JPH03268215A - Magnetoresistance effect type head - Google Patents

Magnetoresistance effect type head

Info

Publication number
JPH03268215A
JPH03268215A JP6418390A JP6418390A JPH03268215A JP H03268215 A JPH03268215 A JP H03268215A JP 6418390 A JP6418390 A JP 6418390A JP 6418390 A JP6418390 A JP 6418390A JP H03268215 A JPH03268215 A JP H03268215A
Authority
JP
Japan
Prior art keywords
film
permalloy
shunt
alloy
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6418390A
Other languages
Japanese (ja)
Inventor
Masahiro Kitada
北田 正弘
Noboru Shimizu
昇 清水
Kazuhiro Shigemata
茂俣 和弘
Hideo Tanabe
英男 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6418390A priority Critical patent/JPH03268215A/en
Publication of JPH03268215A publication Critical patent/JPH03268215A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a shunt film having excellent heat resistance by constituting the shunt film which consists of two layers of a specified Ni-Fe alloy film and a W film contg. unavoidable impurities and the W film of which impresses a bias magnetic field to the Ni-Fe alloy film. CONSTITUTION:The Ni-Fe film contg. 15 to 23wt.% Fe is formed by an electron beam vapor deposition method on a glass substrate. The W film contg. the unavoidable impurities is formed by an electron beam vapor deposition method on this Ni-Fe film without breaking vacuum in succession to the above. The heat resistance of the shunt film, the W film of which impresses the bias magnetic field to the Ni-Fe film, is improved in this way and the magnetoresistance effect type head optimum for high-density magnetic recording is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気抵抗効果型ヘッドに係り、特に高密度磁気
記録に最適な磁気抵抗効果型ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetoresistive head, and particularly to a magnetoresistive head that is optimal for high-density magnetic recording.

〔従来の技術〕[Conventional technology]

従来のシャントバイアス型磁気抵抗効果型ヘッドのシャ
ント膜には、米国特許第3940797号明細書に記載
のようにTi、Taが、また特開昭62−128015
号公報に記載のようにZrが用いられていた。
The shunt film of the conventional shunt bias type magnetoresistive head contains Ti and Ta as described in U.S. Pat.
Zr was used as described in the publication.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術において、Tiを用いたシャントバイアス
型磁気抵抗ヘッドでは、175℃以上に(2) なるとN i −F e合金(以下パーマロイと呼ぶ)
膜とTiの反応が起こり、磁気抵抗効果膜であるパーマ
ロイ膜の特性劣化が生ずる。また、Zrをシャント膜と
したヘッドでは、パーマロイ膜との反応下限温度は32
5℃まで改善されるが、ヘッドを作製する種々のプロセ
スの温度条件からみて、まだ低い。Taはパーマロイと
の反応開始温度が350℃と高いが、Ta薄膜はパーマ
ロイやTiに比較すると耐食性が悪く、電気抵抗率も9
0〜2CoμΩ■と極めて高く、シャント膜としては不
適当である。
In the above conventional technology, in the shunt bias type magnetoresistive head using Ti, when the temperature exceeds 175°C (2), the Ni-Fe alloy (hereinafter referred to as permalloy) is used.
A reaction occurs between the film and Ti, resulting in deterioration of the characteristics of the permalloy film, which is a magnetoresistive film. In addition, in a head using Zr as a shunt film, the lower limit temperature for reaction with the permalloy film is 32
Although the temperature has been improved to 5°C, it is still low considering the temperature conditions of various processes for manufacturing the head. Ta has a high reaction initiation temperature with permalloy of 350°C, but compared to permalloy and Ti, Ta thin films have poor corrosion resistance and an electrical resistivity of 9.
It is extremely high, 0 to 2 CoμΩ■, and is inappropriate as a shunt membrane.

本発明の目的は、シャント型磁気抵抗効果型ヘッドに最
適な耐熱性に優れたシャント膜をもった磁気抵抗効果型
ヘッドを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetoresistive head having a shunt film excellent in heat resistance and suitable for the shunt magnetoresistive head.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、パーマロイ膜との反応開始温度が高く、か
つ電気抵抗がシャント構造に適したW膜を用いることに
より達成される。
The above object is achieved by using a W film which has a high reaction initiation temperature with the permalloy film and whose electrical resistance is suitable for a shunt structure.

〔作用〕 どのような金属膜が組み合せ膜として適してい(3) るかは、実際に種々の薄膜を用いて素子を作製して評価
しなければならない。反応の面からみれば、反応は原子
の熱活性化に支配されるので、融点の高い金属が望まし
い。これと同時に耐食性の優れていることも必要である
。Wは上記の点で優れた性質を有している。
[Function] What kind of metal film is suitable as a combination film (3) must be evaluated by actually fabricating elements using various thin films. From a reaction standpoint, since the reaction is dominated by thermal activation of atoms, metals with high melting points are desirable. At the same time, it is also necessary to have excellent corrosion resistance. W has excellent properties in the above points.

〔実施例〕〔Example〕

実施例1 ガラス基板上にN i −19w t%Feの組成をも
つパーマロイ薄膜を電子ビーム蒸着法で形成した。パー
マロイの厚さは4Co人である。このパーマロイ薄膜の
上に真空を破ることなく引き続きW薄膜を電子ビーム蒸
着法で約7Co人蒸着した。
Example 1 A permalloy thin film having a composition of Ni-19wt%Fe was formed on a glass substrate by electron beam evaporation. The thickness of permalloy is 4Co. On this permalloy thin film, a W thin film of approximately 7 Co was subsequently deposited by electron beam evaporation without breaking the vacuum.

この2層膜を以下W/パーマロイ膜と呼ぶ。This two-layer film is hereinafter referred to as a W/permalloy film.

この試料と比較するために、同種のガラス基板上に上記
と同組成のパーマロイ膜を形成し、続けてTi膜を蒸着
したTi/パーマロイ膜を作製した。
In order to compare with this sample, a permalloy film having the same composition as above was formed on the same type of glass substrate, and then a Ti/permalloy film was produced by vapor-depositing a Ti film.

これらの試料を同一条件で比較するために、10 ””
Torrの真空炉中で一緒に並べて熱処理を行(4) なった。
In order to compare these samples under the same conditions, 10 ””
They were placed together in a Torr vacuum furnace and heat treated (4).

第1図は熱処理温度とパーマロイ膜の保磁力の変化を示
したものである。第1図から明らかなように、T i 
/パーマロイ2層膜の保磁力は熱処理温度が225℃以
上になると増大し始める。これは、Tiとパーマロイ膜
の相互拡散等により、パーマロイ膜の蒸気特性が劣化し
ていることを示している。これに対して、W/パーマロ
イ膜におけるパーマロイの保磁力は4Co℃まで変化を
示さず、425℃以上になると若干増大し、再膜間に反
応の起こることがわかる。
FIG. 1 shows the change in the coercive force of the permalloy film with respect to the heat treatment temperature. As is clear from Fig. 1, T i
/The coercive force of the permalloy two-layer film begins to increase when the heat treatment temperature becomes 225° C. or higher. This indicates that the vapor properties of the permalloy film are degraded due to mutual diffusion between Ti and the permalloy film. On the other hand, the coercive force of permalloy in the W/permalloy film shows no change up to 4Co°C, and increases slightly at 425°C or higher, indicating that a reaction occurs between the films.

以上の実施例から明らかなように、WはTiに比較して
約2Co℃反応温度が高く、パーマロイと金属とからな
る2層膜のパーマロイの耐熱性向上に顕著な効果を示す
As is clear from the above examples, W has a reaction temperature about 2 Co° C. higher than that of Ti, and has a remarkable effect on improving the heat resistance of permalloy, a two-layer film made of permalloy and metal.

実施例2 Ti/パーマロイおよびW/パーマロイのそれぞれの2
層膜を使用して作製したシャント型磁気抵抗効果型ヘッ
ドにおける磁気再生特性を比較した。作製したヘッドを
225℃で熱処理したのち(5) の再生波形ではバククウゼン効果によると思われるノイ
ズが著しく、他方W/パーマロイ膜を使用したものでは
、同様のノイズは見られなかった。
Example 2 2 of each of Ti/permalloy and W/permalloy
We compared the magnetic reproduction characteristics of shunt-type magnetoresistive heads fabricated using layered films. In the reproduced waveform (5) after heat-treating the fabricated head at 225° C., there was significant noise that was thought to be due to the Bakkuusen effect, whereas similar noise was not observed in the head using the W/permalloy film.

Ti/パーマロイ膜を使用したヘッドでは、熱処理温度
が275℃以上になると再生出力が得られなくなる。こ
れに対してWを用いたヘッドでは、4Co℃の熱処理を
しても再生出力は正常で、425℃以上になるとノイズ
が多くなる。
In a head using a Ti/permalloy film, if the heat treatment temperature exceeds 275° C., reproduction output cannot be obtained. On the other hand, in a head using W, the reproduction output is normal even after heat treatment at 4Co°C, but noise increases when the temperature exceeds 425°C.

通常の電子ビーム蒸着法で得られるTi膜の比抵抗は5
5〜60μΩ■であるのに対し、Wは10〜15μΩG
と約1/2〜1/3の値が得られる。このため、シャン
トバイアス膜の厚さをTiの約172〜1/3に低減す
ることができる。
The specific resistance of a Ti film obtained by ordinary electron beam evaporation is 5
5~60μΩ■, while W is 10~15μΩG
A value of about 1/2 to 1/3 is obtained. Therefore, the thickness of the shunt bias film can be reduced to about 172 to 1/3 that of Ti.

これは、シールド型磁気抵抗効果型ヘッドを作製する場
合、シールド間距離(通常ギャップと呼ばれる)を上記
シャント膜の厚さ低減分だけ狭くできる利点もある。
This also has the advantage that when manufacturing a shielded magnetoresistive head, the distance between the shields (usually called a gap) can be narrowed by the reduction in the thickness of the shunt film.

W/パーマロイ2層膜は2端子の素子、3端子の差動型
素子など、何れの駆動方式でも同様に実施できる。
The W/Permalloy two-layer film can be similarly implemented using any driving method such as a two-terminal element or a three-terminal differential type element.

(6) 実施例3 W/パーマロイ2層膜からなる磁気抵抗素子を作製し、
パーマロイの磁歪定数の影響について検討した。パーマ
ロイの磁歪定数は組成によって変化し、Ni−18,5
wt% Fe近傍で零になる。
(6) Example 3 A magnetoresistive element consisting of a W/permalloy two-layer film was produced,
The influence of the magnetostriction constant of permalloy was investigated. The magnetostriction constant of permalloy changes depending on the composition, and Ni-18,5
It becomes zero near wt% Fe.

一般には磁歪定数零の膜を得ることは困難で、10−S
オーダの磁歪定数をもつパーマロイ膜が使用される。
Generally, it is difficult to obtain a film with a magnetostriction constant of zero;
A permalloy film with a magnetostriction constant of the order of magnitude is used.

2層膜を使用したとき、シャントバイアス膜の熱膨張係
数や内部歪などによってパーマロイ膜に歪が印加され、
パーマロイ膜の磁気特性が変化する。このため、使われ
るパーマロイ膜の組成は、シャント膜の材料や形成方法
、膜厚などによって変化する。
When a two-layer film is used, strain is applied to the permalloy film due to the thermal expansion coefficient and internal strain of the shunt bias film.
The magnetic properties of the permalloy film change. Therefore, the composition of the permalloy film used varies depending on the material, formation method, film thickness, etc. of the shunt film.

W/パーマロイ膜について、上記のような検討をした結
果、W膜からの歪の影響がパーマロイ膜の磁気抵抗特性
に大きな影響を与えないのは、Feを15〜23wt%
含むパーマロイであった。
As a result of the above study on the W/permalloy film, we found that the effect of strain from the W film does not have a large effect on the magnetoresistive properties of the permalloy film when Fe is 15 to 23 wt%.
Containing permalloy.

実施例4 Niが77−85wt%、coが1〜10wt%、(7
) 残りFeよりなるNi−Fe−Co合金膜とW膜を用い
て実施例1と同様に磁気抵抗素子を作製した結果、実用
可能な電磁気特性を示す素子が得られた。上記以外の組
成範囲では、磁歪定数等のため、電磁気特性の劣化が大
きく、実用化は不適であった。
Example 4 Ni: 77-85 wt%, Co: 1-10 wt%, (7
) A magnetoresistive element was manufactured in the same manner as in Example 1 using a Ni--Fe--Co alloy film consisting of the remaining Fe and a W film, and as a result, an element exhibiting practically usable electromagnetic characteristics was obtained. In a composition range other than the above, the electromagnetic properties deteriorate significantly due to the magnetostriction constant, etc., making it unsuitable for practical use.

実施例5 バイアス効果を増大させるために、W/パーマロイ2層
膜のWに隣接して軟磁性膜であるCo−Ta−Zrある
いはCo−Mo−Zrアモルファス膜を約30nm形成
した素子においては、パーマロイ膜のバイアス量がWシ
ャント膜だけの場合よりも10〜2Coe増大した。F
 e −A Q −8i軟磁性膜でも同様の効果が得ら
れる。
Example 5 In order to increase the bias effect, a soft magnetic Co-Ta-Zr or Co-Mo-Zr amorphous film of about 30 nm was formed adjacent to the W of the W/permalloy two-layer film. The bias amount of the permalloy film increased by 10 to 2 Coe compared to the case of only the W shunt film. F
Similar effects can be obtained with the e-A Q-8i soft magnetic film.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、シャントバイアス型パーマロイ磁気抵
抗素子の耐熱温度を従来のT i /パーマロイ系に比
較して2Co〜250℃高めることができるので、当該
材料を用いた磁気ヘッドを作製するプロセスが従来より
2Co〜250℃高めら(8) れる。このため、パーマロイ膜と下地との密着性。
According to the present invention, the heat resistance temperature of the shunt-biased permalloy magnetoresistive element can be increased by 2Co to 250°C compared to the conventional T i /permalloy system, so that the process for manufacturing a magnetic head using the material can be improved. 2Co to 250°C higher than before (8). For this reason, the adhesion between the permalloy film and the base.

W/パーマロイ膜上の酸化物絶縁膜との密着性。Adhesion with oxide insulating film on W/permalloy film.

シールド用蒸着パーマロイ薄膜の特性向上、エレクトロ
マイグレーションによる素子の破壊、などが著しく低減
した。この結果として、素子の歩留向上、不良率低減、
使用中の故障の発生の低減に著しい効果があった。
The characteristics of vapor-deposited permalloy thin films for shielding have been improved, and damage to devices due to electromigration has been significantly reduced. As a result, the yield of devices is improved, the defective rate is reduced,
It had a remarkable effect on reducing the occurrence of breakdowns during use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のTi/パーマロイとW/パ
ーマロイ2層膜のパーマロイ膜の保磁力に及ぼす熱処理
温度の影響を示す測定図である。
FIG. 1 is a measurement diagram showing the influence of heat treatment temperature on the coercive force of a permalloy film of a Ti/permalloy and W/permalloy two-layer film according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、Feを15〜23wt%含有するNi−Fe合金膜
と不可避の不純物を含むW膜との2層膜からなり、W膜
がNi−Fe合金膜にバイアス磁界を印加するシャント
膜を構成することを特徴とする磁気抵抗効果型ヘッド。 2、Niを77〜85wt%、Coを1〜10%、残り
がFeおよび不可避の不純物よりなるNi−Fe−Co
合金膜とW膜の2層膜からなり、W膜がNi−Fe−C
o合金膜にバイアス磁界を印加するシャント膜を構成す
ることを特徴とする磁気抵抗効果型ヘッド。 3、Ni−Fe合金膜とW膜およびNi−Fe−Co合
金膜とW膜よりなる2層膜のW膜に接してバイアス用軟
磁気膜が設置されていることを特徴とする磁気抵抗効果
型ヘッド。 4、W膜の内部応力を低減するために、W膜に固溶する
合金元素が添加されていることを特徴とする磁気抵抗効
果型ヘッド。 5、磁気抵抗効果型ヘッドの感磁部に通電するためのリ
ード部分も、請求項1〜4で述べた多層膜からなつてい
ることを特徴とした磁気抵抗効果型ヘッド。
[Claims] 1. Consisting of a two-layer film of a Ni-Fe alloy film containing 15 to 23 wt% Fe and a W film containing unavoidable impurities, the W film applies a bias magnetic field to the Ni-Fe alloy film. A magnetoresistive head comprising a shunt film. 2. Ni-Fe-Co consisting of 77-85 wt% Ni, 1-10% Co, and the rest Fe and unavoidable impurities
It consists of two layers: an alloy film and a W film, and the W film is Ni-Fe-C.
A magnetoresistive head comprising a shunt film that applies a bias magnetic field to an o-alloy film. 3. Magnetoresistive effect characterized by a soft magnetic film for bias being placed in contact with the W film of a two-layer film consisting of a Ni-Fe alloy film and a W film, and a Ni-Fe-Co alloy film and a W film. type head. 4. A magnetoresistive head characterized in that an alloying element dissolved in solid solution is added to the W film in order to reduce the internal stress of the W film. 5. A magnetoresistive head, characterized in that the lead portion for supplying current to the magnetically sensitive part of the magnetoresistive head is also made of the multilayer film described in claims 1 to 4.
JP6418390A 1990-03-16 1990-03-16 Magnetoresistance effect type head Pending JPH03268215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6418390A JPH03268215A (en) 1990-03-16 1990-03-16 Magnetoresistance effect type head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6418390A JPH03268215A (en) 1990-03-16 1990-03-16 Magnetoresistance effect type head

Publications (1)

Publication Number Publication Date
JPH03268215A true JPH03268215A (en) 1991-11-28

Family

ID=13250689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6418390A Pending JPH03268215A (en) 1990-03-16 1990-03-16 Magnetoresistance effect type head

Country Status (1)

Country Link
JP (1) JPH03268215A (en)

Similar Documents

Publication Publication Date Title
JP2613239B2 (en) Magnetoresistive head
US5287237A (en) Antiferromagnetic film superior in corrosion resistance, magnetoresistance-effect element and magnetoresistance-effect head including such thin film
US4755897A (en) Magnetoresistive sensor with improved antiferromagnetic film
US4825325A (en) Magnetoresistive read transducer assembly
US6146775A (en) Magnetoresistive film
JP2821456B1 (en) Cobalt / iron / nickel magnetic thin film and manufacturing method thereof, and composite thin film magnetic head and magnetic storage device using the same
JPH10177705A (en) Magnetoresistance sensor, its production, optimizing method for interface characteristics and optimizing method for magnetoresistance response
JPS60251682A (en) Magnetoresistance effect type element
JPH0414411B2 (en)
CN100419856C (en) Magnetic multilayered films with reduced magnetostriction
US5473492A (en) Magnetic head including a reproducing head utilizing a magnetoresistance effect and having a magnetic shielding film containing nitrogen
US5258884A (en) Magnetoresistive read transducer containing a titanium and tungsten alloy spacer layer
JPH08255342A (en) Production of magnetic recording medium
JPS62128015A (en) Magneto-resistance effect type magnetic head
JP3382084B2 (en) Magnetic thin film for magnetic head, method of manufacturing the same, and magnetic head using the magnetic thin film
JPH03268215A (en) Magnetoresistance effect type head
JPH06349031A (en) Magneto-resistance effect type head
JPH08129721A (en) Production of nio antiferromagnetic film, production of magnetoresistance effect element and its element
Masahiro et al. The effect of annealing on the magnetic properties of permalloy films in permalloy Ta bilayers
JPH04211106A (en) Antiferromagnetic film and magnetic head employing antiferromagnetic film
US5521005A (en) Magnetoresistive head
JPH10289421A (en) Production of magneto-resistive multilayered films
JP2007115745A (en) Tunnel magnetoresistance effect element and method of manufacturing same
EP0642183B1 (en) Magnetic material with zero magnetostriction
JP2774702B2 (en) Soft magnetic thin film and thin film magnetic head using the same