JPH03270002A - Laminated inductor and its manufacture - Google Patents

Laminated inductor and its manufacture

Info

Publication number
JPH03270002A
JPH03270002A JP7166790A JP7166790A JPH03270002A JP H03270002 A JPH03270002 A JP H03270002A JP 7166790 A JP7166790 A JP 7166790A JP 7166790 A JP7166790 A JP 7166790A JP H03270002 A JPH03270002 A JP H03270002A
Authority
JP
Japan
Prior art keywords
sintering
layer
conductor
magnetic substance
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7166790A
Other languages
Japanese (ja)
Inventor
Takashi Kizara
木皿 孝始
Takafumi Sato
隆文 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP7166790A priority Critical patent/JPH03270002A/en
Publication of JPH03270002A publication Critical patent/JPH03270002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulating Of Coils (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To eliminate a disconnection and to make an insulating property good by sintering a laminated inductor in which an insulator layer having a melting point lower than the sintering temperature of a magnetic substance and a conductor is laid between the magnetic substance and the conductor. CONSTITUTION:A glass sheet is used as an electrical insulator layer. An SiO2-PbO-based component, an SiO2-ZnO-based component or an SiO2-Al2O3-PbO-based component is used as the component for the glass sheet. It is desirable to use the component whose melting point is lower than and close to the sintering temperature of a magnetic substance layer and a conductor layer and whose behavior at a sintering process is similar to the layers; a material which easily relaxes the difference in a contraction rate between the magnetic substance layer and the conductor layer due to the existence of the electrical insulator layer is selected. In addition, when a hot pressurization sintering method which makes a sintering operation possible even at a low temperature is used at the same time, a more effective manufacturing operation can be executed. By the method, it is possible to execute the sintering operation which makes the difference in a contraction behavior extremely small even in the magnetic substance layer, the conductor layer and the electrical insulator layer whose contraction rate differs largely. From a viewpoint that, by the hot pressurization sintering method, the shape of a final product can be obtained directly and that a cutting process and a grinding process can be shortened or omitted, a hot press or a hot hydrostatic pressure press is suitable.

Description

【発明の詳細な説明】 イ1発明の目的 〔産業上の利用分野〕 本発明は積層型インダクタに関するものである。[Detailed description of the invention] B1 Purpose of the invention [Industrial application field] The present invention relates to a multilayer inductor.

〔従来の技術〕[Conventional technology]

従来の積層型インダクタは一般に磁性体として酸化鉄主
体のフェライト磁性体を用いて、フェライト粉末をメチ
ルセルロース、ブチラール樹脂等の公知のバインダ及び
溶剤と混練したペーストを印刷法により薄い層に加工し
、磁性体層を作り、さらに導電体層としてはAg−Pd
、 Ag、その他の合金や金属の粉末とバインダから成
るペーストを該磁性体層に重ねて印刷したり、又は各印
刷で得た薄い層を重ねることにより積層体を形成し、そ
の積層体を焼結炉にて磁性体の所要焼結温度及び時間で
処理し作成していた。
Conventional multilayer inductors generally use a ferrite magnetic material mainly composed of iron oxide as the magnetic material, and a paste made by kneading ferrite powder with a known binder and solvent such as methyl cellulose or butyral resin is processed into a thin layer by a printing method to create a magnetic layer. A conductor layer is made of Ag-Pd.
, Ag, other alloys or metal powders and a binder are printed on the magnetic layer, or a laminate is formed by stacking the thin layers obtained by each printing, and the laminate is sintered. It was created by processing the magnetic material in a furnace at the required sintering temperature and time.

しかし、一般に導電体部のAg−Pd合金が700〜8
00℃付近で焼結が完了するのに対して磁性体層の焼結
には1000℃以上を必要とするため普通焼結は磁性体
に合わせて1000℃以上で行われ、磁性体層と導電体
層とで焼結での収縮に差が生じてしまい、特にAg−P
d等の層の厚みが数十μmと薄い為に焼結中に連続性が
保てず破断し、結果的に断線状態を起こす原因となるこ
とがしばしばあった。又、焼結後インダクタに外部電極
端子を焼き付ける際、前述したように磁性層と導体部の
焼結時での収縮率が異なる為、内部電極と外部電極が完
全に接合せず局部的に接合面積が小さくなる為直流抵抗
を増大させるといった問題が生じていた。
However, in general, the Ag-Pd alloy of the conductor part is 700 to 8
While sintering is completed at around 00°C, sintering of the magnetic layer requires a temperature of 1000°C or higher. There is a difference in shrinkage during sintering between the body layer and the Ag-P layer.
Since the thickness of the layer such as d is as thin as several tens of micrometers, continuity cannot be maintained during sintering and it often breaks, resulting in a disconnection state. Also, when baking the external electrode terminals onto the inductor after sintering, the shrinkage rates of the magnetic layer and the conductor part during sintering are different, as mentioned above, so the internal electrodes and external electrodes do not join completely, but only locally. Since the area becomes smaller, a problem arises in that DC resistance increases.

また、高温で焼結すると磁性体層のフェライトと導電体
層の金属(例えばAg−Pdなど)との反応により特性
の劣化をもたらす欠点があった。逆に焼結温度を低くし
た場合(例えば1000″C未満)磁性層のフェライト
自体が十分焼結せず密度不足の不完全な焼結体となり、
インダクタでの機械的強度が十分に取れず、又磁気特性
も不十分なものとなる欠点があった。
Furthermore, when sintered at high temperatures, there is a drawback that properties deteriorate due to a reaction between the ferrite of the magnetic layer and the metal (eg, Ag-Pd) of the conductive layer. On the other hand, if the sintering temperature is lowered (for example, lower than 1000"C), the ferrite itself in the magnetic layer will not be sufficiently sintered, resulting in an incomplete sintered body with insufficient density.
There were drawbacks in that the inductor did not have sufficient mechanical strength and its magnetic properties were also insufficient.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はこれらの欠点を除去するため、磁性体層と導電
体層の接合面の間にガラスシートの様な磁性体層や導電
体層に比して、融点の比較的低い電気絶縁体の層を設は
必要により熱間加圧焼結工程を組合せることにより断線
がなく、絶縁性が良好な、しかも丈夫で小型化が可能な
積層型インダクタとその製造方法を提供しようとするも
のである。
In order to eliminate these drawbacks, the present invention uses an electrical insulator such as a glass sheet, which has a relatively lower melting point than the magnetic layer and the conductive layer, between the bonding surfaces of the magnetic layer and the conductive layer. The purpose of the present invention is to provide a multilayer inductor that does not cause wire breakage and has good insulation properties by combining layers with a hot-pressure sintering process if necessary, and also provides a durable and compact multilayer inductor, as well as a method for manufacturing the same. be.

口0発明の構成 〔課題を解決するための手段〕 本発明は磁性体層と導電体層の接合部に磁性体及び導電
体の各焼結温度より低い融点を持つ電気絶縁体層を設け
て焼結することにより磁性体層と導電体層との反応によ
る特性劣化、内部電極間での断線等の不良を失くし、更
に前述の製造工程の焼結過程で熱加圧法を用いることに
より従来得られなかった複雑なパターンや極薄形の積層
型インダクタとその製造方法を提供するものである。
Structure of the Invention [Means for Solving the Problems] The present invention provides an electric insulator layer having a melting point lower than the respective sintering temperatures of the magnetic material and the conductive material at the joint between the magnetic material layer and the conductive material layer. By sintering, defects such as deterioration of characteristics due to the reaction between the magnetic layer and the conductive layer and disconnection between internal electrodes can be eliminated, and by using the hot press method in the sintering process of the manufacturing process mentioned above, The present invention provides a multilayer inductor with a complicated pattern and an ultra-thin shape, which has not been available before, and a method for manufacturing the same.

即ち本発明は、強磁性体よりなる磁性体層とコイル状に
構成した導電体層を積層方向に重畳するよう構成してな
る積層型インダクタにおいて、磁性体層と導電体層の接
合面に前記磁性体及び導電体の焼結温度より低い融点を
持つ電気絶縁体層を形成することを特徴とする積層型イ
ンダクタ、および前記の積層型インダクタの製造におい
て、その焼結工程を熱間加圧法により処理したことを特
徴とする積層型インダクタの製造方法を提供する。
That is, the present invention provides a multilayer inductor in which a magnetic layer made of a ferromagnetic material and a conductive layer formed in a coil shape are superimposed in the stacking direction, in which the above-mentioned layer is formed on the joining surface of the magnetic layer and the conductive layer. A multilayer inductor characterized by forming an electrical insulating layer having a melting point lower than the sintering temperature of the magnetic material and the conductive material, and in the production of the above-described multilayer inductor, the sintering process is performed by a hot pressing method. Provided is a method for manufacturing a multilayer inductor characterized in that it is processed.

〔作用〕[Effect]

磁性体と導電体の間に前2者の焼結温度より低い融点を
持つ絶縁体層を介在させた積層型インダクタを焼結する
ことにより、焼結積層体中の導電体の破断を防止し、更
に上記絶縁体層を介在させた積層型インダクタンスの積
層体の焼結過程で熱間加圧法を用いて焼結することによ
り、導電体の破断不良を起こすことなく高密度化でき、
高い特性の積層型インダクタが製造できる。
By sintering a multilayer inductor in which an insulating layer with a melting point lower than the sintering temperature of the former two is interposed between the magnetic material and the conductive material, breakage of the conductive material in the sintered laminate can be prevented. Furthermore, by sintering the laminated body of the laminated inductance with the insulating layer interposed therebetween using a hot pressing method, it is possible to increase the density without causing failure of the conductor.
Multilayer inductors with high characteristics can be manufactured.

〔実施例〕〔Example〕

本実施例では電気絶縁体層としてガラスシートを用い、
ガラスシートの成分としては5iO2−PbO系、5i
02−ZnO系、5j02−A120a−PbO系を用
いた。磁性体層及び導電体層の焼結温度より融点が低く
かつ近いもので焼結過程での挙動が似かよったものが望
ましく電気絶縁体層の存在により磁性体層と導電体層と
の収縮率の差を緩和しやすい材料が選択される。
In this example, a glass sheet is used as the electrical insulator layer,
The components of the glass sheet are 5iO2-PbO system, 5i
02-ZnO system and 5j02-A120a-PbO system were used. It is desirable to use a material whose melting point is lower and closer to the sintering temperature of the magnetic layer and the conductive layer, and whose behavior during the sintering process is similar. A material that can easily alleviate the difference is selected.

しかしながら−殻内に収縮率の大きく異なる磁性体層、
導電体層、電気絶縁体層を使用するため通常の粉末冶金
法による焼結では均一な組織をもつ焼結体を得ることは
非常に難しい。そこで低温でも焼結可能な熱間加圧焼結
法を併用することにより、より効果な製造ができる。
However - a magnetic layer with significantly different shrinkage rates within the shell;
Since a conductive layer and an electrically insulating layer are used, it is very difficult to obtain a sintered body with a uniform structure by sintering using a normal powder metallurgy method. Therefore, by using a hot pressure sintering method that allows sintering even at low temperatures, more effective production can be achieved.

この方法では収縮率の大きく異なる磁性体層、導電体層
、電気絶縁体層でも収縮挙動の差を極力小さくした焼結
が可能である。熱間加圧焼結法はいわゆるホットプレス
、熱間静水圧プレス、熱間押し出しのいずれでも可能で
あるが直接最終製品形状が得られ従来法に比べ切断、研
削加工工程を短縮もしくは省略できるという観点からホ
ットプレスや熱間静水圧プレスが適している。
With this method, it is possible to sinter magnetic layers, conductive layers, and electrical insulating layers that have significantly different shrinkage rates with as little difference in shrinkage behavior as possible. The hot pressure sintering method can be done using any of the so-called hot presses, hot isostatic presses, and hot extrusions, but it is said that the final product shape can be obtained directly and the cutting and grinding processes can be shortened or omitted compared to conventional methods. From this point of view, hot press and hot isostatic press are suitable.

以下に実施例を具体的に示す。Examples will be specifically shown below.

(実施例−1) 磁性体としてNi−Zn系フェライトを用い、内部電極
用導電体としてAg−Pd合金、外部接続用端子電極と
してAgのペースト状粉末により形成した薄層を用い、
接合部に電気絶縁体層として 5in2A120+−PbO系のガラスシートを印刷し
、然る後積層した積層体を1000℃の温度で60分間
焼結を行った。
(Example-1) Using Ni-Zn ferrite as the magnetic material, Ag-Pd alloy as the conductor for internal electrodes, and a thin layer formed of Ag paste powder as the terminal electrode for external connection,
A 5-in2 A120+-PbO glass sheet was printed as an electrical insulator layer on the joint, and the laminated body was then sintered at a temperature of 1000° C. for 60 minutes.

得られた焼結体の断面の組織を観察すると導電体部のA
g−Pd合金は約20μmの幅でほぼ均一であり破断す
ることもなく、磁性体と導電体との間に数μmのガラス
層が見られ密着の度合いも良好であり密度も積層体とし
て5.2g/Cm’と十分な焼結体が得られ試料はすべ
て良品であった。
Observing the structure of the cross section of the obtained sintered body, A of the conductor part
The g-Pd alloy has a width of approximately 20 μm and is almost uniform and does not break. A glass layer of several μm is observed between the magnetic material and the conductive material, and the degree of adhesion is good, and the density as a laminate is 5. A sufficient sintered body of .2 g/Cm' was obtained, and all the samples were of good quality.

比較例として従来の製造方法すなわち磁性体のNi−Z
n系フェライトと導電体層のAg−Pdのペースト状の
粉末を印刷し積層した積層体を1000℃の温度で60
分間焼結して試料片を得た。この従来の製造方法で得た
焼結体の導体部のAg−Pdの幅が不均一となり、又う
ねった状態のものや途中で破断したものが多く、しかも
磁性体と導電体が反応を起こしていることが断面組織よ
り観察され、約30%が不良であった。更に本発明で得
られた焼成体を40℃X90%R−Hの恒温恒湿中で耐
湿度負荷試験を200時間行った結果すべて良好であっ
た。従来のものは、数十時間経過後水分の媒介により通
電中短絡を起こすことがしばしばであり、約30%不良
となった。
As a comparative example, a conventional manufacturing method, that is, a magnetic Ni-Z
A laminate made by printing and laminating paste-like powder of n-type ferrite and Ag-Pd as a conductive layer was heated at a temperature of 1000°C for 60 minutes.
A sample piece was obtained by sintering for a minute. The width of the Ag-Pd in the conductor part of the sintered body obtained by this conventional manufacturing method is uneven, and there are many cases in which the conductor part is undulating or broken, and moreover, the magnetic material and the conductor react with each other. It was observed from the cross-sectional structure that about 30% of the samples were defective. Further, the fired body obtained according to the present invention was subjected to a humidity resistance load test for 200 hours at a constant temperature and humidity of 40° C. and 90% RH, and all results were good. In the conventional type, short circuits often occur during energization due to the presence of moisture after several tens of hours, resulting in a failure rate of approximately 30%.

(実施例−2) 磁性体としてNi−Zn系フェライトを、導電体として
のAg−Pd合金(内部型部)、Ag(外部接続用端子
電極)のペースト状粉末により形成された薄層の接合部
に電気絶縁体層として5i02−PbO系のガラスシー
トを印刷積層し、然る後積層体を800℃の温度で5分
間0.5ton/am”の力で加圧してホットプレス法
を用いて焼結した。その結果5°3g/c1の密度をも
つ積層インダクタの焼結体が得られた。
(Example-2) Bonding of thin layers formed of Ni-Zn ferrite as a magnetic material, Ag-Pd alloy (inner mold part) as a conductor, and paste-like powder of Ag (terminal electrode for external connection) A 5i02-PbO glass sheet was printed and laminated as an electrical insulator layer on the part, and then the laminated body was pressed at a temperature of 800°C for 5 minutes with a force of 0.5 ton/am'' using a hot press method. As a result, a sintered body of a laminated inductor having a density of 5°3 g/c1 was obtained.

得られた焼成体の断面の組織観察を行った結果、実施例
−1に見られた組織と同様な均一な組織が得られた。又
、従来の製造方法で製造された焼結体においては磁性体
と導電体が反応して合金化しはじめているのを組成分析
により確認されているが、本発明により得られた焼成体
においては磁性体と導電体の接合部にガラスシートが存
在していることからAg−Pdとの反応は見られなかっ
た。
As a result of observing the structure of the cross section of the obtained fired body, a uniform structure similar to that observed in Example-1 was obtained. In addition, in the sintered body manufactured by the conventional manufacturing method, it has been confirmed by composition analysis that the magnetic material and the conductive material begin to react and become alloyed, but in the sintered body obtained by the present invention, the magnetic material and the conductive material begin to react and become alloyed. Since the glass sheet was present at the junction between the body and the conductor, no reaction with Ag-Pd was observed.

次に、得られた積層型インダクタを40℃×90%R−
Hの恒温恒湿中で耐湿負荷試験を200時間行った。
Next, the obtained multilayer inductor was heated at 40°C x 90% R-
A humidity resistance load test was conducted for 200 hours in a constant temperature and humidity environment.

本実施例の試料片はすべて良好であったが、従来のもの
は時間の経過とともに直流抵抗が増大し、約15%が不
良となった。
All of the sample pieces of this example were good, but the DC resistance of the conventional samples increased over time, and about 15% were defective.

又得られた本実施例の焼結体の内部電極と外部電極の接
合部における断面の組織観察から約20μmの幅をもつ
内部電極が均一に外部電極に接合している状態が確認さ
れた。従来の焼結法で製造されたインダクタにおいては
外部電極が焼付けにより内部電極と接合させている為、
焼結性が悪く、その接合面積が小さくなり引っ張り強度
は0、5kg/cm2と小さくすぐに剥離したが、上述
の本発明において得られた焼成体は、内部電極と外部電
極を印刷時に同時に加工し、一体物で焼結している為そ
の接合性はよく引っ張り強度も2.0kg/cm+2と
良好な結果が得られた。
Further, from observation of the cross-sectional structure of the joint between the internal electrode and the external electrode of the obtained sintered body of this example, it was confirmed that the internal electrode having a width of about 20 μm was uniformly joined to the external electrode. In inductors manufactured using conventional sintering methods, the external electrodes are bonded to the internal electrodes by baking.
The sintering property was poor, the bonding area was small, and the tensile strength was as low as 0.5 kg/cm2, which caused the product to peel off easily. However, since it was sintered as a single piece, its bondability was good and the tensile strength was 2.0 kg/cm+2, which was a good result.

ハ1発明の効果 〔発明の効果〕 以上述べた様に本発明によれば磁性体層と導電体層の接
合面にガラスシート等の電気絶縁層を入れ焼結すること
により均一な導電体の積層型インダクタの製造が可能と
なった。又、磁性体層と導電体層の接合面にガラスシー
ト等の電気絶縁体層を入れ熱間加圧焼結することにより
低い温度焼結され、しかも高い密度の磁性体が得られる
ため、高い電気特性が得られ、小体積で大きいインダク
タンス値を有する積層型インダクタの提供が可能となっ
た。更に外部電極の端子の加工も内部電極と同時に加工
し焼結で丈夫な接続が可能となった。
C1 Effects of the Invention [Effects of the Invention] As described above, according to the present invention, an electrically insulating layer such as a glass sheet is placed on the joint surface of the magnetic layer and the conductive layer and sintered to form a uniform conductor. It has become possible to manufacture multilayer inductors. In addition, by placing an electrical insulating layer such as a glass sheet on the joint surface of the magnetic material layer and the conductive material layer and performing hot pressure sintering, it is possible to sinter at a low temperature and obtain a magnetic material with high density. It has become possible to provide a multilayer inductor with good electrical characteristics and a small volume and a large inductance value. Furthermore, the external electrode terminals were processed at the same time as the internal electrodes, and sintering enabled a durable connection.

又波及的効果として磁性体層と導電体層の間に電気的絶
縁体層が形成されるため比較的電気抵抗の低い磁性体で
も高い特性の材料を選択することが可能となり効率のよ
い積層型インダクタが提供できる。
In addition, as a ripple effect, an electrical insulating layer is formed between the magnetic layer and the conductive layer, making it possible to select materials with high properties even for magnetic materials with relatively low electrical resistance, resulting in an efficient multilayer type. Inductor can be provided.

Claims (2)

【特許請求の範囲】[Claims] 1.強磁性体よりなる磁性体層とコイル状に構成した導
電体層を積層方向に重畳するよう構成してなる積層型イ
ンダクタにおいて、磁性体層と導電体層の接合面に前記
磁性体及び導電体の焼結温度より低い融点を持つ電気絶
縁体層を形成することを特徴とする積層型インダクタ。
1. In a multilayer inductor configured such that a magnetic layer made of a ferromagnetic material and a conductive layer formed in a coil shape are superimposed in the lamination direction, the magnetic material and the conductive material are provided on the joint surface of the magnetic layer and the conductive layer. A multilayer inductor characterized by forming an electrical insulator layer having a melting point lower than the sintering temperature of the inductor.
2.請求項第1項の積層型インダクタの製造工程におい
て、その焼結工程を熱間加圧法により処理したことを特
徴とする積層型インダクタの製造方法。
2. 2. A method for manufacturing a multilayer inductor according to claim 1, wherein the sintering step is performed by hot pressing.
JP7166790A 1990-03-19 1990-03-19 Laminated inductor and its manufacture Pending JPH03270002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7166790A JPH03270002A (en) 1990-03-19 1990-03-19 Laminated inductor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7166790A JPH03270002A (en) 1990-03-19 1990-03-19 Laminated inductor and its manufacture

Publications (1)

Publication Number Publication Date
JPH03270002A true JPH03270002A (en) 1991-12-02

Family

ID=13467179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7166790A Pending JPH03270002A (en) 1990-03-19 1990-03-19 Laminated inductor and its manufacture

Country Status (1)

Country Link
JP (1) JPH03270002A (en)

Similar Documents

Publication Publication Date Title
JP5881992B2 (en) Multilayer inductor and manufacturing method thereof
JP5048155B1 (en) Multilayer inductor
JP5048156B1 (en) Multilayer inductor
WO2013031243A1 (en) Magnetic material and coil component
CN107403678A (en) Multilayer coil component
JP2012238840A (en) Multilayer inductor
CN107226708A (en) The manufacture method of conjugant and conjugant
JP2002170736A (en) Laminated electronic component and its manufacturing method
JPH03148813A (en) Formation of conducting terminal to ceramic parts
CN102543407A (en) Laminated inductor and method of manufacturing the same
JP2020061409A (en) Multilayer electronic component
JP2022057922A (en) Electronic component and manufacturing method of electronic component
JP5108162B1 (en) Multilayer inductor
JPH03270002A (en) Laminated inductor and its manufacture
JPH04174505A (en) Laminate type inductor and manufacture
KR20160063014A (en) Method for manufacturing electric contact
JP2002343674A (en) Manufacturing method of laminated ceramic capacitor
JP2005268672A (en) Substrate
JP5129893B1 (en) Magnetic materials and coil parts
JPS5917227A (en) Method of producing composite laminated ceramic part
JPS60176208A (en) Laminated part and manufacture thereof
JPH0473909A (en) Laminated inductor and manufacture thereof
US11236024B2 (en) Method of metallizing ferrite ceramics and component comprising a metallized ferrite ceramic
JPH03138302A (en) Method for compacting metal-coated fine particles
DE2049571A1 (en) Semiconductor component