JPH03269993A - Microwave heating treatment device - Google Patents

Microwave heating treatment device

Info

Publication number
JPH03269993A
JPH03269993A JP6834590A JP6834590A JPH03269993A JP H03269993 A JPH03269993 A JP H03269993A JP 6834590 A JP6834590 A JP 6834590A JP 6834590 A JP6834590 A JP 6834590A JP H03269993 A JPH03269993 A JP H03269993A
Authority
JP
Japan
Prior art keywords
furnace
reduction
denitrification
microwave
roasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6834590A
Other languages
Japanese (ja)
Inventor
Hajime Sato
一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6834590A priority Critical patent/JPH03269993A/en
Publication of JPH03269993A publication Critical patent/JPH03269993A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves

Abstract

PURPOSE:To carry out denitration, calcination, and reduction processes generating no thermal loss continuously by microwaveheating while incorporating a calcinating furnace and a reducing furnace in a system. CONSTITUTION:Microwaves emitted from a microwave oscillator 2 is let pass through a waveguide 3 and radiated in a denitrating furnace 1, and heat and denitrate the uranyl nitrade solution 4. After the denitration process is over, a shutter 16 is opened, and a saucer 5 is transferred from a window 15 into a calcination and reduction furnace 13. Then, the shutter 16 is closed, and microwaves are radiated from a microwave oscillator 19 through a waveguide 20, a microwave absorption member 17 is heated to a calcination temperature, and the denitrated product in the saucer 5 is calcinated. The exhaust gas generated in the denitration and the calcination processes is let pass through exhaust pipes 9 and 23, processed in an exhaust gas process device 11, and released from an outlet pipe 12 to the outside. Consequently, the process is simplified, the thermal loss is prevented, and the processing time can be reduced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はたとえば硝酸ウラニル、硝酸プルトニルなどの
硝酸塩をマイクロ波照射して加熱脱硝処理したのち、大
気中に取り出すことなく連続して焙焼、還元処理できる
ように構成したマイクロ波加熱処理装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is a method of denitrifying nitrates such as uranyl nitrate and plutonyl nitrate by heating them with microwave irradiation, and then continuously denitrating them without taking them out into the atmosphere. The present invention relates to a microwave heat treatment apparatus configured to perform roasting and reduction treatment.

(従来の技術) たとえば二酸化ウランなどの核燃料用酸化物は硝酸ウラ
ニル、硝酸プルトニルまたはこれらの混合物の硝酸塩酸
溶液にマイクロ波を照射し加熱して脱硝し、この脱硝生
成物を一旦、空気中に取り出して空気中または酸化雰囲
気中で加熱して焙焼したのち還元し、二酸化物として得
られている。
(Prior art) For example, oxides for nuclear fuel such as uranium dioxide are denitrated by irradiating a nitrate acid solution of uranyl nitrate, plutonyl nitrate, or a mixture thereof with microwaves and heating, and the denitrified product is once released into the air. It is taken out, heated and roasted in air or an oxidizing atmosphere, and then reduced to obtain a dioxide.

すなわち、硝酸塩溶液から二酸化物を得るまでのプロセ
スは第4図に示したように硝酸ウラニル(UO,(No
、 )2 )または硝酸プ)Li h ニル(Pu(N
O3)−)あるいはこれらの混合物の硝酸塩溶液を溶液
供給系aからマイクロ波照射加熱脱硝炉すへ供給する。
That is, the process to obtain dioxide from a nitrate solution is as shown in Figure 4, using uranyl nitrate (UO, (No.
, )2) or nitrate (Pu(N)
A nitrate solution of O3)-) or a mixture thereof is supplied from the solution supply system a to the microwave irradiation heated denitrification furnace.

硝酸塩溶液は脱硝炉すてマイクロ波の照射を受けて加熱
し、水分が蒸発して硝酸塩の結晶となる。
The nitrate solution is heated in a denitrification furnace by irradiation with microwaves, and the water evaporates to form nitrate crystals.

さらに温度上昇によって硝酸塩は分解し、結晶水と酸化
窒素(No2)ガスを放出して酸化物となる。
Furthermore, as the temperature rises, the nitrate decomposes, releasing crystal water and nitrogen oxide (No2) gas, and becoming an oxide.

このようにして脱硝処理された酸化物は電気ヒータ加熱
による焙焼炉Cへ供給され、さらに温度を上げて高次の
ウラン酸化物に焙焼処理される。この焙焼処理された酸
化物は電気ヒータ加熱による還元炉dに移送され、還元
性ガスが流れている加熱雰囲気で二酸化物(UO2)に
還元処理される。このようにして脱硝、焙焼、還元処理
工程を経た二酸化物は粉体調整工程eで適当な粒度に粉
砕処理されたのち、次工程の調整粉体払出し工程へ移行
される。
The oxide thus denitrified is supplied to a roasting furnace C heated by an electric heater, and the temperature is further raised to roast it into higher-order uranium oxide. The roasted oxide is transferred to a reduction furnace d heated by an electric heater, and is reduced to dioxide (UO2) in a heated atmosphere in which a reducing gas is flowing. The dioxide thus subjected to the denitrification, roasting, and reduction treatment steps is pulverized to an appropriate particle size in the powder preparation step e, and then transferred to the next step, the adjusted powder discharging step.

上述した硝酸塩溶液から二酸化物生成までの脱硝、焙焼
、還元処理工程における温度プロフィールは第S図に示
したようにそれぞれの処理工程が終る度毎に温度をいっ
たん常温付近まで冷却したのち、次工程で常温から所定
の温度まで上げてしかるべく処理している。
The temperature profile in the denitrification, roasting, and reduction treatment steps from the nitrate solution to the generation of dioxide as described above is as shown in Figure S. After each treatment step, the temperature is cooled to around room temperature, and then the temperature is During the process, the temperature is raised from room temperature to a predetermined temperature and processed accordingly.

(発明が解決しようとする課題) 従来のマイクロ波加熱処理装置を使用して脱硝から還元
までを連続処理して行うことはでない。
(Problems to be Solved by the Invention) It is not possible to perform continuous processing from denitration to reduction using a conventional microwave heat treatment apparatus.

すなわち、焙焼処理、還元処理の際の雰囲気ガス条件(
焙焼処理空気雰囲気、還元処理:N2+H,混合ガス雰
囲気)の違いによって焙焼炉3、還元炉4をそれぞれ設
ける必要がある。また、加熱源としては、脱硝炉2では
マイクロ波加熱を、焙焼炉3および還元炉4ではそれぞ
れ電気ヒータ加熱を用いている。そのため、処理工程が
複雑になり。
In other words, the atmospheric gas conditions during roasting treatment and reduction treatment (
It is necessary to provide a roasting furnace 3 and a reduction furnace 4 depending on the difference in the roasting treatment air atmosphere and the reduction treatment: N2+H, mixed gas atmosphere. Further, as a heating source, the denitration furnace 2 uses microwave heating, and the roasting furnace 3 and the reduction furnace 4 use electric heater heating. Therefore, the processing process becomes complicated.

かつ、保守性、保修性に課題があった。さらに、操作上
客々の処理を行う場合にはいったん冷却した後、次の処
理を行うことになるため、多大な熱損失および処理時間
を費やす等の課題があった。
Additionally, there were issues with maintainability and maintainability. Furthermore, when processing a customer, the next processing must be carried out after cooling, which poses problems such as a large amount of heat loss and processing time.

本発明は上記課題を解決するためになされたもので、焙
焼炉、還元炉を一体化し、かつ、マイクロ波加熱により
熱損失等のない脱硝、焙焼、還元処理を連続して行うこ
とができるマイクロ波加熱処理装置を提供することにあ
る。
The present invention has been made in order to solve the above problems, and it integrates a roasting furnace and a reduction furnace, and allows continuous denitrification, roasting, and reduction treatments without heat loss etc. by microwave heating. The purpose of the present invention is to provide a microwave heat treatment device that can perform the following steps.

〔発明の構成〕[Structure of the invention]

(i11題を解決するための手段) 本発明は硝酸塩溶液にマイクロ波を照射し加熱脱硝処理
して脱硝生成物を得る脱硝炉と、この脱硝炉に隣接して
設けられ前記脱硝炉から移送された前記脱硝生成物にマ
イクロ波を照射し加熱焙焼処理して焙焼生成物を得て、
この焙焼生成物に還元性ガスを作用させて還元生成物を
得るマイクロ波吸収材が内蔵された焙焼還元炉と、この
焙焼還元炉と前記脱硝炉との間に般けられた第↓の窓と
、この第1の窓を開閉する第1のシャッタと、前記焙焼
還元炉に設けられた第2の窓と、この第2の窓を開閉す
る第2のシャッタと、前記脱硝炉および焙焼還元炉から
放出する排ガスをそれぞれ排ガス処理系に導く排気管と
を具備したことを特徴とする。
(Means for Solving Problem i11) The present invention includes a denitrification furnace that irradiates a nitrate solution with microwaves and heats it to denitrify it to obtain a denitrification product, and a denitrification furnace that is installed adjacent to the denitrification furnace and that is transferred from the denitrification furnace. irradiating the denitrified product with microwaves and heating and roasting it to obtain a roasted product,
A torrefaction reduction furnace that has a built-in microwave absorber for producing a reduction product by applying a reducing gas to the torrefaction product; ↓ window, a first shutter that opens and closes this first window, a second window provided in the torrefaction reduction furnace, a second shutter that opens and closes this second window, and the denitration The present invention is characterized in that it is equipped with an exhaust pipe that guides the exhaust gas discharged from the furnace and the roasting reduction furnace to an exhaust gas treatment system.

(作 用) 硝酸塩溶液を脱硝炉内の受皿に供給する。第1のマイク
ロ波発振機から第1の導波管を通してマイクロ波を受皿
内の硝酸塩溶液に照射する。マイクロ波照射によって硝
酸塩溶液は加熱されて水分が蒸発し、さらにマイクロ波
を照射することによって硝酸塩は加熱脱硝されて脱硝生
成物となる。
(Function) The nitrate solution is supplied to the tray in the denitrification furnace. The nitrate solution in the saucer is irradiated with microwaves from a first microwave oscillator through a first waveguide. The nitrate solution is heated by microwave irradiation to evaporate water, and further microwave irradiation heats and denitrates the nitrate to form a denitrified product.

この脱硝生成物が所定の温度を保っている状態の受皿を
第1のシャッタを開き第1の窓から焙焼還元炉へ移送す
る。第1の窓を第工のシャッタで閉じたのち、第2のマ
イクロ波発振機から第2の導波管を通してマイクロ波を
前記焙焼還元炉におらかしめ内蔵されているマイクロ波
吸収材に照射してマイクロ波吸収材を加熱する。このマ
イクロ波吸収材の熱によって前記受皿内の脱硝生成物は
加熱されて焙焼生成物となる。そこで、焙焼還元炉内を
還元性雰囲気に切り換えこの焙焼生成物に還元性ガスを
作用させて還元生成物を得る。この還元生成物は受皿ご
と第2のシャッタを開いて第2の窓から取り出され、次
工程へ移送される。焙焼還元炉内の温度は温度センサと
制御器で第2のマイクロ波発振機を制御することによっ
て行われる。
The receiving tray in which the denitrified product is maintained at a predetermined temperature is transferred to the torrefaction furnace through the first window by opening the first shutter. After the first window is closed by the shutter of the first stage, microwaves are emitted from a second microwave oscillator through a second waveguide into the torrefaction furnace and irradiated onto the built-in microwave absorbing material. to heat the microwave absorber. The denitrified product in the tray is heated by the heat of this microwave absorbing material and becomes a roasted product. Therefore, the inside of the roasting reduction furnace is switched to a reducing atmosphere, and a reducing gas is applied to the roasted product to obtain a reduced product. This reduced product is taken out through the second window by opening the second shutter together with the saucer, and is transferred to the next step. The temperature inside the torrefaction reduction furnace is controlled by controlling the second microwave oscillator using a temperature sensor and a controller.

脱硝炉および焙焼還元炉から放出される排ガスはそれぞ
れ排気管を通して排ガス処理系に導かれて処理される。
The exhaust gases released from the denitrification furnace and the torrefaction reduction furnace are each led to an exhaust gas treatment system through exhaust pipes and treated therein.

このようにして脱硝処理から還元処理まで工程の簡略化
とともに常温に冷却することなく行うことができ、熱損
失を防止することができる。
In this way, the steps from denitration treatment to reduction treatment can be simplified and can be performed without cooling to room temperature, and heat loss can be prevented.

(実施例) 第1図から第3図を説明しながら本発明に係るマイクロ
波加熱処理装置の一実施例を説明する。
(Example) An example of the microwave heat treatment apparatus according to the present invention will be described with reference to FIGS. 1 to 3.

第1図中、符号1は脱硝炉を示しており、この脱硝炉1
には第1のマイクロ波発振機2が第1の導波管3を介し
て設けられており、また硝酸塩溶液4を収容した受皿5
が収納されている。この受皿5は第1の導波管3から放
射されるマイクロ波に照射され易い位置に配設される。
In Fig. 1, reference numeral 1 indicates a denitrification furnace, and this denitrification furnace 1
is provided with a first microwave oscillator 2 via a first waveguide 3, and a saucer 5 containing a nitrate solution 4.
is stored. This saucer 5 is arranged at a position where it can be easily irradiated with microwaves radiated from the first waveguide 3.

この受皿5には溶液供給タンク6内の硝酸塩溶液4が供
給弁7を通り、給液ノズル8から供給されるようになっ
ている。
The nitrate solution 4 in a solution supply tank 6 passes through a supply valve 7 and is supplied to this saucer 5 from a liquid supply nozzle 8.

また、脱硝炉1には第1の排気管9が接続されており、
この第1の排気管9は排ガス処理系配管10に接続し、
排ガス処理系配管lOは排ガス処理袋m111に接続さ
れ、排ガス処理装置11は出口管12を備えている。符
号13は焙焼還元炉で、この焙焼還元炉13は脱硝炉1
に隣接し仕切り壁14を介して設けられている。
Further, a first exhaust pipe 9 is connected to the denitrification furnace 1,
This first exhaust pipe 9 is connected to an exhaust gas treatment system piping 10,
The exhaust gas treatment system piping IO is connected to the exhaust gas treatment bag m111, and the exhaust gas treatment device 11 is equipped with an outlet pipe 12. Reference numeral 13 is a roasting reduction furnace, and this roasting reduction furnace 13 is the denitrification furnace 1.
It is provided adjacent to the partition wall 14 with a partition wall 14 interposed therebetween.

脱硝炉1と焙焼還元炉13との間に設けられた仕切り壁
14には第1の窓15およびこの第1の窓15を開閉す
る上下動自在の第1のシャッタ16が設けられている。
A partition wall 14 provided between the denitrification furnace 1 and the torrefaction reduction furnace 13 is provided with a first window 15 and a first shutter 16 that is movable up and down to open and close the first window 15. .

焙焼還元炉13内には水平方向に横断してマイクロ波吸
収材17およびこのマイクロ波吸収材17の下面に板状
石英ガラス18が設けられている。また、焙焼還元炉1
3には第2のマイクロ波発振機19が第2の導波管20
を介して設けられている。第2のマイクロ波発振機19
には制御器21からの出力信号が入力される。制御器2
1は焙焼還元炉13に設けられた温度センサ22からの
出力信号が入力される。さらに焙焼還元炉13には第2
の排気管23と前記石英ガラス18を貫通したガス排出
管24が設けられ、第2の排気管23とガス排出管24
はそれぞれ排ガス処理系配管10に接続されている。ま
た、焙焼還元炉13には一端が石英ガラス18を貫通し
て開口し、他端が還元ガス供給装置25に接続される還
元ガス供給管26が設けられている。焙焼還元炉13の
側壁27には、下部に第2の窓28が設けられ、かつ第
2の窓28を開閉する上下動自在の第2のシャッタ29
が設けられている。なお、符号30は焙焼還元炉13で
還元された還元生成物を、31は粉砕された破砕粒子を
示している。
Inside the roasting reduction furnace 13, a microwave absorbing material 17 and a plate-shaped quartz glass 18 are provided on the lower surface of the microwave absorbing material 17 horizontally. In addition, roasting reduction furnace 1
3, the second microwave oscillator 19 connects to the second waveguide 20
It is provided through. Second microwave oscillator 19
An output signal from the controller 21 is input to. Controller 2
1 receives an output signal from a temperature sensor 22 provided in the roasting reduction furnace 13. Furthermore, the roasting reduction furnace 13 has a second
A second exhaust pipe 23 and a gas exhaust pipe 24 passing through the quartz glass 18 are provided.
are connected to the exhaust gas treatment system piping 10, respectively. Further, the roasting reduction furnace 13 is provided with a reducing gas supply pipe 26 whose one end opens through the quartz glass 18 and whose other end is connected to the reducing gas supply device 25 . A second window 28 is provided at the bottom of the side wall 27 of the torrefaction reduction furnace 13, and a second shutter 29 is movable up and down to open and close the second window 28.
is provided. Note that the reference numeral 30 indicates a reduction product reduced in the roasting reduction furnace 13, and the reference numeral 31 indicates crushed particles.

上記構成の装置による脱硝から還元までの処理プロセス
は第2図に示したように溶液供給系aからマイクロ波照
射・脱硝炉1およびマイクロ波照射・焙焼還元炉13を
経ればよいことになる。なお。
The treatment process from denitrification to reduction using the apparatus with the above configuration can be carried out from the solution supply system a through the microwave irradiation/denitrification furnace 1 and the microwave irradiation/roast reduction furnace 13, as shown in Figure 2. Become. In addition.

図中eは粉体調整工程を示している。すなわち。In the figure, e indicates the powder preparation step. Namely.

第4図の従来例と対比すれば明らかなように本発明では
焙焼炉Cと還元炉dを一体化して焙焼還元炉13としか
つ、脱硝炉1および焙焼還元炉13を全てマイクロ波照
射加熱することによってプロセスが簡単になる。
As is clear from the comparison with the conventional example shown in FIG. Irradiation heating simplifies the process.

つぎに上記構成のマイクロ波加熱処理装置で硝酸ウラニ
ル溶液から二酸化ウランを得る工程を説明する。
Next, a process for obtaining uranium dioxide from a uranyl nitrate solution using the microwave heat treatment apparatus having the above configuration will be explained.

溶液供給タンク6に一定量保持された硝酸ウラニル溶液
4は供給弁7により給液ノズル8を通って、脱硝炉l内
に設置された受皿5内に一定量供給される。第1のマイ
クロ波発振機2から照射されたマイクロ波は第1の導波
管3を通って脱硝炉1内に照射され、硝酸ウラニル溶液
4を加熱脱硝処理する。
A fixed amount of the uranyl nitrate solution 4 held in the solution supply tank 6 is supplied by a supply valve 7 through a liquid supply nozzle 8 into a receiving tray 5 installed in the denitrification furnace 1. The microwave irradiated from the first microwave oscillator 2 passes through the first waveguide 3 and is irradiated into the denitrification furnace 1 to heat and denitrify the uranyl nitrate solution 4.

脱硝時に発生する水蒸気、硝酸、酸化窒素など排ガスは
第1の排気管9を通り、排ガス処理装置11により処理
され、出口管12から外部へ放出される。
Exhaust gas such as water vapor, nitric acid, and nitrogen oxide generated during denitration passes through the first exhaust pipe 9, is treated by the exhaust gas treatment device 11, and is discharged to the outside from the outlet pipe 12.

脱硝処理終了後は第1のシャッタ16を開き、第1の窓
15から受皿5を移送装置(図示せず)により移送し、
焙焼還元炉13へ移送する。第1のシャッタ16を閉じ
、第2のマイクロ波発振機19により第2の導波管20
を通してマイクロ波照射を行い、マイクロ波吸収材(S
iC、カーボン人焼結石等)17を焙焼温度(800℃
〜900℃)に加熱し受皿5内の脱硝生成物を焙焼処理
する。
After the denitrification process is completed, the first shutter 16 is opened, and the tray 5 is transferred from the first window 15 by a transfer device (not shown).
Transfer to roasting reduction furnace 13. The first shutter 16 is closed, and the second waveguide 20 is activated by the second microwave oscillator 19.
Microwave irradiation is performed through the microwave absorbing material (S
iC, carbon sintered stone, etc.) 17 at roasting temperature (800℃
~900°C) to roast the denitrified product in the saucer 5.

焙焼時に発生する排ガスは第2の排気管23を通り排ガ
ス処理装置11により処理され、出口管12から外部に
放出される。焙焼処理後、還元ガス供給装置25から、
H2(5%) + Nよ(95%)の還元ガスを供給管
26を通して炉13内に供給して還元雰囲気に切り換え
、焙焼生成物を還元処理する。還元処理時の排ガスはガ
ス排出管24を通り排ガス処理装置11により処理され
出口管12から外部へ放出される。ここで、石英ガラス
18はマイクロ波吸収材17が還元処理の際同時に還元
されるのを防止するためのものである。
The exhaust gas generated during roasting passes through the second exhaust pipe 23, is treated by the exhaust gas treatment device 11, and is discharged to the outside from the outlet pipe 12. After the roasting process, from the reducing gas supply device 25,
A reducing gas of H2 (5%) + N (95%) is supplied into the furnace 13 through the supply pipe 26 to switch to a reducing atmosphere, and the roasted product is reduced. The exhaust gas during the reduction treatment passes through the gas exhaust pipe 24, is treated by the exhaust gas treatment device 11, and is discharged to the outside from the outlet pipe 12. Here, the quartz glass 18 is for preventing the microwave absorbing material 17 from being reduced at the same time during the reduction treatment.

一方、焙焼還元炉13内の温度は温度センサ22により
検出した温度信号を制御器21に導き第2のマイクロ波
発振機19の出力をコントロールすることにより行う。
On the other hand, the temperature inside the roasting reduction furnace 13 is controlled by sending a temperature signal detected by a temperature sensor 22 to a controller 21 and controlling the output of the second microwave oscillator 19.

焙焼処理、還元処理された還元生成物30つまり二酸化
ウランは受皿5とともに第2のシャッタ29を開き第2
の窓28から移送装置(図示せず)により炉外へ移送す
る。破砕装置(図示せず)により破砕された粉体31を
受皿5内から気送管32により吸引気送し次工程へ払出
す。
The roasted and reduced reduced product 30, that is, uranium dioxide, is removed together with the saucer 5 by opening the second shutter 29 and passing through the second shutter 29.
It is transferred out of the furnace through the window 28 by a transfer device (not shown). The powder 31 crushed by a crushing device (not shown) is suctioned and pneumatically conveyed from inside the tray 5 through the pneumatic pipe 32 and discharged to the next process.

第3図は本発明に係る装置を使用した場合のプロセス構
成の温度プロフィールを示したもので、図から明らかな
ように焙焼炉と還元炉を一体化することによって第5図
に示した従来例のように各々の処理を行う前に冷却する
必要がなくなる。そのため、熱損失の防止とともに処理
時間も短縮できることが認められる。
Figure 3 shows the temperature profile of the process configuration when using the apparatus according to the present invention.As is clear from the figure, by integrating the roasting furnace and the reduction furnace, There is no need for cooling before each treatment as in the example. Therefore, it is recognized that heat loss can be prevented and processing time can also be shortened.

〔発明の効果〕〔Effect of the invention〕

本発明によれば脱硝生成物の焙焼処理、還元処理を焙焼
炉と還元炉を一体化することにより同一炉内で実施でき
るため工程が簡略化できる。また、焙焼還元炉内にマイ
クロ波吸収材を設けることにより脱硝炉・焙焼還元炉を
マイクロ波加熱で実施できるため保守・保修性が容易に
なる。さらに脱硝、焙焼、還元炉を一体化することによ
り熱損失の防止および処理時間の短縮化が可能となると
ともに、たとえば硝酸ウラニル溶液、硝酸プルトニル溶
液などの脱硝、焙焼、還元処理を容易に行うことができ
る。
According to the present invention, the roasting treatment and the reduction treatment of the denitrification product can be performed in the same furnace by integrating the roasting furnace and the reduction furnace, thereby simplifying the process. Further, by providing a microwave absorbing material in the roasting and reducing furnace, the denitrification furnace and the roasting and reducing furnace can be heated with microwaves, making maintenance and maintenance easier. Furthermore, by integrating the denitrification, roasting, and reduction furnaces, it is possible to prevent heat loss and shorten processing time, and also facilitate the denitrification, roasting, and reduction treatments of uranyl nitrate solutions, plutonyl nitrate solutions, etc. It can be carried out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るマイクロ波加熱処理装置の一実施
例を一部ブロックで示す縦断面図、第2図は第1図にお
ける処理プロセスを示すブロック図、第3図は第1図に
おける処理プロセスの温度状態を示す特性図、第4図は
従来のマイクロ波加熱処理の処理プロセスを示すブロッ
ク図、第5図は第4図における処理プロセスの温度状態
を示す特性図である。 1・・・脱硝炉 3・・・第1の導波管 5・・・受皿 7・・・供給弁 9・第1の排気管 11・・排ガス処理装置 13・・・焙焼還元炉 15・・・第1の窓 17・・・マイクロ波吸収材 19・第1のマイクロ波発振機 20・・・第2の導波管 22・・温度センサ 24・・・ガス排出管 26・・・還元ガス供給管 28・・第2の窓 21・・・制御器 23・・・第2の排気管 25・・・還元ガス供給装置 27・・・側壁 29・・・第2のシャッタ 2・・・第1のマイクロ波発振機 4・・・硝酸塩溶液 6・・溶液供給タンク 8・・・給液ノズル 10・・・排ガス処理系配管 12・・出口管 14・・・仕切り壁 16・・・第1のシャッタ 18・・・石英ガラス 30・・・還元生成物 32・・・気送管 31・・破砕粉体 (8733)  代理人 弁理士 猪 股 祥 晃(ほ
か1名)第 2 図 第 図
FIG. 1 is a vertical cross-sectional view partially showing an embodiment of the microwave heat treatment apparatus according to the present invention, FIG. 2 is a block diagram showing the treatment process in FIG. 1, and FIG. 3 is a block diagram showing the treatment process in FIG. FIG. 4 is a block diagram showing a conventional microwave heating treatment process, and FIG. 5 is a characteristic diagram showing the temperature state of the treatment process in FIG. 4. 1... Denitrification furnace 3... First waveguide 5... Receiving tray 7... Supply valve 9... First exhaust pipe 11... Exhaust gas treatment device 13... Roasting reduction furnace 15...・First window 17 ・Microwave absorber 19 ・First microwave oscillator 20 ・Second waveguide 22 ・Temperature sensor 24 ・Gas exhaust pipe 26 ・Reduction Gas supply pipe 28...Second window 21...Controller 23...Second exhaust pipe 25...Reducing gas supply device 27...Side wall 29...Second shutter 2... First microwave oscillator 4...Nitrate solution 6...Solution supply tank 8...Liquid supply nozzle 10...Exhaust gas treatment system piping 12...Outlet pipe 14...Partition wall 16...No. 1 shutter 18...Quartz glass 30...Reduction product 32...Pneumatic tube 31...Crushed powder (8733) Agent Patent attorney Yoshiaki Inomata (and 1 other person) Fig. 2

Claims (1)

【特許請求の範囲】[Claims]  硝酸塩溶液にマイクロ波を照射し加熱脱硝処理して脱
硝生成物を得る脱硝炉と、この脱硝炉に隣接して設けら
れ前記脱硝炉から移送された前記脱硝生成物にマイクロ
波を照射し加熱焙焼処理して焙焼生成物を得て、この焙
焼生成物に還元性ガスを作用させて還元生成物を得るマ
イクロ波吸収材が内蔵された焙焼還元炉と、この焙焼還
元炉と前記脱硝炉との間に設けられた第1の窓と、この
第1の窓を開閉する第1のシャッタと、前記焙焼還元炉
に設けられた第2の窓と、この第2の窓を開閉する第2
のシャッタと、前記脱硝炉および焙焼還元炉から放出す
る排ガスをそれぞれ排ガス処理系に導く排気管とを具備
したことを特徴とするマイクロ波加熱処理装置。
A denitrification furnace that irradiates a nitrate solution with microwaves and heats it to denitrify it to obtain a denitrified product; and a denitrification furnace that is installed adjacent to this denitrification furnace and irradiates the denitrified product transferred from the denitrification furnace with microwaves and heats it. A torrefaction reduction furnace has a built-in microwave absorbing material that obtains a torrefaction product by performing a roasting process, and applies a reducing gas to the torrefaction product to obtain a reduction product; A first window provided between the denitrification furnace, a first shutter that opens and closes the first window, a second window provided in the roasting reduction furnace, and a second window provided in the torrefaction furnace. 2nd to open and close
A microwave heat treatment apparatus comprising: a shutter; and an exhaust pipe that guides the exhaust gas discharged from the denitrification furnace and the torrefaction reduction furnace to an exhaust gas treatment system.
JP6834590A 1990-03-20 1990-03-20 Microwave heating treatment device Pending JPH03269993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6834590A JPH03269993A (en) 1990-03-20 1990-03-20 Microwave heating treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6834590A JPH03269993A (en) 1990-03-20 1990-03-20 Microwave heating treatment device

Publications (1)

Publication Number Publication Date
JPH03269993A true JPH03269993A (en) 1991-12-02

Family

ID=13371154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6834590A Pending JPH03269993A (en) 1990-03-20 1990-03-20 Microwave heating treatment device

Country Status (1)

Country Link
JP (1) JPH03269993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018006244A1 (en) * 2016-07-04 2018-01-11 中国科学院过程工程研究所 Microwave-selective catalytic reduction combined low-temperature denitration device, process and use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018006244A1 (en) * 2016-07-04 2018-01-11 中国科学院过程工程研究所 Microwave-selective catalytic reduction combined low-temperature denitration device, process and use

Similar Documents

Publication Publication Date Title
EP0427853A4 (en) Metal oxidation apparatus and method
JPS61274744A (en) Method and apparatus for desorbing adsorbent
JPS5930652B2 (en) Microwave heating denitrification equipment
JPS5825860A (en) Method and device for heating of casting
JPH03269993A (en) Microwave heating treatment device
JPH0467755B2 (en)
US3461190A (en) Method of and apparatus for establishing and maintaining an atmosphere controlled as to pressure,temperature,gas content and rate of gas flow,and closed and semi-closed arc heater loop apparatus for use therein
JPS5650119A (en) Microwave heat denitrating apparatus
JP2020508429A5 (en)
EP0614216A4 (en) Apparatus for forming oxide film, heat treatment apparatus, semiconductor device, manufacturing method therefor.
JPH0694889A (en) Continuous denitration device
JPS594431A (en) Fluidized bed reactor by microwave heating
US5115118A (en) Heat-treatment furnace
JPS61208218A (en) Vertical type diffusion furnace
JPS5930653B2 (en) Microwave heating denitrification equipment
JPS6041000A (en) Volume-reducing treating method of discarded ion exchange resin
JPH0452438B2 (en)
JP2001176865A (en) Processing apparatus and method of processing
RU2580353C1 (en) Method of conducting precision thermal processes in infrared heating furnace and infrared heating furnace for implementation for conducting thermal processes
JP2005127718A (en) Device and method for decontaminating tritium
US3371189A (en) Apparatus for establishing and maintaining an atmosphere controlled as to pressure, temperature, gas content and rate of gas flow, and closed and semi-closed arc heater loop apparatus for use therein
KR102426081B1 (en) Radioactive activated carbon waste disposal control system
JPS5615843A (en) Regeneration of denitrification catalyst
JPS5879803A (en) Converter for metal nitrate solution
US20120213661A1 (en) Warm-up system for catox decontamination system