
に寄与しないよ・うGこある程度類して1個づ・つ高域
用放射素子3と中域用放射索子4を配置する。ここで中
城用放射素7′−4では、銅板(または銅箔)ior、
こよりグランドプレーン6へ電気的手段、例えば半田付
けで短絡することにより、インダクタンスが装荷される
ため、共振周波数を低下さゼ−ることか可能である。更
に短絡導体10の幅寸法を制御することによって、イン
ダクタンスの装荷量が可変となり、容易に所望の共振周
波数を得るこLができるものである。またスロット給電
が行われる高域用放射素子3には短絡スタブ5が配置さ
れるが、同軸給電が行われる中域用放射素子4には短絡
スタブ5を配If、ない。
In FIG. 1(B), two cut windows are arranged in the internal area of the low-frequency radiating element 2, and antenna characteristics are further measured from the end of the low-frequency radiating element 2 within the area of each cut window. One high-frequency radiating element 3 and one mid-range radiating element 4 are arranged to the extent that they do not contribute to the radiating element. Here, in the Nakagusuku radio element 7'-4, the copper plate (or copper foil) ior,
By shorting this to the ground plane 6 by electrical means, for example by soldering, an inductance is loaded, so it is possible to lower the resonance frequency. Furthermore, by controlling the width dimension of the short-circuiting conductor 10, the amount of inductance loaded can be varied, making it possible to easily obtain a desired resonance frequency. Further, the shorting stub 5 is arranged in the high frequency radiating element 3 to which slot power is fed, but the shorting stub 5 is not arranged in the middle frequency radiating element 4 to which coaxial power is fed.

これは中域用放射索子4では既乙こゲランドブ1/−ン
9と短絡されており、更に短絡スタブ5を配置した場合
、アンテナ特性を劣化させるからである。
This is because the mid-range radiator 4 is short-circuited with the existing radiator antenna 9, and if the short-circuit stub 5 is further provided, the antenna characteristics will be degraded.

このようにL2て各々独立して給電することにより、3
周波共用化となる。第1図(A)、第1図(B)に於い
て、ゲランドブ1.・−ン9とスロット給電用マイクロ
スI・リソプライン1bを第2の誘電体7を介して設置
する際、ゲランドブ1/−ン9と第2の誘電体7を完全
に密着さ1士る必要がある。
By supplying power to each L2 independently in this way, 3
This will result in frequency sharing. In FIG. 1(A) and FIG. 1(B), Gerandbu 1.・When installing the slot power supply micros I/lithop line 1b via the second dielectric 7, it is necessary to make sure that the geland tube 1/- 9 and the second dielectric 7 are in complete contact with each other. There is.

例えば密着方法としては、接着剤、絶縁物による圧着、
低域用放射素子2の端からある程度類れにアンテナ特性
に寄与しない誘電体部分を貫通さセ゛たネジ止めによる
ものが考えられている。
For example, adhesion methods include adhesive, crimping with insulators,
One idea is to use a screw that passes through a dielectric portion that does not contribute to the antenna characteristics from the end of the low-frequency radiating element 2 to some extent.

第1図(C)に於いて、低域用放射素子2の内部領域に
切り込み窓が2個配置されており、更に各々の切り込み
窓の領域内に低域用放射素子2の端からアンテナ特性に
寄与しないようにある程度類して1個づつ高域用放射素
子3と中域用放射素子4を配置する。この時同軸給電が
行われる高域用放射素子3、中域用放射索子屹の両方と
も銅板104によりグランドプレーン9へ短絡するため
、短絡スタブ5を配置しない。こ、二で各々の放射素子
寸法、短絡導体の幅寸法を制御することにより、容易に
所望の共振周波数を得ることができるものである。この
ようにして各々独立して給電することにより、3周波共
用化となる。また第1図(C)は第1図(A)、第1図
(B)に対して第2の誘電体7を設置しないため、薄形
化を遠戚している。第4図(A)は第1図(A)、第4
図(B)は第1図(B)、第4図(C)は第1図(C)
に示した実施例において、各放射素子の放射パターン特
性を示している。
In FIG. 1(C), two notched windows are arranged in the internal area of the low-frequency radiating element 2, and antenna characteristics are further measured from the end of the low-frequency radiating element 2 within the area of each notched window. One high-frequency radiating element 3 and one mid-frequency radiating element 4 are arranged in a manner similar to each other to some extent so as not to contribute to the above. At this time, since both the high-frequency radiating element 3 and the mid-range radiating element 3 to which coaxial power is fed are short-circuited to the ground plane 9 by the copper plate 104, the shorting stub 5 is not disposed. By controlling the dimensions of each radiating element and the width of the shorting conductor, a desired resonant frequency can be easily obtained. By feeding power to each independently in this way, three frequencies can be shared. Further, FIG. 1(C) is distantly related to FIG. 1(A) and FIG. 1(B) in that the second dielectric 7 is not provided, so that the thickness is reduced. Figure 4 (A) is the same as Figure 1 (A).
Figure (B) is Figure 1 (B), Figure 4 (C) is Figure 1 (C)
In the example shown in , the radiation pattern characteristics of each radiating element are shown.

本発明では、低域用放射素子2への給電は50Ωのマイ
クロストリップライン1aにより共平面形のオフセット
給電を行っているが、その他に共平面形直結給電、同軸
給電が考えられる6〔発明の効果〕 以」二のように、本発明に基づく構成によれば、2周波
共用化アンテナの場合、グ1/イティングロ一ブの抑制
が実現できるため、アレーアンテナの素子アンテナとし
で使用する、二とかでき、3周波共用化アンテナの場合
、広範囲な周波数領域をカバーすることができるため、
多周波、特に周波数間隔を離して多周波を使用する無線
通信機のアンテナとして最適である。
In the present invention, power is fed to the low-frequency radiating element 2 by coplanar offset power feeding using a 50Ω microstrip line 1a, but coplanar direct-coupled power feeding and coaxial power feeding are also possible. Effects] As described in 2 below, according to the configuration based on the present invention, in the case of a dual-frequency antenna, it is possible to suppress the group 1/itening globe, so that the configuration based on the present invention can suppress the In the case of a 3-frequency shared antenna, it is possible to cover a wide frequency range, so
It is ideal as an antenna for a wireless communication device that uses multiple frequencies, especially multiple frequencies that are spaced apart.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明の第1の実施例の分解斜視図、第
1図(B)は本発明の第2の実施例のう)解斜視図、第
11EI (C)は本発明の第3の実施例の分解斜視図
、第2図は従来例の斜視図、第3図は低域用放射素子の
内部領域に切り込み窓の寸法を変化させた時の共振周波
数の偏移を示す説明図、第4図(A)は本発明の第1の
実施例の放射パターン特性図、第4図(B)は本発明の
第2の実施例の放射パターン特性図、第4図(C)は本
発明の第3の実施例の放射パターン特性図である。 1a ・・・ オフセント給電用 マイクロストリノブライン スロット給電用 マイクロストリップライン 低域用放射素子 高域用放射素子 中域用放射素子 短絡スタブ 第1の誘電体 第2の誘電体 励振用スロット グランドプレーン 短絡導体 同軸給電線 第1の放射素子 第2の放射素子 第3の放射素子 第2の給電系 給電点 以 上 0.3 0.4 0.5 (Sq/b) 因 本兜6月ハ第1ハ冥託汗゛1の 分用イせ2図 第1図(A) 本発明の第2の冥紀「・1 ハイ】角早#’t?見図 第1図(B) (b)高域′用MSA了り一 本発明の第1/′)冥′Jeド1n旗射バター゛ノ和社
図第4図(A) 第4図(13> H−ρI 〔−一
FIG. 1(A) is an exploded perspective view of the first embodiment of the present invention, FIG. 1(B) is an exploded perspective view of the second embodiment of the present invention, and 11EI(C) is an exploded perspective view of the first embodiment of the present invention. Fig. 2 is an exploded perspective view of the third embodiment, Fig. 2 is a perspective view of the conventional example, and Fig. 3 shows the deviation of the resonant frequency when the dimensions of the window cut into the internal region of the low-frequency radiating element are changed. 4(A) is a radiation pattern characteristic diagram of the first embodiment of the present invention, FIG. 4(B) is a radiation pattern characteristic diagram of the second embodiment of the present invention, FIG. C) is a radiation pattern characteristic diagram of the third embodiment of the present invention. 1a... Microstrino line for off-cent power supply Slot Microstrip line for power supply Radiating element for low range Radiating element for high range Radiating element for mid range Short-circuit stub First dielectric Second dielectric Slot for excitation Ground plane Short circuit Conductor coaxial feeder First radiating element Second radiating element Third radiating element Second feeding system Above the feeding point 0.3 0.4 0.5 (Sq/b) Inmoto Kabuto June Ha 1st Ha Figure 1 (A) Second Hades of the present invention ``・1 High'' Kaku Haya #'t? Diagram Figure 1 (B) (b) High range MSA for 1/1 of the present invention

Claims (1)

【特許請求の範囲】[Claims]  グランドプレーンと低域用放射素子を第1の誘電体を
介し対向させて設置することにより、マイクロストリッ
プアンテナを構成し、前記マイクロストリップアンテナ
の低域用放射素子の内部領域に複数個の高域用放射素子
または中域用放射素子を配置したことを特徴とする多周
波共用平面アンテナ。
A microstrip antenna is constructed by installing a ground plane and a low frequency radiating element facing each other with a first dielectric interposed therebetween, and a plurality of high frequency A multi-frequency common planar antenna characterized by arranging a radiating element for the middle range or a radiating element for the middle range.
JP2069285A 1990-03-19 1990-03-19 Multi-frequency planar antenna Expired - Lifetime JP2631410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2069285A JP2631410B2 (en) 1990-03-19 1990-03-19 Multi-frequency planar antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2069285A JP2631410B2 (en) 1990-03-19 1990-03-19 Multi-frequency planar antenna

Publications (2)

Publication Number Publication Date
JPH03270304A true JPH03270304A (en) 1991-12-02
JP2631410B2 JP2631410B2 (en) 1997-07-16

Family

ID=13398190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2069285A Expired - Lifetime JP2631410B2 (en) 1990-03-19 1990-03-19 Multi-frequency planar antenna

Country Status (1)

Country Link
JP (1) JP2631410B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198666A1 (en) * 2018-04-12 2019-10-17 パナソニックIpマネジメント株式会社 Antenna device
WO2022185855A1 (en) * 2021-03-05 2022-09-09 株式会社村田製作所 Antenna device and antenna unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189208A (en) * 1988-01-22 1989-07-28 Sony Corp Microstrip antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189208A (en) * 1988-01-22 1989-07-28 Sony Corp Microstrip antenna

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198666A1 (en) * 2018-04-12 2019-10-17 パナソニックIpマネジメント株式会社 Antenna device
CN111954957A (en) * 2018-04-12 2020-11-17 松下知识产权经营株式会社 Antenna device
JPWO2019198666A1 (en) * 2018-04-12 2021-04-15 パナソニックIpマネジメント株式会社 Antenna device
US11424537B2 (en) 2018-04-12 2022-08-23 Panasonic Intellectual Property Management Co., Ltd. Antenna device
US20220352630A1 (en) * 2018-04-12 2022-11-03 Panasonic Intellectual Property Management Co., Ltd. Antenna device
US11699853B2 (en) 2018-04-12 2023-07-11 Panasonic Intellectual Property Management Co., Ltd. Antenna device
WO2022185855A1 (en) * 2021-03-05 2022-09-09 株式会社村田製作所 Antenna device and antenna unit

Also Published As

Publication number Publication date
JP2631410B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
US6054953A (en) Dual band antenna
CA2190792C (en) Antenna device having two resonance frequencies
EP1456907B1 (en) Antenna element
EP0829917B1 (en) Antenna device
JP4263820B2 (en) Flat antenna for circular polarization
AU2011354510B2 (en) Antenna having external and internal structures
EP0631343A1 (en) Microstrip patch antenna array
EP2073308B1 (en) Antenna device
JPH03263903A (en) Miniature antenna
KR20100079243A (en) Infinite wavelength antenna apparatus
CN112615147B (en) Compact low-coupling extensible MIMO antenna based on orthogonal mode
US4528568A (en) Slotted dipole with three layer transmission line feed
JP3002277B2 (en) Planar antenna
JP2002344238A (en) Polarized wave shared planar antenna
JPH03270304A (en) Multi-frequency common use plane antenna
JP3454151B2 (en) Antenna device
JPH05160626A (en) Triplate type plane antenna with non-feed element
JP3068149B2 (en) Microstrip array antenna
JPH0720014B2 (en) Planar array antenna
JP2531075B2 (en) Slot antenna
EP0402005A2 (en) Flush mount antenna
Lee et al. Dual-band microstrip antenna with an airgap
JPH02209002A (en) Antenna system
JPH10126140A (en) Surface mounted antenna
JPH1093319A (en) Surface mount antenna

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

EXPY Cancellation because of completion of term