JPH03270294A - Multiplayer circuit board - Google Patents

Multiplayer circuit board

Info

Publication number
JPH03270294A
JPH03270294A JP7231690A JP7231690A JPH03270294A JP H03270294 A JPH03270294 A JP H03270294A JP 7231690 A JP7231690 A JP 7231690A JP 7231690 A JP7231690 A JP 7231690A JP H03270294 A JPH03270294 A JP H03270294A
Authority
JP
Japan
Prior art keywords
layer
input
conductor
ceramic substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7231690A
Other languages
Japanese (ja)
Inventor
Masao Hosogai
正男 細貝
Hiroyuki Otaguro
浩幸 太田黒
Eiko Uehara
上原 永子
Hitoshi Nokimura
均 除村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7231690A priority Critical patent/JPH03270294A/en
Publication of JPH03270294A publication Critical patent/JPH03270294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To enhance reliability of connecting an interconnection pattern and insulation between input and output pads by extending an insulating film of a lowermost layer to an input/output pad forming region except the input/output pads to be formed. CONSTITUTION:An insulating film 20 of a first layer of an insulating layer of a lowermost layer is extended to the entire surface of the peripheral edge of a ceramic board 1 except input/output pads 3 to be formed. Accordingly, generation of residue of catalytic metal is prevented on the board 1 merely by adhering the metal 25 to the film 20 of the first layer at the time of pretreating of forming conductor patterns 30, 50 of a second layer, a third layer,... to obtain insulation between the pads 3. A fear of invading a miniaturized conductor pattern is reduced by quick etching the pattern of a thin film conductor layer. Thus, reliability of connecting the interconnection pattern and insulation between the pads is enhanced.

Description

【発明の詳細な説明】 〔概要〕 基板の中央部に、絶縁層と導体層を交互に積層した多層
配線部を設け、この多層配線部上に半導体チップを実装
する多層回路基板に関し、配線パターンの接続の信頼度
が高く、且つ入出力パッド間の絶縁性の信頼度が高い多
層回路基板を提供することを目的とし、 絶縁層と導体層を交互に積層した多層配線部を、セラミ
ック基板の中央部に設け、該セラミック基板の周縁の表
面に入出力パッドを配列した回路基板において、最下層
の絶縁膜が、該入出力パッドを除いた入出力パッド形成
領域まで延伸して形成された構成とする。
[Detailed Description of the Invention] [Summary] A multilayer circuit board in which a multilayer wiring part in which insulating layers and conductor layers are alternately laminated is provided in the center of the board, and a semiconductor chip is mounted on this multilayer wiring part. The purpose of this research is to provide a multilayer circuit board with high reliability of connection between input and output pads, and high reliability of insulation between input and output pads. A circuit board in which input/output pads are provided in the center and arranged on the surface of the periphery of the ceramic substrate, and the lowermost insulating film is formed by extending to the input/output pad formation area excluding the input/output pads. shall be.

〔産業上の利用分野〕[Industrial application field]

本発明は、基板の中央部に、絶縁層と導体層を交互に積
層した多層配線部を設け、この多層配線部上に半導体チ
ップを実装する多層回路基板に関する。
The present invention relates to a multilayer circuit board in which a multilayer wiring section in which insulating layers and conductor layers are alternately laminated is provided in the center of the substrate, and a semiconductor chip is mounted on the multilayer wiring section.

電子デバイスの高速化・高集積化に伴い、近年はセラミ
ック等の耐熱性基板の表面に、低誘電率の材料よりなる
絶縁層と、低抵抗率の導体材料よりなる導体パターン層
を交互に積層した多層回路基板が提供されている。
As electronic devices become faster and more highly integrated, in recent years, insulating layers made of low dielectric constant materials and conductor pattern layers made of low resistivity conductive materials are alternately laminated on the surface of heat-resistant substrates such as ceramics. A multilayer circuit board is provided.

一方、ポリイミド係樹脂は、誘電率が低くて信号の高速
化に適し、また、耐熱性があり、且つ表面が滑らかであ
るので、このような多層回路基板の絶縁層として広く使
用されている。
On the other hand, polyimide resin has a low dielectric constant, is suitable for high-speed signals, is heat resistant, and has a smooth surface, so it is widely used as an insulating layer for such multilayer circuit boards.

また、これらの導体パターンの幅を微細化することで、
高い集積化に対処している。
In addition, by making the width of these conductor patterns finer,
Dealing with high integration.

〔従来の技術〕[Conventional technology]

第3図は従来例の断面図、第4図は多層回路基板の斜視
図である。
FIG. 3 is a sectional view of a conventional example, and FIG. 4 is a perspective view of a multilayer circuit board.

第3図、第4図において、角板状のセラミック基板1の
中央部に角形の多層配線部2を設け、セラミック基板1
の周縁の表面に多数の入出カバ、。
In FIGS. 3 and 4, a square multilayer wiring section 2 is provided in the center of a square plate-shaped ceramic substrate 1.
Numerous in and out covers, on the peripheral surface of the.

ド3を配設しである。3 is installed.

この入出力バッド3のそれぞれは、図示省略した薄膜パ
ターンを介して多層配線部2の第1層の導体パターンに
接続されている。
Each of the input/output pads 3 is connected to a first layer conductor pattern of the multilayer wiring section 2 via a thin film pattern (not shown).

多層配線部2は、セラミック基板1の表面に、第1Nの
導体パターン10、第1層の絶縁膜20、第2層の導体
パターン30、第2層の絶縁膜40、第3層の導体パタ
ーン50、第3層の絶縁膜60、最上部導体層である第
4層の導体パターン70の順に積層することで、構成さ
れている。
The multilayer wiring section 2 includes, on the surface of the ceramic substrate 1, a 1N conductor pattern 10, a first layer insulating film 20, a second layer conductor pattern 30, a second layer insulating film 40, and a third layer conductor pattern. 50, a third layer insulating film 60, and a fourth layer conductor pattern 70, which is the uppermost conductor layer.

そして積層した導体パターン間は、所望の個所にビイア
90を設けることで接続されている。
The laminated conductor patterns are connected by providing vias 90 at desired locations.

また、最上部の絶縁膜の上面に、第4層の導体パターン
70に繋がるか或いはビイアを介して下層の導体パター
ンに繋がるバッド(図示省略)を配列して、多層配線部
2の表面に半導体チップを実装するようにしである。
In addition, pads (not shown) that are connected to the fourth layer conductor pattern 70 or to the lower layer conductor pattern via vias are arranged on the upper surface of the uppermost insulating film, so that the semiconductor layer is formed on the surface of the multilayer wiring section 2. It's time to mount the chip.

上述のような多層回路基板の製造工程を、第5図を参照
しながら説明する。
The manufacturing process of the multilayer circuit board as described above will be explained with reference to FIG.

第5図において、1は、角形板状のセラミ・ンク基板で
ある。
In FIG. 5, reference numeral 1 indicates a ceramic ink substrate in the form of a square plate.

■ 導体パターン・入出力バッド・第1層の絶縁膜の形
成(第5図(a)参照) セラミック基板1の全表面に蒸着或いはスパッタリング
、無電解めっき手段で、銅等金Kl膜を形成し、その後
、エツチングして第1層の導体パターン及び入出力バッ
ドの下地となる金属パターンを設け、さらに銅等を電解
めっきして、セラミック基板1の中央部に第1層の導体
パターン10を、周縁に人出力パッド3を配列形成する
■ Formation of conductor patterns, input/output pads, and first layer insulating film (see Figure 5 (a)) A gold Kl film such as copper is formed on the entire surface of the ceramic substrate 1 by vapor deposition, sputtering, or electroless plating. After that, etching is performed to provide a metal pattern as a base for the first layer conductor pattern and the input/output pad, and further electrolytic plating is performed to form the first layer conductor pattern 10 in the center of the ceramic substrate 1. Human output pads 3 are arranged and formed on the periphery.

次に、スピンコード法等によりポリイミド系樹脂をセラ
ミツク基板1全表面に塗布し、表面を平坦化した後に熱
処理(80″C〜100℃)して、セラミック基板1の
全表面にポリイミド系樹脂のモノマー絶縁層を設け、フ
ォトリソグラフィ技術により、第1層の導体パターン1
0に繋がるビイア用孔21部分、及びセラミック基板1
の周縁の枠形部分(入出力バッド3の上面を含む)のモ
ノマー絶縁層を除去するパターンニングを実施する。
Next, polyimide resin is applied to the entire surface of the ceramic substrate 1 using a spin code method, etc., and after the surface is flattened, it is heat treated (80''C to 100℃) to coat the entire surface of the ceramic substrate 1 with polyimide resin. A monomer insulating layer is provided, and the first layer conductor pattern 1 is formed using photolithography technology.
0 and the ceramic substrate 1
Patterning is performed to remove the monomer insulating layer from the frame-shaped portion around the periphery (including the top surface of the input/output pad 3).

その後熱処理(350℃〜400℃)して、モノマー状
態のポリイミド系樹脂を重合させ、ポリマー状態のポリ
イミド系樹脂よりなる第1層の絶縁膜20を形成する。
Thereafter, heat treatment (350° C. to 400° C.) is performed to polymerize the polyimide resin in a monomer state, thereby forming the first layer insulating film 20 made of the polyimide resin in a polymer state.

■ 導体層形成の前処理(第5図(b)参照)Pd、S
n等の触媒金属25を含んだ前処理剤に、セラミック基
板工を浸漬させて、第1層の絶縁膜20の表面を含むセ
ラミック基板1の全表面に、触媒金属25を付着させる
ことで、次工程の薄膜導体層の形成を可能とする。
■ Pretreatment for conductor layer formation (see Figure 5(b)) Pd, S
By immersing the ceramic substrate in a pretreatment agent containing the catalyst metal 25 such as n, etc., the catalyst metal 25 is attached to the entire surface of the ceramic substrate 1 including the surface of the first layer insulating film 20. This enables the formation of a thin film conductor layer in the next step.

■ 薄膜導体層の形成(第5図(C)参照)第1層の絶
縁膜20の表面、ビイア用孔21の内部、入出力バッド
3の表面を含むセラミック基板1の全表面に、銅を無電
解めっきして薄膜導体層31を形成する。
■ Formation of a thin film conductor layer (see FIG. 5(C)) Copper is applied to the entire surface of the ceramic substrate 1, including the surface of the first layer insulating film 20, the inside of the via hole 21, and the surface of the input/output pad 3. A thin film conductor layer 31 is formed by electroless plating.

またこの際にビイア用孔21に導体金属が充填されるこ
とで、ビイア用孔21がビイア90となる。
Further, at this time, the via hole 21 is filled with a conductive metal, so that the via hole 21 becomes a via 90.

■ フォトレジストパターン形成(第5図(d)参照)
薄膜導体層31の全表面に、フォトレジスト32を塗布
しレベリングして熱処理(80°C〜100 ”C) 
した後に、フォトリングラフィ手段によりパターンニン
グして、第2層の導体パターンに対応する部分のフォト
レジストが除去されたフォトレジストパターンを設ける
■ Photoresist pattern formation (see Figure 5(d))
A photoresist 32 is applied to the entire surface of the thin film conductor layer 31, leveled and heat treated (80°C to 100”C).
After that, patterning is performed by photolithography to provide a photoresist pattern in which portions of the photoresist corresponding to the second layer conductor patterns are removed.

■ 第2・・層の導体パターン形tc(第5図(e)参
照)フォトレジストパターン部分の裸出した薄膜導体層
31の上面に、銅を電解めっきすることで、銅膜を積層
して所望の厚さの第2層の導体パターン30を設ける。
■ Conductor pattern type tc of the second layer (see Figure 5(e)) A copper film is laminated by electrolytically plating copper on the exposed top surface of the thin film conductor layer 31 in the photoresist pattern part. A second layer conductor pattern 30 having a desired thickness is provided.

■ WtM導体層のパターン化(第5図(f)参照)有
機溶剤を用いてフォトレジスト32を剥離した後に、ク
イックエツチングすることで、不、要な薄膜導体層、即
ち第1層の絶縁膜20の表面の薄膜導体層31.セラミ
ック基板の周縁の枠部分の薄膜導体層31を剥離して、
薄膜導体層をバターニングする。
■ Patterning of the WtM conductor layer (see Fig. 5(f)) After removing the photoresist 32 using an organic solvent, quick etching is performed to remove unnecessary thin film conductor layers, that is, the first layer of insulating film. Thin film conductor layer 31 on the surface of 20. Peeling off the thin film conductor layer 31 on the frame portion of the periphery of the ceramic substrate,
Buttering the thin film conductor layer.

前述の手段を繰り返し実施することで、第2層の導体パ
ターン30の上に、第2層の絶縁膜、第3層の導体パタ
ーン、第3層の絶縁膜、第4層の導体パターンの順に積
層形威し、第3図に示すような多層回路基板を設けてい
る。
By repeating the above-described steps, the second layer insulating film, the third layer conductor pattern, the third layer insulating film, and the fourth layer conductor pattern are formed on the second layer conductor pattern 30 in this order. A multilayer circuit board as shown in FIG. 3 is provided.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、セラもツク基板1は予め、研磨等して表面を
平滑に仕上げているが、微視的に見れば、表面にマイク
ロクランクが存在する。
Incidentally, although the surface of the ceramic substrate 1 has been polished or otherwise smoothed in advance, when viewed microscopically, microcranks are present on the surface.

このマイクロクラックの中に、IN!導体層を形成する
際の前処理の触媒金属25が食い込んでおり、薄膜導体
層のパターン化時に除去されずに、第5図(f)に図示
したようにセラミック基板1の入出力パッド3間に触媒
金属25の残滓が発生する。
IN in this micro crack! The catalyst metal 25 used in the pre-treatment when forming the conductor layer has eaten into the space between the input and output pads 3 of the ceramic substrate 1 as shown in FIG. A residue of the catalyst metal 25 is generated.

多層回路基板になると、この残滓が薄膜導体層の層数即
ち第2層以上の導体パターン層の暦数に等しい回数だけ
発生して累積され、その結果従来の多層回路基板は、入
出力パッド間の絶縁が確保されないという問題点があっ
た。
In the case of multilayer circuit boards, this residue is generated and accumulated a number of times equal to the number of thin film conductor layers, that is, the number of conductor pattern layers from the second layer onwards, and as a result, conventional multilayer circuit boards have There was a problem that insulation was not ensured.

なお、この残滓を除去するために、iim導体層の除去
の為のクイックエツチングの強化、及び長時間化が考え
られるが、このような処置を実施すると、微細化された
導体パターンがさらに細く侵されたり、或いは導体パタ
ーンの膜厚が薄くなって導体パターンが劣化する。
In order to remove this residue, it is possible to strengthen and prolong the quick etching for removing the IIM conductor layer, but if such a treatment is carried out, the fine conductor pattern will become even thinner and eroded. Otherwise, the film thickness of the conductor pattern becomes thinner and the conductor pattern deteriorates.

本発明はこの、ような点に鑑みて創作されたもので、配
線パターンの接続の信頼度が高く、且つ入出力パッド間
の絶縁性の信頼度が高い多層回路基板を提供することを
目的としている。
The present invention was created in view of these points, and aims to provide a multilayer circuit board with high reliability in connection of wiring patterns and high reliability in insulation between input and output pads. There is.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を遠戚するために本発明は、第1図に例示し
たように、絶縁層と導体層を交互に積層した多層配線部
2を、セラミック基板1の中央部に設け、セラミック基
板1の周縁の表面に入出力バッド3を配列した回路基板
において、最下層の絶縁層である第1層の絶縁1111
20を、入出力パッド3を除いたセラミック基板1の周
縁の表面の全面まで、延伸して形成した構成とする。
In order to achieve the above object, the present invention provides a multilayer wiring section 2 in which insulating layers and conductor layers are alternately laminated in the center of a ceramic substrate 1, as illustrated in FIG. In the circuit board on which input/output pads 3 are arranged on the surface of the peripheral edge of
20 is formed by extending to the entire surface of the peripheral edge of the ceramic substrate 1 excluding the input/output pads 3.

また、第2図に例示したように、入出力バッド3の周縁
部3Aを覆うように、最下層の絶縁膜20をセラミック
基板lの周縁の表面の全面まで、延伸して形成した構成
とする。
Further, as illustrated in FIG. 2, the lowermost insulating film 20 is formed by extending to the entire surface of the periphery of the ceramic substrate l so as to cover the periphery 3A of the input/output pad 3. .

〔作用〕[Effect]

上述のように、入出力パッド3部分を除き、セラミック
基板1の表面には、多層配線部2の第1層の絶縁膜20
が延伸して形成されている。
As described above, the first layer insulating film 20 of the multilayer wiring section 2 is formed on the surface of the ceramic substrate 1 except for the input/output pad 3 portion.
is formed by stretching.

したがって、第2層、第3層、第4層、・・・・・・の
導体パターン形成の前処理時には、触媒金属25がこの
第1層の絶縁膜20の表面に付着するだけである。
Therefore, during the pretreatment for forming conductor patterns in the second layer, third layer, fourth layer, . . . , the catalyst metal 25 only adheres to the surface of the first layer insulating film 20.

即ち、セラえツク基板の表面に触媒金属の残滓が発生す
ることが阻止されるので、入出力パッド間の絶縁性が確
保される。
That is, since the generation of catalyst metal residue on the surface of the ceramic substrate is prevented, insulation between the input and output pads is ensured.

また、薄膜導体層のパターン化をクイックエツチングす
ることで、不要部分のffl膜導体層を除去できるので
、微細化された導体パターンが侵される恐れが少なくて
、配線パターンの接続の信頼度が高い。
In addition, by quick etching the patterning of the thin film conductor layer, unnecessary portions of the FFL film conductor layer can be removed, so there is less risk of the fine conductor pattern being attacked and the reliability of wiring pattern connections is high. .

〔実施例〕〔Example〕

以下図を参照しながら、本発明を具体的に説明する。な
お、全図を通じて同一符号は同一対象物を示す。
The present invention will be specifically described below with reference to the drawings. Note that the same reference numerals indicate the same objects throughout the figures.

第1図は第1の発明の断面図、第2図は第2の発明の断
面図である。
FIG. 1 is a sectional view of the first invention, and FIG. 2 is a sectional view of the second invention.

第1図において、角板状のセラミック基板1の中央部に
角形の多層配線部2を設け、セラミック基板1の周縁の
表面に多数の入出力パッド3を配設しである。
In FIG. 1, a square multilayer wiring section 2 is provided in the center of a ceramic substrate 1 in the shape of a square plate, and a large number of input/output pads 3 are arranged on the peripheral surface of the ceramic substrate 1.

入出力パッド3のそれぞれは、セラミック基板1の表面
に形成した薄膜パターン(図示省略)を介して多層配線
部2の第1層の導体パターンに接続されている。
Each of the input/output pads 3 is connected to a first layer conductor pattern of the multilayer wiring section 2 via a thin film pattern (not shown) formed on the surface of the ceramic substrate 1.

多層配線部2は、セラミック基板1の表面に、第1層の
導体パターン10、第1層の絶縁M20、第2層の導体
パターン30、第2層の絶縁W140、第3層の導体パ
ターン50、第3層の絶縁膜60、最上部導体層である
第4層の導体パターン70の順に積層することで、構成
されている。
The multilayer wiring section 2 includes, on the surface of the ceramic substrate 1, a first layer conductor pattern 10, a first layer insulation M20, a second layer conductor pattern 30, a second layer insulation W140, and a third layer conductor pattern 50. , a third layer of insulating film 60, and a fourth layer of conductor pattern 70, which is the top conductor layer, are stacked in this order.

上下に積層した導体パターン間は、所望の個所にビイア
90を設けることで接続され、また、最上部の絶縁膜の
上面には、第4層の導体パターン70に繋がるか或いは
ビイアを介して下層の導体パターンに繋がるパッド(図
示省略)を配列して、多層配線部2の表面に半導体チッ
プを実装するようにしである。
The conductor patterns laminated above and below are connected by providing vias 90 at desired locations, and the upper surface of the uppermost insulating film is connected to the conductor pattern 70 of the fourth layer or connected to the lower layer through the vias. A semiconductor chip is mounted on the surface of the multilayer wiring section 2 by arranging pads (not shown) connected to the conductor patterns.

一方、上述の第1層の導体パターン10と入出力バッド
3とは同工程で同時に形成されたものである。
On the other hand, the above-described first layer conductor pattern 10 and input/output pad 3 are formed at the same time in the same process.

本発明においては、この第1層の絶縁膜20を、多層配
線部2の4周に延伸して、入出力バッド3を除いたセラ
ミック基板1の周縁の表面の全面即ち入出力パッド形成
領域まで形成したものである。
In the present invention, this first layer insulating film 20 is extended around the four circumferences of the multilayer wiring section 2 to cover the entire surface of the peripheral edge of the ceramic substrate 1 excluding the input/output pads 3, that is, the input/output pad forming area. It was formed.

このようにセラミック基板1の周縁、即ち入出力パッド
形成領域まで延伸した第1層の絶縁膜20は、下記のよ
うにして形成される。
The first layer insulating film 20, which extends to the periphery of the ceramic substrate 1, that is, to the input/output pad forming area, is formed in the following manner.

スピンコード法等によりポリイミド系樹脂をセラくツク
基板1全表面に塗布し、表面を平坦化した後に熱処理(
80″C〜100°C) して、セラミック基板1の全
表面器こポリイミド系樹脂のモノマー絶縁層を設け、そ
の後フォトリソグラフィ技術により、第1層の導体パタ
ーン10に繋がるビイア用孔21部分、及び入出力パッ
ド3の表面のモノマー絶縁層を除去するパターンニング
を実施する。
Polyimide resin is applied to the entire surface of the ceramic substrate 1 using a spin code method or the like, and after the surface is flattened, heat treatment (
80''C to 100°C), a monomer insulating layer of polyimide resin is applied to the entire surface of the ceramic substrate 1, and then a via hole 21 portion connected to the conductor pattern 10 of the first layer is formed using photolithography technology. Then, patterning is performed to remove the monomer insulating layer on the surface of the input/output pad 3.

そして、熱処理(350°C〜400°C)シて、モノ
マー状態のポリイミド系樹脂を重合させ、ポリマー状態
のポリイミド系樹脂よりなる第1層の絶縁膜20とする
Then, the polyimide resin in the monomer state is polymerized by heat treatment (350° C. to 400° C.) to form the first layer insulating film 20 made of the polyimide resin in the polymer state.

本発明によれば、人出力バフ13部分を除き、セラミッ
ク基板1の表面には、多層配線部2の第工層の絶縁膜2
0が延伸して形成されている。
According to the present invention, the insulating film 2 of the first layer of the multilayer wiring section 2 is formed on the surface of the ceramic substrate 1 except for the human output buff 13 portion.
0 is formed by stretching.

したがって、第2層、第3層、第4層、・・・・・・の
導体パターン形成の前処理時には、この第1層の絶縁膜
20の表面に触媒金属が付着するだけであって、セラミ
ック基板の表面に触媒金属の残滓が発生することが阻止
される。
Therefore, during pre-treatment for forming conductor patterns in the second layer, third layer, fourth layer, etc., the catalytic metal is only attached to the surface of the first layer insulating film 20, and The generation of catalyst metal residue on the surface of the ceramic substrate is prevented.

また、薄膜導体層のパターン化をクイックエツチングで
実施し得るので、微細化された導体パターンが侵される
恐れが少ない。
In addition, since the thin film conductor layer can be patterned by quick etching, there is less risk of erosion of the fine conductor pattern.

第2図に示す多層回路基板は、入出力パッド3の周縁部
3plを覆うように、第1層の絶縁膜20をセラミック
基板lの周縁の表面の全面まで、延伸して形成した以外
は、第1図に示した多層回路基板と同構造である。
The multilayer circuit board shown in FIG. 2 has the following features except that the first layer insulating film 20 is formed by extending to the entire surface of the peripheral edge of the ceramic substrate l so as to cover the peripheral edge 3pl of the input/output pad 3. It has the same structure as the multilayer circuit board shown in FIG.

このように、入出力パッド3の周縁部3^が第1層の絶
縁膜20で覆われているので、入出力バッド3を近接し
た配列した多層回路基板に適用して、入出力パッド間の
絶縁性が確実に保証されるという利点がある。
In this way, since the peripheral edge 3^ of the input/output pad 3 is covered with the first layer of insulating film 20, the input/output pad 3 can be applied to a multilayer circuit board arranged close to each other, and the area between the input/output pads can be This has the advantage that insulation is reliably guaranteed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、多層配線部以外の入出力
パッド形成領域にも、第1層の絶縁膜を形成した多層回
路基板であって、各導体層の配線パターンの接続の信頼
度が高く、且つ入出カバ・ノド間の絶縁性の信頼度が高
いという、実用上で優れた効果を奏する。
As explained above, the present invention provides a multilayer circuit board in which a first layer of insulating film is formed also in the input/output pad forming area other than the multilayer wiring part, and the reliability of the connection between the wiring patterns of each conductor layer is improved. It has excellent practical effects, such as high reliability of insulation between the input and output covers and the throat.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の発明の断面図、 第2図は第2の発明の断面図、 第3図は従来例の断面図、 第4図は多層回路基板の斜視図、 第5図は従来の製造工程を示す図である。 図において、 1はセラミック基板、 2は多層配線部、3は入出力パ
ッド、  3Aは周縁部、10は第1層の導体パターン
、 20は第1層の絶縁膜、 25は触媒金属、 30は第2層の導体パターン、 31は薄膜導体層、 32はフォトレジスト、 40は第2層の絶縁膜、 50は第3層の導体パターン、 60は第3層の絶縁膜、 70は第4層の導体パターン、 90はビイアをそれぞれ示す。 多層ロ?6基板の剃視図 第 4 図 従来の製造工巷を示す図 第S図(その1) 第 2 図 2多層配pJ郁 3B9jの断面図 第 3 図 第5巨(子の2)
Fig. 1 is a sectional view of the first invention, Fig. 2 is a sectional view of the second invention, Fig. 3 is a sectional view of the conventional example, Fig. 4 is a perspective view of the multilayer circuit board, and Fig. 5 is the conventional example. It is a figure showing the manufacturing process of. In the figure, 1 is a ceramic substrate, 2 is a multilayer wiring part, 3 is an input/output pad, 3A is a peripheral part, 10 is a first layer conductor pattern, 20 is a first layer insulating film, 25 is a catalyst metal, 30 is a 2nd layer conductor pattern, 31 thin film conductor layer, 32 photoresist, 40 2nd layer insulating film, 50 3rd layer conductor pattern, 60 3rd layer insulating film, 70 4th layer The conductive patterns 90 and 90 indicate vias, respectively. Multi-layered? 6. Shaved view of the board. 4. Diagram showing the conventional manufacturing process.

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁層と導体層を交互に積層した多層配線部(2
)を、セラミック基板(1)の中央部に設け、該セラミ
ック基板(1)の周縁の表面に入出力パッド(3)を配
列した回路基板において、 最下層の絶縁膜(20)が、該入出力パッド(3)を除
いた、入出力パッド形成領域まで延伸して形成されたこ
とを特徴とする多層回路基板。
(1) Multilayer wiring section (2
) is provided in the center of a ceramic substrate (1), and input/output pads (3) are arranged on the peripheral surface of the ceramic substrate (1), and the lowermost insulating film (20) A multilayer circuit board characterized in that it is formed by extending to an input/output pad formation area, excluding an output pad (3).
(2)絶縁層と導体層を交互に積層した多層配線部(2
)を、セラミック基板(1)の中央部に設け、該セラミ
ック基板(1)の周縁の表面に入出力パッド(3)を配
列した回路基板において、 該入出力パッド(3)の周縁部(3A)を覆うように、
最下層の絶縁膜(20)が、入出力パッド形成領域まで
延伸して形成されたことを特徴とする多層回路基板。
(2) Multilayer wiring section in which insulating layers and conductor layers are laminated alternately (2
) is provided in the center of the ceramic substrate (1), and input/output pads (3) are arranged on the surface of the peripheral edge of the ceramic substrate (1). ) to cover
A multilayer circuit board characterized in that a lowermost insulating film (20) is formed extending to an input/output pad forming area.
JP7231690A 1990-03-20 1990-03-20 Multiplayer circuit board Pending JPH03270294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7231690A JPH03270294A (en) 1990-03-20 1990-03-20 Multiplayer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7231690A JPH03270294A (en) 1990-03-20 1990-03-20 Multiplayer circuit board

Publications (1)

Publication Number Publication Date
JPH03270294A true JPH03270294A (en) 1991-12-02

Family

ID=13485753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7231690A Pending JPH03270294A (en) 1990-03-20 1990-03-20 Multiplayer circuit board

Country Status (1)

Country Link
JP (1) JPH03270294A (en)

Similar Documents

Publication Publication Date Title
US5891795A (en) High density interconnect substrate
US4918811A (en) Multichip integrated circuit packaging method
US4783695A (en) Multichip integrated circuit packaging configuration and method
US5266446A (en) Method of making a multilayer thin film structure
KR100977436B1 (en) Interposer and electronic device using the same
JP3954294B2 (en) Manufacturing method of multilayer circuit structure
CA1284692C (en) Multilayer interconnection system for multichip high performance semiconductor packaging
KR20070082537A (en) Circuit board structure and method for fabricating the same
JPH04345779A (en) Manufacture of electric connecting element
JPH0423390A (en) Manufacture of multilayer wiring board
JPH0215517A (en) Manufacture of totally shielded signal line
KR102069659B1 (en) Method for manufacturing semiconductor package substrate and semiconductor package substrate manufactured using the same
EP1112672A1 (en) Low-impedance high-density deposited-on-laminate structures having reduced stress
KR100720049B1 (en) Multilayer wiring board and method of producing the same
US5196089A (en) Multilayer ceramic substrate for mounting of semiconductor device
JP2008172151A (en) Multilayer wiring circuit board
WO1991008588A1 (en) High power, high density interconnect method and apparatus for integrated circuits
US6150074A (en) Method of forming electrically conductive wiring pattern
JPH05509198A (en) Method for manufacturing multilayer thin film structure
KR20130031592A (en) Method for manuracturing printed circuit board with via and fine pitch circuit and printed circuit board by the same method
JPH03270294A (en) Multiplayer circuit board
KR20020022477A (en) Manufacturing method for build-up multi layer printed circuit board using physical vapor deposition
JP2002290048A (en) Via forming method in multilayer circuit board
KR100296001B1 (en) Multi-layer hybrid integrated circuit manufacturing method
JPH0496254A (en) Thin film multi-layered circuit board an manufacture thereof