JPH03268850A - Method for measuring bulging rate of continuously cast slab - Google Patents

Method for measuring bulging rate of continuously cast slab

Info

Publication number
JPH03268850A
JPH03268850A JP7022890A JP7022890A JPH03268850A JP H03268850 A JPH03268850 A JP H03268850A JP 7022890 A JP7022890 A JP 7022890A JP 7022890 A JP7022890 A JP 7022890A JP H03268850 A JPH03268850 A JP H03268850A
Authority
JP
Japan
Prior art keywords
eddy current
continuously cast
primary coil
displacement signal
cast slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7022890A
Other languages
Japanese (ja)
Other versions
JPH0545344B2 (en
Inventor
Michio Morii
森井 三千夫
Jun Azuma
洵 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7022890A priority Critical patent/JPH03268850A/en
Publication of JPH03268850A publication Critical patent/JPH03268850A/en
Publication of JPH0545344B2 publication Critical patent/JPH0545344B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To measure accurate displacement without receiving effect of adjacent sensors by exciting primary coils in plural eddy current type range finders while scanning and measuring bulging quantity. CONSTITUTION:A primary exciting circuit 3 exciting a primary coil 8 is always made under exciting condition and displacement signal detecting circuit 6 is always made under data reading condition. A primary coil change-over circuit 4 is worked with a micro-processor or 2 to excite only the primary coil 8 in the corresponding eddy current sensor 1. By working a secondary coil change-over circuit 5, the corresponding secondary coil 9 is connected with the displacement signal detecting circuit 6. The eddy current is caused to flow on surface of a continuously cast slab 7 by alternating magnetic flux generated with the primary coil 8, and the magnetic flux is generated to direction cancelling the alternating magnetic flux. AC current generated to a secondary coil 9 with this flux, is detected with the displacement signal detecting circuit 6 and transmitted to the micro processor 2. The bulging quantity in the continuously cast slab 7 is obtd. from the detected displacement signal. Plural eddy current sensors 1 periodically scans to measure the bulging quantity of continuously cast slab 7 corresponding to each position.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連鋳鋳片バルジング量測定方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the amount of bulging in a continuously cast slab.

(従来の技術) 従来から連鋳鋳片のバルジング量は鋳片の内部品質を管
理する目的で、接触代あるいは渦電流式などの距離計を
用いて測定されている。
(Prior Art) Conventionally, the amount of bulging of a continuously cast slab has been measured using a contact distance or an eddy current distance meter for the purpose of controlling the internal quality of the slab.

接触式距離計は、距離計の接触子を鋳片表面に接触させ
、接触子の移動量からバルジング量を測定するものであ
るが、この方法では、熱膨張による測定誤差の発生また
は接触子の回転不良による鋳片表面疵発生等の問題点が
ある。
A contact distance meter brings the contact of the distance meter into contact with the surface of the slab and measures the amount of bulging from the amount of movement of the contact. However, with this method, measurement errors due to thermal expansion or contact There are problems such as the occurrence of defects on the surface of the slab due to poor rotation.

渦電流式距離計は、渦電流センサーを鋳片周囲乙こ配置
し、バルジング量を測定するものである。
Eddy current distance meters measure the amount of bulging by placing eddy current sensors around the slab.

この方法は、渦T!L流センサー内の一次コイルの交流
電流によって、−次コイルで生じた交番磁束によって、
鋳片表面に11I電流が流れ、この渦電lfcは一次コ
イルで生した交番磁束を打ち消す方向に磁束を発生する
。この磁束によって、渦電流センザ内の二次コイルに交
7ATXmが生じる。この−二次コイルに生した交流電
流を変位信号検出回路で検出して、この検出された変位
信号をもとにバルジング量を求める。鋳片表面に流れる
渦電流の大きさは、−次コイルと鋳片表面との距離によ
って変化するため、二次コイルに生しる交流電流の変化
を知ることによって、連鋳鋳片のバルジング量を測定す
ることができる。
This method uses Vortex T! Due to the alternating current in the primary coil in the L flow sensor, the alternating magnetic flux generated in the - secondary coil causes
An 11I current flows on the surface of the slab, and this eddy current lfc generates magnetic flux in a direction that cancels out the alternating magnetic flux generated in the primary coil. This magnetic flux produces an alternating current 7ATXm in the secondary coil within the eddy current sensor. The alternating current generated in the secondary coil is detected by a displacement signal detection circuit, and the amount of bulging is determined based on the detected displacement signal. The magnitude of the eddy current flowing on the slab surface changes depending on the distance between the secondary coil and the slab surface, so by knowing the change in the alternating current generated in the secondary coil, the amount of bulging of the continuously cast slab can be determined. can be measured.

(発明が解決しようとするtJAM> しかし、渦電流式距離計は、隣接する複数個のセンサー
を同時に励磁すると隣接センサーからの漏れ磁束の影響
により正確なバルジング量の測定を行うことができない
、また、各々のセンサーの励磁周波数を変えることによ
り、隣接センサーからの漏れ磁束の影響を防止すること
はできるが、漏れ磁束の影響を防止するためには、隣接
センサー間の周波数比を大きくする必要がある。この場
合、各センサーの周波数が異なるため、各センサーの磁
束浸透深さが異なり、バルジング量検出感度に差が生し
る。また、センサー数が多くなると一次コイル側の励磁
周波数が相当高くなりセンサー感度が不安定になるとい
う問題がある。
(tJAM to be solved by the invention) However, the eddy current distance meter cannot accurately measure the amount of bulging due to the influence of leakage magnetic flux from the adjacent sensors when multiple adjacent sensors are excited simultaneously. Although it is possible to prevent the influence of leakage magnetic flux from adjacent sensors by changing the excitation frequency of each sensor, it is necessary to increase the frequency ratio between adjacent sensors in order to prevent the influence of leakage magnetic flux. In this case, since the frequency of each sensor is different, the magnetic flux penetration depth of each sensor is different, resulting in a difference in the sensitivity for detecting the amount of bulging.Also, as the number of sensors increases, the excitation frequency on the primary coil side becomes considerably high. There is a problem that the sensor sensitivity becomes unstable.

(課題を解決するための手段) 本発明は、上記の問題点を解決し、複数センサーを配置
するにも拘らず隣接センサーの影響を受けることなく正
確な変位を測定できるバルジング量測定方法を提供する
もので、連続鋳造設備で鋳込む鋳片の幅方向および厚み
方向に複数個の渦電流式距離計を配置し、それぞれの渦
電流式距離計出力によって鋳片バルジング量を測定する
方法において、それぞれの渦電流式距離計の一次コイル
をスキャンしながら励磁する連鋳鋳片バルジング量測定
方法である。
(Means for Solving the Problems) The present invention solves the above problems and provides a bulging amount measuring method that can accurately measure displacement without being influenced by adjacent sensors even though multiple sensors are arranged. In this method, a plurality of eddy current distance meters are arranged in the width direction and thickness direction of a slab to be cast in continuous casting equipment, and the amount of slab bulging is measured by the output of each eddy current distance meter. This is a method of measuring the amount of bulging in a continuously cast slab by exciting the primary coil of each eddy current distance meter while scanning it.

(作用) 本発明に係わるシステムは、渦電流センサーマイクロプ
ロセッサ−1−次コイル励磁回路、次コイル切替え回路
、二次コイル切替え回路、変位信号検出回路から構成さ
れている。なお、渦電流センサーには一次コイルと二次
コイルが組み込まれている。
(Function) The system according to the present invention includes an eddy current sensor microprocessor, a primary coil excitation circuit, a secondary coil switching circuit, a secondary coil switching circuit, and a displacement signal detection circuit. Note that the eddy current sensor incorporates a primary coil and a secondary coil.

バルジング量の測定にあたっては、−次コイルを励磁す
る一次励磁回路は常時励磁状態にしておき、同時に、変
位信号検出回路も常時データ読み込みを行う状態にして
おく。この状態で、マイクロプロセンサーにより一次コ
イル切替え回路を作動させ、バルジング量を測定しよう
とする位置に対応する渦電流センサーの一次コイルのみ
を励磁するとともに、同時に二次コイル切替え回路を作
動させ、−次コイルに対応する二次コイルを変位信号検
出回路に接続する。
In measuring the amount of bulging, the primary excitation circuit that excites the -order coil is kept in a constantly excited state, and at the same time, the displacement signal detection circuit is also kept in a state where it always reads data. In this state, the micropro sensor activates the primary coil switching circuit to excite only the primary coil of the eddy current sensor corresponding to the position where the amount of bulging is to be measured, and at the same time activates the secondary coil switching circuit, - A secondary coil corresponding to the next coil is connected to a displacement signal detection circuit.

一次コイルで生じた交番磁束によって、連鋳鋳片表面に
渦1を流が流れ、この渦ii流は一次コイルで生した交
番磁束を打ち消す方向に磁束を発生する。この磁束によ
って、二次コイルに交流電流が生しる。この二次コイル
に生した交流電流を変位信号検出回路で検出して、マイ
クロプロセッサ−に送り、マイクロプロセッサ−で変位
信号検出回路で検出された変位信号をもとに連鋳鋳片の
バルジング量を求める。さらに、配置されている複数個
の渦電流センサーを定周期でスキャンして各位置に対応
するバルジング量の測定を行う。
The alternating magnetic flux generated in the primary coil causes a vortex 1 flow to flow on the surface of the continuously cast slab, and this vortex ii current generates magnetic flux in a direction that cancels out the alternating magnetic flux generated in the primary coil. This magnetic flux produces an alternating current in the secondary coil. The alternating current generated in this secondary coil is detected by a displacement signal detection circuit, and sent to the microprocessor.The microprocessor determines the amount of bulging of the continuously cast slab based on the displacement signal detected by the displacement signal detection circuit. seek. Furthermore, the amount of bulging corresponding to each position is measured by scanning the plurality of eddy current sensors arranged at regular intervals.

このようにして、複数個配置された渦電流センサーのな
かで、単一の渦電流センサーの一次コイルのみをスキャ
ンしながら選択励磁することにより、渦電流センサーの
配置間隔の大小に拘らず隣接−次コイルの漏れ磁束の影
響を受けることなく連鋳鋳片のバルジング量を正確に測
定することができる。
In this way, by scanning and selectively exciting only the primary coil of a single eddy current sensor among multiple eddy current sensors, it is possible to The amount of bulging of continuously cast slabs can be accurately measured without being affected by the leakage magnetic flux of the secondary coil.

(実施例〉 以下に本発明の実施例について説明する。(Example> Examples of the present invention will be described below.

第1図は本発明法のシステム概略図で、■は渦’1ii
i!itセンサー、2はマイクロプロセッサ−13は一
次コイル励磁回路、4は一次コイル切替え回路、5は二
次コイル切替え回路、6は変位信号検出回路、7は連鋳
鋳片をそれぞれ示す。第2図は渦電流センサー内の一次
コイルと二次コイルとの関係を示す図で8は一次コイル
、9は二次コイルを示す。
Figure 1 is a schematic diagram of the system of the present invention, where ■ is a vortex '1ii
i! 13 is a primary coil excitation circuit, 4 is a primary coil switching circuit, 5 is a secondary coil switching circuit, 6 is a displacement signal detection circuit, and 7 is a continuously cast slab. FIG. 2 is a diagram showing the relationship between the primary coil and the secondary coil in the eddy current sensor, where 8 represents the primary coil and 9 represents the secondary coil.

連鋳鋳片のバルジング量の測定にあたっては、−次コイ
ル8を励磁する一次Fil+磁回路3を常時励磁状態に
、また変位信号検出回路6も常時データ読み込みを行う
状態にしておく。この状態で、マイクロプロセンサー2
により一次コイル切替え回路3を作動させ、連鋳鋳片7
のバルジング量を測定しようとする位置に対応する渦電
流センサー1の一次コイル8のみを励磁するとともに、
二次コイル切替え回路5を作動させ、−次コイル8に対
応する二次コイル9を変位信号検出回路に接続する。こ
のようにして、−次コイル8で生じた交番磁束によって
、連鋳鋳片7表面に渦電渣が流れ、この渦電流は一次コ
イル8で生した交番磁束を打ち消す方向に磁束を発生す
る。この磁束によって、二次コイル9に交流電流が生し
る。この二次コイル9に生じた交流電流を変位信号検出
回路6で検出してマイクロプロセッサ−2に送る。マイ
クロプロセンサー2で変位信号検出回路6で検出した変
位信号をもとに連鋳鋳片のバルジング量を求めた。さら
に、配置されている複数個の渦電流センサーを定周期に
スキャンして各位置に対応する連鋳鋳片のバルジング量
を測定した。
When measuring the amount of bulging of a continuously cast slab, the primary Fil+magnetic circuit 3 that excites the negative coil 8 is always kept in an energized state, and the displacement signal detection circuit 6 is also kept in a state that always reads data. In this state, Micro Pro Sensor 2
The primary coil switching circuit 3 is operated, and the continuously cast slab 7
While exciting only the primary coil 8 of the eddy current sensor 1 corresponding to the position where the amount of bulging is to be measured,
The secondary coil switching circuit 5 is activated, and the secondary coil 9 corresponding to the -secondary coil 8 is connected to the displacement signal detection circuit. In this way, the alternating magnetic flux generated in the primary coil 8 causes eddy electric residue to flow on the surface of the continuously cast slab 7, and this eddy current generates magnetic flux in a direction that cancels out the alternating magnetic flux generated in the primary coil 8. This magnetic flux generates an alternating current in the secondary coil 9. The alternating current generated in the secondary coil 9 is detected by the displacement signal detection circuit 6 and sent to the microprocessor-2. The amount of bulging of the continuously cast slab was determined based on the displacement signal detected by the displacement signal detection circuit 6 using the micropro sensor 2. Furthermore, the amount of bulging of the continuously cast slab corresponding to each position was measured by scanning the plurality of eddy current sensors arranged at regular intervals.

(発明の効果) 以上説明したように本発明は、連鋳鋳片の幅方向および
厚み方向に複数個配置された渦を流センサーのなかで、
単一の渦電流センサーの一次コイルのみを選択励磁する
ことにより、同一周波数で、渦電流センサーの配置間隔
の大小に拘らず隣接−次コイルの漏れ磁束の影響を受け
ることなく連鋳鋳片のバルジング量を正確に測定するこ
とができる。さらに、マイクロプロセッサ−によりスキ
ャン位置と変位信号を対応させることによって、連鋳鋳
片の幅方向および厚み方向のバルジング量を測定するこ
とができる。
(Effects of the Invention) As explained above, the present invention has a plurality of vortex flow sensors arranged in the width direction and thickness direction of a continuously cast slab.
By selectively exciting only the primary coil of a single eddy current sensor, continuous cast slabs can be continuously cast at the same frequency without being affected by leakage flux from adjacent coils, regardless of the spacing between the eddy current sensors. The amount of bulging can be measured accurately. Further, by associating the scan position with the displacement signal using a microprocessor, the amount of bulging in the width direction and thickness direction of the continuously cast slab can be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法のシステム概略間で、第2図は渦電流
センサー内の一次コイルと二次コイJしとの関係を示す
図である。 1−一渦を流センサー、2 マイクロプロセッサ、3−
一一次コイル励磁回路、4−次コイル切替え回路、5 
二次コイル切替え回路、6 変位信号検出回路、7 連
鋳鋳片、8−一次コイル、9−二次コイル。
FIG. 1 is a schematic diagram of the system according to the present invention, and FIG. 2 is a diagram showing the relationship between the primary coil and the secondary coil in the eddy current sensor. 1-1 vortex flow sensor, 2 microprocessor, 3-
Primary coil excitation circuit, 4th coil switching circuit, 5
Secondary coil switching circuit, 6 displacement signal detection circuit, 7 continuous cast slab, 8 - primary coil, 9 - secondary coil.

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造設備で鋳込む鋳片の幅方向および厚み方向に複
数個の渦電流式距離計を配置し、それぞれの渦電流式距
離計出力によって鋳片バルジング量を測定する方法にお
いて、それぞれの渦電流式距離計の一次コイルをスキャ
ンしながら励磁することを特徴とする連鋳鋳片バルジン
グ量測定方法。
In a method in which multiple eddy current distance meters are arranged in the width direction and thickness direction of a slab to be cast in continuous casting equipment, and the amount of slab bulging is measured by the output of each eddy current distance meter, each eddy current A method for measuring the amount of bulging of a continuously cast slab, characterized by exciting the primary coil of a distance meter while scanning it.
JP7022890A 1990-03-20 1990-03-20 Method for measuring bulging rate of continuously cast slab Granted JPH03268850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7022890A JPH03268850A (en) 1990-03-20 1990-03-20 Method for measuring bulging rate of continuously cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7022890A JPH03268850A (en) 1990-03-20 1990-03-20 Method for measuring bulging rate of continuously cast slab

Publications (2)

Publication Number Publication Date
JPH03268850A true JPH03268850A (en) 1991-11-29
JPH0545344B2 JPH0545344B2 (en) 1993-07-08

Family

ID=13425494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7022890A Granted JPH03268850A (en) 1990-03-20 1990-03-20 Method for measuring bulging rate of continuously cast slab

Country Status (1)

Country Link
JP (1) JPH03268850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164431A (en) * 2009-01-15 2010-07-29 Nippon Steel Corp Apparatus and method for measuring surface state

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164431A (en) * 2009-01-15 2010-07-29 Nippon Steel Corp Apparatus and method for measuring surface state

Also Published As

Publication number Publication date
JPH0545344B2 (en) 1993-07-08

Similar Documents

Publication Publication Date Title
KR930007114B1 (en) Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies
US6448764B2 (en) Method of and apparatus for contactless planarity measurements on ferromagnetic metal strip
US5375475A (en) Device to measure the flowrate in a partially full line
JPH03268850A (en) Method for measuring bulging rate of continuously cast slab
RU2130609C1 (en) Device for local measurement of ferromagnetic phase of austenitic steel
JPH11304405A (en) Position detector and position detecting method using the same
CN2335132Y (en) Electromagnetic type liquid metal level measuring controller
US20070285088A1 (en) Method and System for the Detection of Surface Defects on a Metal Product as it is Being Continuously Cast
SU789730A1 (en) Method and transducer for multifrequency eddy-current monitoring
CN2274105Y (en) Vortex-type molten-steel level detecting-controlling device
JP4774690B2 (en) Magnetic sensor
RU2810894C1 (en) Magnetoelastic sensor for determining mechanical stress in ferromagnetic materials
JPH10104038A (en) Method and apparatus for measurement of flow velocity
JPS59781B2 (en) Method for detecting surface defects on continuously cast slabs
JPH0725736Y2 (en) Coin detection sensor
EP3759441B1 (en) An electromagnetic flowmeter
JPH08327647A (en) Current velocity measuring apparatus
JPS6017701Y2 (en) mold level meter
JP2002018563A (en) Method for detecting molten steel level in tundish and its adjusting method
JPS5811864A (en) Eddy current type measurement system
JP3567604B2 (en) Fluxgate type magnetic detector and position detector
SU853518A1 (en) Through eddy-current device
SU916995A1 (en) Float-type inductive level indicator
JPH08327649A (en) Method and apparatus for measuring current velocity
JPH07276018A (en) Method for detecting fluid condition of molten steel in nozzle