JPH0326972B2 - - Google Patents

Info

Publication number
JPH0326972B2
JPH0326972B2 JP62071334A JP7133487A JPH0326972B2 JP H0326972 B2 JPH0326972 B2 JP H0326972B2 JP 62071334 A JP62071334 A JP 62071334A JP 7133487 A JP7133487 A JP 7133487A JP H0326972 B2 JPH0326972 B2 JP H0326972B2
Authority
JP
Japan
Prior art keywords
skin
resistance
electrodes
skin resistance
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62071334A
Other languages
Japanese (ja)
Other versions
JPS63238853A (en
Inventor
Masahisa Muroki
Toshio Nagasawa
Sadao Danno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62071334A priority Critical patent/JPS63238853A/en
Publication of JPS63238853A publication Critical patent/JPS63238853A/en
Publication of JPH0326972B2 publication Critical patent/JPH0326972B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、生体皮膚の生理活性度に対応した皮
膚抵抗値を局部的に測定するための皮膚抵抗計測
用センサに関する。 〔従来の技術〕 従来より皮膚抵抗を測定する手段のひとつとし
て、皮膚上に載置した一定間隔の正負電極間に一
定の電圧を印加して流れる電流値を測定するやり
方がある。簡便な方法として広く知られている。 〔発明が解決しようとする問題点〕 人体等の生体皮膚は表皮、真皮、皮下組織から
成り、生体の温度調節や新陳代謝の機能(発汗や
皮膚呼吸作用)の一部を受持つと同時に、外部か
ら細菌等の生体内侵入を防ぐ重要な役割を担つて
いる。皮下組織は血流、汗線等を通じて身体内外
の代謝サイクルを司どると共に皮膚組織のそのも
のの活性化を支えている。一方、真皮は皮下組織
から細胞構成物質の補給を受けて一定の周期で各
種皮膚細胞を新生している。生理活性機能を失つ
た皮膚細胞は上方に押出されて外界から真皮を保
護する表皮となる。これら生体皮膚はしたがつて
下層に位置する組織程高い生理活性度を有し、含
水率が高い。すなわち皮膚下層ほど電気伝導度は
高い。ところで生体皮膚の新陳代謝作用は他の細
胞同様生体の老化に伴つて沈滞するため皮膚の含
水率は低下する、すなわち皮膚の電気伝導度は低
くなる。また、皮膚疾患や自己免疫性疾患など
で、生体皮膚の生理活性度が失調すると患部は正
常時に比べて一般に潤いを失ない皮膚荒れを起し
て電気伝導度が低下する。逆に外傷や感染症、ア
レルギー性疾患などで皮膚組織が炎症を起し、リ
ンパ液が浸出して周囲の建常組織に比べ局部的に
皮膚抵抗が急落する場合もある。 このように皮膚年令や皮膚の健康状態は含水率
を介して電気伝導度に反映されるので、皮膚抵抗
が手軽に測定できれば健康状態の判定に役立つ。
たとえば、上記したように皮膚が老化すると含水
率が低下して表面にヒビ割れやささくれを生じ、
シミやシワが増えて美容上問題であるだけでな
く、外部から細菌や有害物質が体内に浸透しやす
くなるため生体の健康を維持する上からも好まし
くない。老化によつて皮下組織から脂肪分や水分
の補給が滞り、皮膚の「みずみずしさ」が低下す
るのを補完するにはクリームや水溶液に必要成分
を含ませて皮膚表面に塗り込むことが有効であ
る。これら外部から補給した水分やイオン、油脂
分は表皮から内部に浸透したり、表皮に被膜を作
つて外気を遮断するため皮膚の「みずみずしさ」
が回復するのである。このような痛んだ皮膚の回
復過程は当然皮膚抵抗の変化として観測されるは
ずである。 従来より皮膚抵抗を測定する手段のひとつとし
て前記した皮膚上に載置した一定間隔の正負電極
間に一定の電圧を印加して流れる電流値を測定す
る方法が知られていた。しかし、この方法では常
時一定値を示す外部電源が必要であり、装置が大
型化して手軽さを欠く上に電極間短絡などの事故
によつて大電流が皮膚面を流れ火傷を発生すると
いう危険もあつた。 本発明は上記した従来の電気式皮膚抵抗測定装
置がもつ欠点を解消し、新規な原理に基づく簡便
な電気式皮膚抵抗測定装置を提供することを目的
としている。 〔問題点を解決するための手段〕 前記目的を達成するために、本発明では、化学
電池の原理を応用し、標準単極電位のより高い陽
極電極と標準単極電位のより低い陰極電極との間
に直流電位差計又は電流計を接続した構造の装置
を用い、前記陰陽極の皮接面積を一定かつ皮接陰
陽極間距離を一定にする如くして生体皮膚に圧接
し、以つて発生した電圧を前記直流電位差計に表
示する皮膚抵抗計測用センサを開示する。特に陽
極材料として貴金属、陰極材料として半導体結晶
を用いたセンサは、安定かつ大きな起電力が発生
でき有用である。 〔作用〕 本発明によれば、陽極電極−皮膚−陰極電極と
で一種の化学電池が形成され、皮膚の生理状態に
応じた電圧が発生し電位差計でこれを検出表示す
る。 〔実施例〕 以下本発明の原理、実施例を説明する。第1図
には本発明の一実施例を示す。標準単極電位のよ
り高い導電性鉱物(甲)2と、より低い導電性鉱
物(乙)3とを一定の間隔をもつて絶縁性樹脂4
で固定する。甲2と乙3はそれぞれ別々のリード
線に接続され、各々のリード線は外部で直流電位
差計5の端子に接続されている。この時直流電位
差計5のプラス端子には甲2のリード線が、また
マイナス端子には乙3のリード線がそれぞれ接続
される。導電性鉱物甲、乙のそれぞれが同じ表面
積、たとえば直径3mmの球状をしており、絶縁性
樹脂4に半球が埋め込まれた状態とする。甲、乙
の各々を同時に、絶縁性樹脂4の表面が皮膚面1
に接触するようにして皮膚面1に圧接した状態を
第1図aに示す。この時直流電位差計の指針は皮
膚抵抗値に対応した正の一定電位を示す。これは
次のような理由による。甲2が金属、乙3がn型
半導体単結晶の例で説明すると、本皮膚抵抗計測
用センサを皮接した場合、エネルギーバンドダイ
ヤグラムは第1図bの如くなる。図でEcは伝導
帯底の電子エネルギー、Evは充満帯頂上の電子
エネルギー、e-は自由電子、h+は自由正孔を示
す。標準単極電位は甲2が高いので圧接によつて
電気的閉回路が形成されると、乙3より甲2へ自
由電子が流入する。自由電子は甲2より圧接部の
皮膚1へ流入し、図示したようなポテンシヤル勾
配が形成される。上記したように生体皮膚1は電
気伝導体であり、陽極(甲2)より流入した電子
は内部抵抗の分布に沿つた電気力線にしたがつて
陰極(乙3)側へと皮膚1内を流れる。すなわ
ち、皮膚1は単なる抵抗体ではなく電解質として
作用し、甲2−皮膚1−乙3はいわゆる生体電池
を構成する。周知のように化学電池は電解質内で
の酸化還元反応によつて起電力を発生するもの
で、陽極側では還元反応、陰極側では酸化反応が
生ずる。本例の場合は甲2の近傍皮膚内で、たと
えば Fe3++e-→Fe2+(酸化剤 Fe3+) 乙3では S→S++e-(還元剤 乙) が生ずるのである。ここに、Sは半導体で、たと
えばS≡Geとすれば Ge→Ge2++2e- となる。陰極半導体乙3と皮膚1との接触面には
図示したようにシヨツトキー障壁が形成され、上
記化学反応によつてシヨツトキー障壁は逆偏倚さ
れている。このために皮膚内から陰極に電子が流
れ込むことは出来ない。陽極への電子流出によつ
て半導体結晶内には電子が不足するので、結晶の
欠陥準位を介して半導体の伝導帯に自由電子が励
起される。自由電子励起によつて発生した自由正
孔は半導体の内部電界によつて皮膚1との界面に
流れ、界面では皮膚の触媒作用によつて半導体陽
イオン化して結晶から遊離、皮膚1内へ拡散浸透
する。すなわち、電解質(皮膚1)内における電
池電流は陽極金属(甲2)側から注入される電子
と陰極半導体(乙3)側から流入する陽イオンに
よつて構成される。 この化学電池の起電力は原理的には陽極材料甲
と陰極材料乙の組合せが支配するが、外部に取出
し得る起電力は実際には電解質(皮膚)の酸化還
元能(反応の強さ)と電池内部抵抗によつて決定
される。たとえば甲2として白金、乙3としてn
型ゲルマニウム結晶を用いた場合、希硫酸などの
電解質溶液を用いると外部に取出しうる最大の電
圧は約1.15Vになるが、同じ材料組合せで第1図
aに示す皮膚抵抗計測用センサーを構成した場
合、甲乙間皮接距離を1mm以下に短縮しても外部
に取出しうる電圧は高々0.7Vである。しかし甲
乙の組合せを限定し、皮接面積をそれぞれ一定に
し(甲乙それぞれの皮接面積は異なつた一定値を
とることは可能)、さらに甲乙の皮接間距離を一
定に保てば第1図aの如くリード線を通じて外部
の直流電位差計5に表示される電圧値は電極2−
3間の皮膚抵抗(電池内部抵抗の一部を構成)を
反映した値になる。したがつて、目的に応じて、
甲乙材料の組合せ、皮接面積、甲乙間の皮接距離
を変化させれば、外部に表示される電圧値を適当
な大きさに選定することができる。 人体皮膚の含水率、イオン導電率は上述の如く
年令や個人差によつて異なり、また1個人におい
ても該当する皮膚部位や体調、さらには季節や天
候によつて微妙に変化する。皮膚年令を本発明の
皮膚抵抗計測用センサで測定する試みとして、各
年代層から健康な男女被験者を5名ずつ選び、1
月(冬期)と8月(夏期)の晴天日午前10時に右
手甲部の皮膚抵抗対応発生電圧値を第1図aの装
置で測定した平均値を第1表に示す。この場合、
甲2は直径3mmの白金球、乙3は直径3mmのn−
Ge(抵抗率0.01Ωcm)球とし、両者の皮接間隔は
2mmとした。
[Industrial Application Field] The present invention relates to a skin resistance measurement sensor for locally measuring a skin resistance value corresponding to the physiological activity of living skin. [Prior Art] One conventional method for measuring skin resistance is to apply a constant voltage between positive and negative electrodes placed on the skin at regular intervals and measure the value of the current flowing therethrough. It is widely known as a simple method. [Problems to be solved by the invention] The skin of living bodies such as the human body is composed of the epidermis, dermis, and subcutaneous tissue, and is responsible for some of the body's temperature regulation and metabolic functions (sweating and skin respiration). It plays an important role in preventing bacteria and other bacteria from entering the body. The subcutaneous tissue controls the internal and external metabolic cycles of the body through blood flow, sweat lines, etc., and supports the activation of the skin tissue itself. On the other hand, the dermis receives replenishment of cell constituent substances from the subcutaneous tissue and regenerates various skin cells at regular intervals. Skin cells that have lost their physiologically active functions are pushed upward and become the epidermis, which protects the dermis from the outside world. Therefore, the tissue located in the lower layer of living skin has a higher degree of physiological activity and a higher water content. In other words, the lower the skin layer, the higher the electrical conductivity. By the way, like other cells, the metabolic function of the living body's skin stagnates as the living body ages, so the water content of the skin decreases, that is, the electrical conductivity of the skin decreases. Furthermore, when the physiological activity of living skin is disrupted due to skin diseases, autoimmune diseases, etc., the affected area generally loses moisture compared to normal conditions and becomes rough, resulting in a decrease in electrical conductivity. Conversely, skin tissue may become inflamed due to trauma, infection, allergic disease, etc., and lymph fluid may leak out, causing local skin resistance to drop sharply compared to surrounding normal tissue. In this way, the age of the skin and the health condition of the skin are reflected in the electrical conductivity through the water content, so if skin resistance can be easily measured, it will be useful in determining the health condition.
For example, as mentioned above, as the skin ages, the moisture content decreases, causing cracks and hangnails on the surface.
Not only does this increase the number of spots and wrinkles, which is a cosmetic problem, but it also makes it easier for bacteria and harmful substances to penetrate into the body from the outside, which is undesirable from the standpoint of maintaining the health of the body. In order to compensate for the fact that the supply of fat and water from the subcutaneous tissue slows down due to aging, and the "freshness" of the skin decreases, it is effective to apply the necessary ingredients to the skin surface in a cream or aqueous solution. be. These moisture, ions, and oils supplied from the outside penetrate into the inside through the epidermis and form a film on the epidermis to block the outside air, resulting in the "freshness" of the skin.
will recover. The recovery process of such damaged skin should naturally be observed as a change in skin resistance. Conventionally, as one means for measuring skin resistance, a method has been known in which a constant voltage is applied between the positive and negative electrodes placed on the skin at regular intervals and the value of the current flowing is measured. However, this method requires an external power supply that always shows a constant value, making the device large and inconvenient, and there is a risk that a short circuit between the electrodes or other accidents may cause a large current to flow through the skin and cause burns. It was hot too. An object of the present invention is to eliminate the drawbacks of the conventional galvanic skin resistance measuring device described above and to provide a simple galvanic skin resistance measuring device based on a new principle. [Means for Solving the Problems] In order to achieve the above object, the present invention applies the principle of a chemical battery and combines an anode electrode with a higher standard monopolar potential and a cathode electrode with a lower standard monopolar potential. Using a device with a structure in which a DC potentiometer or ammeter is connected between the anode and the skin, the cathode and the anode are brought into pressure contact with the skin of the living body so that the skin contact area is constant and the distance between the cathode and the anode is kept constant. Disclosed is a sensor for measuring skin resistance that displays the voltage on the DC potentiometer. In particular, a sensor using a noble metal as an anode material and a semiconductor crystal as a cathode material is useful because it can generate a stable and large electromotive force. [Function] According to the present invention, a kind of chemical cell is formed by the anode electrode, the skin, and the cathode electrode, and a voltage corresponding to the physiological state of the skin is generated, which is detected and displayed by a potentiometer. [Example] The principle and examples of the present invention will be explained below. FIG. 1 shows an embodiment of the present invention. A conductive mineral (A) 2 with a higher standard unipolar potential and a conductive mineral (B) 3 with a lower standard unipolar potential are placed with an insulating resin 4 at a certain interval.
Fix it with. A2 and Otsu3 are connected to separate lead wires, and each lead wire is externally connected to a terminal of a DC potentiometer 5. At this time, the lead wire of A 2 is connected to the positive terminal of the DC potentiometer 5, and the lead wire of Otsu 3 is connected to the negative terminal. Each of the conductive minerals A and B has the same surface area, for example, a spherical shape with a diameter of 3 mm, and a hemisphere is embedded in the insulating resin 4. At the same time, the surface of the insulating resin 4 is the skin surface 1.
FIG. 1a shows the state in which it is pressed against the skin surface 1 so as to be in contact with the skin surface 1. At this time, the pointer of the DC potentiometer shows a constant positive potential corresponding to the skin resistance value. This is due to the following reasons. Taking an example in which A 2 is a metal and Otsu 3 is an n-type semiconductor single crystal, when this sensor for measuring skin resistance is placed in contact with the skin, the energy band diagram becomes as shown in FIG. 1b. In the figure, Ec is the electron energy at the bottom of the conduction band, Ev is the electron energy at the top of the filling band, e - is a free electron, and h + is a free hole. Since the standard unipolar potential is high in A2, when an electrical closed circuit is formed by pressure contact, free electrons flow from Otsu3 to A2. Free electrons flow from the upper 2 to the skin 1 at the pressure contact part, and a potential gradient as shown is formed. As mentioned above, the biological skin 1 is an electrical conductor, and the electrons flowing from the anode (A 2) move inside the skin 1 toward the cathode (B 3) according to the lines of electric force that follow the distribution of internal resistance. flows. That is, the skin 1 acts not just as a resistor but as an electrolyte, and the parts A2-Skin1-B3 form a so-called biological battery. As is well known, a chemical battery generates electromotive force through a redox reaction within an electrolyte, with a reduction reaction occurring on the anode side and an oxidation reaction occurring on the cathode side. In this case, in the skin near A2, for example, Fe 3+ +e - →Fe 2+ (oxidizing agent Fe 3+ ), and in Otsu 3, S→S + +e - (reducing agent Otsu) is generated. Here, S is a semiconductor, and for example, if S≡Ge, then Ge→Ge 2+ +2e - . As shown, a Schottky barrier is formed at the contact surface between the cathode semiconductor 3 and the skin 1, and the Schottky barrier is biased in the opposite direction by the chemical reaction described above. For this reason, electrons cannot flow into the cathode from within the skin. Since electrons become insufficient in the semiconductor crystal due to the outflow of electrons to the anode, free electrons are excited into the conduction band of the semiconductor via defect levels of the crystal. Free holes generated by free electron excitation flow to the interface with the skin 1 due to the internal electric field of the semiconductor, and at the interface, they are converted into positive ions of the semiconductor by the catalytic action of the skin, liberated from the crystal, and diffused into the skin 1. Penetrate. That is, the battery current in the electrolyte (skin 1) is composed of electrons injected from the anode metal (A 2) side and cations flowing from the cathode semiconductor (Otsu 3) side. In principle, the electromotive force of this chemical battery is controlled by the combination of anode material A and cathode material B, but the electromotive force that can be taken out to the outside actually depends on the redox ability (strength of reaction) of the electrolyte (skin). Determined by battery internal resistance. For example, platinum as A2, n as Otsu3
When using type germanium crystals and using an electrolyte solution such as dilute sulfuric acid, the maximum voltage that can be taken out to the outside is approximately 1.15V, but the same material combination was used to construct the skin resistance measurement sensor shown in Figure 1a. In this case, the voltage that can be taken out to the outside is at most 0.7V even if the skin contact distance between A and B is shortened to 1 mm or less. However, if we limit the combination of A and B, make the skin contact areas constant for each (it is possible for the skin contact areas of A and B to take different constant values), and furthermore keep the distance between A and B constant, Figure 1. The voltage value displayed on the external DC potentiometer 5 through the lead wire as shown in a is the voltage value displayed on the electrode 2-
The value reflects the skin resistance (constituting a part of the battery's internal resistance) between 3 and 3. Therefore, depending on the purpose,
By changing the combination of A and B materials, skin contact area, and skin contact distance between A and B, it is possible to select an appropriate voltage value to be displayed externally. As mentioned above, the water content and ionic conductivity of human skin vary depending on age and individual differences, and even within an individual, they vary slightly depending on the skin area, physical condition, season, and weather. In an attempt to measure skin age using the sensor for measuring skin resistance of the present invention, we selected five healthy male and female subjects from each age group, and
Table 1 shows the average value of the voltage generated corresponding to the skin resistance on the back of the right hand measured with the device shown in Figure 1a at 10 am on a sunny day in August (winter season) and August (summer season). in this case,
A 2 is a platinum ball with a diameter of 3 mm, Otsu 3 is an n- ball with a diameter of 3 mm.
A Ge (resistivity: 0.01 Ωcm) sphere was used, and the skin contact distance between the two was 2 mm.

【表】 表示した測定値はグループ毎に有意差があるこ
とを示し、年令が高くなる程、また夏期よりも冬
期において皮膚抵抗が高くなることを意味してい
る。更に女より男の皮膚抵抗が高く、また年令が
若い程夏期と冬期の皮膚抵抗差の大きいことが示
唆されている。これらは皮膚の新陳代謝が関与し
た現象とみなすことができる。なお、皮膚抵抗が
高ければそれだけ電池内部抵抗が高まるので、第
1表の表示電圧値は小さくなる。したがつて本発
明の装置を用いれば、予め用意したデータに基づ
いて一定の誤差範囲内で被験者の皮膚年令を推定
することができる。 同一被験者の皮膚でも位置が異なればまた異な
つた皮膚抵抗値を示す。これは皮膚抵抗が細胞組
織の局部的な含水率やイオン導電性を反映してい
ることを考慮すれば当然である。たとえば第1表
に記載した被験者グループのうち10代男を選び8
月(夏期)の晴天日午後2時に測定した部位によ
る表示電圧の違いを第2表に示す。なお、用いた
測定装置は第1表の場合と同じであり、計測値は
平均電圧で表示してある。第1表に示した年令別
グループ程大きな差異はみられないが、明らかに
測定部位による有意差は認められる。
[Table] The displayed measured values show that there are significant differences between groups, meaning that the older the age, the higher the skin resistance in winter than in summer. Furthermore, it has been suggested that skin resistance is higher in men than in women, and that the younger the age, the greater the difference in skin resistance between summer and winter. These can be considered to be phenomena related to skin metabolism. Note that the higher the skin resistance, the higher the internal resistance of the battery, so the displayed voltage values in Table 1 become smaller. Therefore, by using the device of the present invention, the skin age of the subject can be estimated within a certain error range based on data prepared in advance. Even the skin of the same subject shows different skin resistance values at different locations. This is natural considering that skin resistance reflects the local water content and ionic conductivity of cellular tissue. For example, select a teenage male from the subject group listed in Table 18.
Table 2 shows the differences in display voltage depending on the location measured at 2:00 pm on a sunny day in May (summer). The measuring device used was the same as in Table 1, and the measured values are expressed as average voltages. Although the differences are not as large as in the age groups shown in Table 1, there are clearly significant differences depending on the measurement site.

【表】 とくに皮膚が肉厚であり、表皮が荒れやすいヒ
ジの皮膚抵抗が高いことが指摘される。このよう
な局部的皮膚抵抗が電圧表示で簡便に相対測定で
きることは、皮膚健康の維持に大変プラスになる
と考えられる。本発明の装置は従来の電気式抵抗
測定装置とは異なり外部電源を必要としないので
きわめて手軽であり、また電源電圧の調整等予備
操作が不要であるだけでなく、両電極が仮りに短
絡しても過大電流が流れる危険もなく人体計測に
好適である(電極が短絡すれば電圧が発生しない
だけのことである)。また、流れる電流値自体大
変小さい(高々0.1mA程度)。これは皮膚の電解
質作用が小さいためであり、したがつて外部電源
を用いるよりはるかに安全性は高いただし正しい
測定値を得るには、皮膚表面の水分や脂分、汚れ
を予めぬぐい、電極の汚れもふき取つて接触抵抗
を小さく保つよう注意しなければならない。 本発明の別の実施例であるスプリング式与圧型
皮膚抵抗計測装置を第2図に示す。生体皮膚1に
接触する電極部分は、陽極として半円状の金板
2、陰極として半円状の半導体すず(α−Sn)
板3を用いた。それぞれの半径は約5mmとした。
この2つの電極2と3との間の中央部に幅1mmの
絶縁溝11を設けた。この電極2,3、溝4とは
絶縁液溝11を設けた。この電極2,3、溝4と
は絶縁性樹脂4で固定した。各電極に接続したリ
ード線9,10は樹脂4による固定部内を経て中
空円筒部8内を上方へ伸び、それぞれ中空円筒部
8のふたに取りつけた直流電位差計5の端子に接
続させた。前記円板電極とリード線を固定した円
柱状絶縁樹脂4は、該装置の外枠7に接着させて
おり、該外枠7はスプリング6を介して中空円筒
部8に接触している。その結果皮膚抵抗計測時に
は、一定面積の陰陽電極がスプリング6による一
定与圧によつて皮接し、一定の接触抵抗を与える
ことができる。本装置を用いて生体皮膚抵抗を測
定し、肌「うるおい」の化粧品による改善が計測
できるかどうかをテストした。 10代と20代の女性客10人に対し、8月の晴天日
屋内において右ホホ、右手甲部の皮膚抵抗を測定
した後水溶性イオンを含む美容クリームを被測定
部位にすり込み、皮膚抵抗の変化を電位変化とし
て測定し各グループの平均値を第3表に示した。
第1表に測定結果を表示した如く、若い女性の皮
膚は一般に「潤い」があり、したがつて直流電位
差計5の表示電圧は高いが、それでもなお第3表
の結果は美容クリームが肌のみずみずしさを改善
する効果があることを示している。
[Table] It has been pointed out that the skin resistance is particularly high on the elbows where the skin is thick and the epidermis tends to become rough. Being able to easily and relatively measure such local skin resistance using a voltage display is considered to be of great benefit in maintaining skin health. Unlike conventional electrical resistance measuring devices, the device of the present invention does not require an external power source, making it extremely easy to use, and not only does it not require preliminary operations such as adjusting the power supply voltage, but it also eliminates the need for short-circuiting of both electrodes. However, there is no risk of excessive current flowing, making it suitable for human body measurement (if the electrodes are short-circuited, no voltage will be generated). Also, the current value itself is very small (about 0.1mA at most). This is because the electrolyte action of the skin is small, so it is much safer than using an external power source.However, to obtain accurate readings, wipe off moisture, oil, and dirt from the skin surface beforehand, and clean the electrodes. Care must be taken to wipe off dirt and keep contact resistance low. FIG. 2 shows a spring type pressurized skin resistance measuring device which is another embodiment of the present invention. The electrode part that comes into contact with the biological skin 1 has a semicircular gold plate 2 as an anode and a semicircular semiconductor tin (α-Sn) as a cathode.
Plate 3 was used. The radius of each was approximately 5 mm.
An insulating groove 11 with a width of 1 mm was provided in the center between these two electrodes 2 and 3. An insulating liquid groove 11 was provided between the electrodes 2, 3 and the groove 4. The electrodes 2 and 3 and the groove 4 were fixed with an insulating resin 4. Lead wires 9 and 10 connected to each electrode extended upwardly inside the hollow cylindrical part 8 through the inside of the fixed part made of the resin 4, and were connected to terminals of a DC potentiometer 5 attached to the lid of the hollow cylindrical part 8, respectively. The cylindrical insulating resin 4 to which the disc electrode and the lead wire are fixed is adhered to an outer frame 7 of the device, and the outer frame 7 is in contact with a hollow cylindrical portion 8 via a spring 6. As a result, when measuring skin resistance, a constant area of the negative and positive electrodes is brought into contact with the skin by constant pressurization by the spring 6, and a constant contact resistance can be provided. Using this device, we measured biological skin resistance and tested whether it was possible to measure the improvement in skin ``moisture'' caused by cosmetics. After measuring the skin resistance of the right cheek and back of the right hand of 10 female customers in their teens and 20s indoors on a sunny day in August, a beauty cream containing water-soluble ions was rubbed into the areas to be measured, and the skin resistance was measured. The change in potential was measured as a change in potential, and the average value for each group is shown in Table 3.
As shown in the measurement results in Table 1, the skin of young women is generally "moisturized" and therefore the displayed voltage of the DC potentiometer 5 is high. This shows that it has the effect of improving freshness.

〔発明の効果〕〔Effect of the invention〕

本発明では生体皮膚面の局部的抵抗値に対応し
た計測結果を示したが、この他本発明の装置を頭
髪の含水度測定や皮下脂肪の分布測定にも応用で
きることは自明である。
In the present invention, measurement results corresponding to the local resistance value of the skin surface of a living body have been shown, but it is obvious that the device of the present invention can also be applied to measurement of water content of hair and distribution of subcutaneous fat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明の別の実施
例、原理を説明するための図である。図において
1は生体皮膚、2は陽極電極甲、3は陰極電極
乙、4は絶縁性樹脂、5は直流電位差計、6はス
プリング、7は外枠、8は中空円筒部である。
FIG. 1 and FIG. 2 are diagrams for explaining another embodiment and principle of the present invention, respectively. In the figure, 1 is a living body skin, 2 is an anode electrode A, 3 is a cathode electrode A, 4 is an insulating resin, 5 is a DC potentiometer, 6 is a spring, 7 is an outer frame, and 8 is a hollow cylindrical portion.

Claims (1)

【特許請求の範囲】 1 互いに一定間隔を保つて使用される陰陽両電
極と該電極に接続され両極間に発生する電圧を検
出する機能を有する直流電位差計とより成ると共
に、前記陽電極は所定の標準単極電位を有し一定
の皮接表面積をもつ第一の導電性鉱物甲より成
り、陰電極は上記標準単極電位より低い標準単極
電位を有し一定の皮接表面積をもつ第二の導電性
鉱物乙より成り、上記陰陽両電極を同時に皮接し
て用いる皮膚抵抗計測用センサ。 2 特許請求の範囲第1項記載の甲が貴金属であ
り、乙が半導体結晶である皮膚抵抗計測用セン
サ。
[Claims] 1. Consists of negative and positive electrodes that are used at a constant distance from each other, and a DC potentiometer that is connected to the electrodes and has a function of detecting the voltage generated between the two electrodes, and the positive electrode is The negative electrode consists of a first conductive mineral shell having a standard unipolar potential of A sensor for measuring skin resistance, which is made of two conductive minerals and uses both the negative and positive electrodes mentioned above in contact with the skin at the same time. 2. A sensor for measuring skin resistance as described in claim 1, wherein A is a precious metal and B is a semiconductor crystal.
JP62071334A 1987-03-27 1987-03-27 Sensor for measuring skin resistance Granted JPS63238853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071334A JPS63238853A (en) 1987-03-27 1987-03-27 Sensor for measuring skin resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071334A JPS63238853A (en) 1987-03-27 1987-03-27 Sensor for measuring skin resistance

Publications (2)

Publication Number Publication Date
JPS63238853A JPS63238853A (en) 1988-10-04
JPH0326972B2 true JPH0326972B2 (en) 1991-04-12

Family

ID=13457521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071334A Granted JPS63238853A (en) 1987-03-27 1987-03-27 Sensor for measuring skin resistance

Country Status (1)

Country Link
JP (1) JPS63238853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521295A (en) * 2005-12-26 2009-06-04 エルヴェエムアッシュ ルシェルシュ Electrochemical apparatus and method for measuring the redox state of skin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819096B2 (en) * 2011-04-28 2015-11-18 富士通コンポーネント株式会社 Contact terminal device
JP6513931B2 (en) * 2014-11-14 2019-05-15 花王株式会社 Makeup method measurement sensor
JP2022067883A (en) * 2020-10-21 2022-05-09 トライポッド・デザイン株式会社 Device and energization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521295A (en) * 2005-12-26 2009-06-04 エルヴェエムアッシュ ルシェルシュ Electrochemical apparatus and method for measuring the redox state of skin

Also Published As

Publication number Publication date
JPS63238853A (en) 1988-10-04

Similar Documents

Publication Publication Date Title
EP0612258B1 (en) Drug delivery device
Barker et al. The glabrous epidermis of cavies contains a powerful battery
Tagami et al. Interrelationship between water-barrier and reservoir functions of pathologic stratum corneum
ES2387419T3 (en) SKIN PERMEATION DEVICE FOR THE DETECTION OF ANALYTICS OR TRANSDERMAL ADMINISTRATION OF MEDICINES
US10206604B2 (en) Arrangement for facilitating wound healing, a method for measuring wound healing and a wound dressing
McAdams et al. Factors affecting electrode-gel-skin interface impedance in electrical impedance tomography
KR100328654B1 (en) Biosensor, iontophoretic sampling system, and methods of use thereof
US5954685A (en) Electrochemical sensor with dual purpose electrode
JPH0783748B2 (en) Redox reaction monitor
US2123980A (en) Therapeutic treatment
McCormick et al. Towards blood free measurement of glucose and potassium in humans using reverse iontophoresis
US8515523B2 (en) Electrochemical device and method for measuring the redox state of the skin
JPH0326972B2 (en)
EP0115884B1 (en) Reference electrode asssembly
Connolly et al. Opportunities at the skin interface for continuous patient monitoring: a reverse iontophoresis model tested on lactate and glucose
Camel et al. The Effect of Saline Iontophoresis on Skin Integrity in Human Volunteers: I. Methodology and Reproducibility
JP3745469B2 (en) Skin resistance measuring device
US7099713B2 (en) Skin conduction and transport systems
Mullan et al. A reappraisal of the unipolar anodal electrolytic lesion
KR960004299B1 (en) Apparatus and method for measuring of exuviation
JPS6355336B2 (en)
Day Review of NASA/MSC Electroencephalogram and Electrocardiogram Electrode Systems Including Application Techniques
GB2173906A (en) pH sensor
Connolly et al. Reverse iontophoresis: A new approach to measure blood glucose level
CN219127987U (en) Ion leading-in instrument for periocular skin

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees