JPH03267708A - Binary distance image sampling device - Google Patents

Binary distance image sampling device

Info

Publication number
JPH03267708A
JPH03267708A JP6651190A JP6651190A JPH03267708A JP H03267708 A JPH03267708 A JP H03267708A JP 6651190 A JP6651190 A JP 6651190A JP 6651190 A JP6651190 A JP 6651190A JP H03267708 A JPH03267708 A JP H03267708A
Authority
JP
Japan
Prior art keywords
wavelength
light
distance image
point
wavelengths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6651190A
Other languages
Japanese (ja)
Inventor
Kenichi Matsumura
謙一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6651190A priority Critical patent/JPH03267708A/en
Publication of JPH03267708A publication Critical patent/JPH03267708A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To properly sample a binary distance image by using discrete spectral light beams with >=3 wavelengths, focusing one wavelength light beam on a binary distance reference surface, and detecting the direction of a shift with other wavelength light beams. CONSTITUTION:A three-wavelength (RGB) light source 1 provides uniform lighting with scattered light; and only the light which has a wavelength G as to light from a point (a) on a ceramic substrate 13 to be measured is focused on a point a' on a single-plate color CCD 3 and neither of light beams having wavelengths R and B is focused because of a high-dispersion lens 2. The light having the wavelength B from a point (b) above the binary distance image reference surface of the substrate 13 is focused on a point b' on the CCD 3 and the light beam having the wavelength R from a point (c) is focused on a point c'. For the purpose, it is judged whether the defocusing of the light with the wavelength G is near of far by looking at the focusing states of the wavelengths R and B to obtain the binary distance image.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2値距離画像採取装置に関し、特に部品の実装
状態を検査するときに用いられる2値距離画像の採取を
行う2値距離画像採取装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a binary distance image acquisition device, and particularly to a binary distance image acquisition device for acquiring a binary distance image used when inspecting the mounting state of components. Regarding equipment.

〔従来の技術〕[Conventional technology]

従来、この種の平面(2次元)距離計は、レインボーレ
ンジファインダ、干渉法、光プローブ。
Conventionally, this type of planar (two-dimensional) range finder is a rainbow range finder, interferometry, or optical probe.

三角測量などを用いた距離計がおる。There are distance meters that use triangulation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の2値距離画像採取装置は、基本的に距離
画像を得るだめのものであり、2値距離画像を得るだけ
のためには、必要以上のデータが得られてしまい、過剰
の計測が行われてしまうという問題点がある。
The conventional binary distance image acquisition device described above is basically only for obtaining distance images, and in order to obtain only binary distance images, more data than necessary is obtained, resulting in excessive measurements. The problem is that this is done.

また、個々の方式ごとには下記の問題点がある。Furthermore, each method has the following problems.

干渉法では、波長単位程度で計測できるが、■0、1 
m程度のレーザが存在しないこと、■干渉縞が欠落して
いる部分が発生しやすいこと、■対象物の色及び表面性
状に依存することから、プリント板又はセラミ、り基板
上の部品実装の確認用には不向きである。
With interferometry, measurements can be made in wavelength units, but ■0, 1
2.m laser beams do not exist, 1) parts with missing interference fringes are likely to occur, 2) it depends on the color and surface texture of the target object, so it is difficult to mount components on printed circuit boards, ceramics, or substrates. Not suitable for confirmation.

また、レインボーレンジファインダでは、■−種の三角
測量の為、やはり部品実装では影になる部分が発生しや
すく、間の補間が難しい、■照射光量をあまり大きくす
ることができないこと、■部品の色に非常に影響され、
信号が取れない場合があること等からかなり不向きであ
る。
In addition, with the rainbow range finder, ■Due to the triangulation of species, shadow areas are likely to occur during component mounting, making it difficult to interpolate between them.■The amount of irradiation light cannot be increased too much. highly influenced by color,
It is quite unsuitable because it may not be possible to get a signal.

さらに、メツシー投影法、マルチ光切断法等も考えられ
るが、かなり粗くしか距離データが得られない。
Furthermore, Metshi projection method, multi-light cutting method, etc. can be considered, but distance data can only be obtained in a very rough manner.

一方、点計測若しくは線計測を行うものとして、レーザ
スポットによる三角測量方式や、レーザスリット光によ
る光切断方式が考えられるが、やζす、影となる部分が
発生することと、計測に時間がかかるという欠点がある
On the other hand, the triangulation method using a laser spot or the light cutting method using a laser slit light can be used to perform point or line measurement, but these methods tend to create shadows and take time to measure. There is a drawback that it takes a long time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の2値距離画像採取装置は、波長によりピント合
致位置の異なる光学系を用いて3波長以上の離散スペク
トル光で画像を採取する機構と、前記各波長での画像に
ついて対応点を算出しピント合致程度の評価を行う機構
とを有して構成される。
The binary distance image acquisition device of the present invention includes a mechanism for acquiring an image using discrete spectrum light of three or more wavelengths using an optical system that focuses on different positions depending on the wavelength, and a mechanism for calculating corresponding points for images at each of the wavelengths. and a mechanism for evaluating the degree of focus matching.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図μ本発明に利用するカメラの断面図である。FIG. 1 μ is a sectional view of a camera used in the present invention.

第1図に2いて、影が生じない様に多波長(本図でζ几
GB波長)、すなわち波長の異なる3波の単波長による
離散スペクトルを有する3波長光源1から散乱光により
均一照明を行う。測定対象物であるセラばツク基板13
の点aからの光は、高分散レンズ2の為にGの波長につ
いてのみa′が正しく単板式カラー〇CD3の上にa′
としてピントを結ぶ。一方、このとき、几とBの波長に
ついてはピントが正しく合致していない。また、セラば
ツク基板13の2位距離画像基準面4より上に出た点す
では、波長Bで単板式カラーCCD3上にb′としてピ
ントを結ぶ。同様に、Cに対しては波長几がC′として
ピントを結ぶ。
2 in Fig. 1, uniform illumination is performed using scattered light from a three-wavelength light source 1 having a discrete spectrum with multiple wavelengths (ζ几GB wavelength in this figure), that is, three single wavelengths with different wavelengths, so as not to cause shadows. conduct. Ceramic battery board 13 which is the object to be measured
For the light from point a, due to the high dispersion lens 2, a' is correct only for the wavelength G, and a' is placed on the single-plate color CD3.
focus as follows. On the other hand, at this time, the wavelengths of 几 and B are not in focus correctly. Further, a point on the ceramic backing board 13 that is above the second distance image reference plane 4 is focused at wavelength B on the single-plate color CCD 3 as b'. Similarly, for C, the wavelength filter focuses as C'.

上記をより模式的に示したものが第2図である。FIG. 2 shows the above more schematically.

但しここではピント面の位置を変えているように記して
いるが、実際には、対象物側の距離が変る為、ピント面
(二CODの存在する面)と実際のピント合致位置の相
対位置のみに意味がある。
However, although it is written here as if the position of the focus plane is changing, in reality, the distance to the object side changes, so the relative position between the focus plane (the surface where the two CODs exist) and the actual focus position only has meaning.

ここで、Gのピントのズレが近い方か遠い方かは、R,
Hのピント合致状態を見て判断することにより2値距離
画像が得られる。ここで、4〜6の各ピント合致基準面
の位置がどの程度となるかは高分散レンズ2に依存する
。この為、レンズの分散性能及び使用する波長の組合せ
によって必要な距離比較可能領域7を得るようにする。
Here, whether the focus shift of G is near or far is determined by R,
A binary distance image can be obtained by checking the in-focus state of H. Here, the position of each of the focusing reference planes 4 to 6 depends on the high dispersion lens 2. For this reason, the necessary distance comparison area 7 is obtained by combining the dispersion performance of the lens and the wavelengths used.

なお3波長で十分なサイズが取れないときは、より波長
数を増加させることで対応を行うことができる。
Note that if a sufficient size cannot be obtained with three wavelengths, it is possible to cope with this by increasing the number of wavelengths.

第1図のタイプでは、レンズの分散、波長の変更等によ
り、調整を行う為、調整は困難である。
In the type shown in FIG. 1, adjustment is difficult because it involves lens dispersion, changing the wavelength, etc.

一方、各波長ごとの像のズレは少く、対応点の算出はほ
ぼ取込んだ画像のアドレスに対応するものとしてよい。
On the other hand, the image shift for each wavelength is small, and the calculation of corresponding points may be made to correspond approximately to the address of the captured image.

次に、第3図に別のタイプの本発明で利用するカメラの
断面図を示す。基本的にRGBB板式カラーカメラであ
り、8,9は各色に対応するCCDである。使用するレ
ンズlOは3色に対する超色消しとなっているもの、即
ちプランアクロマートタイプのレンズである。B用CC
D9及びR用CCD9に対しては各々デバイス位置の調
整用マイクロステージ11.12が取付けられている。
Next, FIG. 3 shows a sectional view of another type of camera used in the present invention. It is basically an RGBB board type color camera, and 8 and 9 are CCDs corresponding to each color. The lens IO used is a super achromatic lens for three colors, that is, a plan achromat type lens. CC for B
Microstages 11 and 12 for device position adjustment are attached to the D9 and R CCDs 9, respectively.

この場合には、このマイクロステージによりR2O,B
の各色についての相対的なピント合致基準面の位、礎が
調整できる為、距離比較可能領域7の調整が行いやすい
という利点がある。
In this case, this microstage allows R2O, B
Since the relative focus matching reference plane for each color can be adjusted, there is an advantage that the distance comparison possible area 7 can be easily adjusted.

第4図は実施例のシステム全体構成である。FIG. 4 shows the overall system configuration of the embodiment.

対象物であるチップ部品を実装済みのセラばツク基板1
3に対して離散スペクトルを有する3波長光源1で散乱
照明を行う。これをRGBカメラ14で撮像し、R,G
、B各々を多値ビデオメモIJ 15に格納する。次に
、各画像をローカル多値処理プロセッサ16を通し、各
色について、各々の周辺画素からのゝゝ不明“を含むピ
ント合致度画像を作り、ピント合致度画像メモリ17に
格納する。
Ceramic board 1 with target chip components mounted on it
3, a three-wavelength light source 1 having a discrete spectrum performs scattering illumination. This is imaged by the RGB camera 14, and R,G
, B are stored in the multilevel video memo IJ 15. Next, each image is passed through a local multi-value processing processor 16 to create a focus matching degree image including "unknowns" from each surrounding pixel for each color, and storing it in a focus matching degree image memory 17.

距離判定器18vi各ピント合致度画像メモリ17につ
いて対応度算出用のアドレス変換機能を有するアドレス
変換器19を介してアクセスし、得られた2値距離画像
を2値距離画像メモリ2oに格納する。すなわち、アド
レス変換器19はアドレス(x、y)に対して、画像メ
モリ中心(XC。
Distance determiner 18vi accesses each focus matching degree image memory 17 via an address converter 19 having an address conversion function for calculating correspondence degree, and stores the obtained binary distance image in binary distance image memory 2o. That is, the address converter 19 converts the address (x, y) to the image memory center (XC).

Yc)と、R,G、B各々に電子る定数CR9CG(=
1)、CBをもって、x’=(X−Xc)−C,、+x
c 、Y’=(Y−yc)−CR+ycのように変換を
行い倍率調整を行うものとする。
Yc) and the constant CR9CG (=
1), with CB, x'=(X-Xc)-C,,+x
c, Y'=(Y-yc)-CR+yc and magnification adjustment is performed.

又、2値距離画像はより正確には、0.1以外に9不明
“という領域の存在する31区画像である。
Moreover, the binary distance image is more precisely a 31-section image in which a region of 9 "unknown" exists in addition to 0.1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、3波長以上の離散スペ
クトル光を用いることにより、1つの波長を2値距離基
準面にピントを合致させることができることと、他の2
波長以上の光でどの方向にズしているかが面計測で可能
になることから、適切な21[距離画像の採取が容易に
行えるという効果がある。
As explained above, the present invention is capable of focusing one wavelength on a binary distance reference plane by using discrete spectrum light of three or more wavelengths, and is capable of focusing one wavelength on a binary distance reference plane.
Since it is possible to measure the direction in which light of wavelength or longer is shifted by surface measurement, it is possible to easily collect appropriate 21 [distance images].

また、波長数を増加させることや、各波長でのピント合
致位置を変更することで2値距離画像が高速に得られる
という効果がある。
Further, by increasing the number of wavelengths and changing the focus position at each wavelength, there is an effect that a binary distance image can be obtained at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用するカメラの断面図、第2図aそ
の模式図、第3図は本発明で使用する別タイプのカメラ
の断面図、第4図は本発明の一実施例のプロ、り図であ
る。 1・・・・・・3波長光源(几GB)、2・・・・・・
高分散レンズ、3・・・・・・平板式カラーCCD、4
・−・・・・2値距離画像基準面(Gのピント合致基準
面)、5・・・・・・凡のピント合致基準面、6・・・
・−・Bのピント合致基準面、7・・・・・・距離比較
可能領域、8・・・・・・G用ccD(固定)、9−・
・−R及びB用のCCD、10.’゛°°超色レンズ、
ll−°°・・・マイクロステージ、12・・・・・・
マイクロステージ、13・・・・・・セラばツク基板、
14・・・・・・RGBカメラ、15・・・・・・多値
ビデオメモ!J、16°°°・・・ローカル多値処理プ
ロセッサ、17°°°°“°ピント合致度画像メモリ、
18・・・・・・距離判定器、l 9−°−゛アドレス
変換器、2o・・・・・・2値距離画像メモリ。
Fig. 1 is a sectional view of a camera used in the present invention, Fig. 2a is a schematic diagram thereof, Fig. 3 is a sectional view of another type of camera used in the present invention, and Fig. 4 is a sectional view of an embodiment of the present invention. This is a professional drawing. 1...3 wavelength light source (几GB), 2...
High dispersion lens, 3...Flat type color CCD, 4
... Binary distance image reference plane (G focus matching reference plane), 5... General focusing reference plane, 6...
... B focus matching reference plane, 7... Distance comparison possible area, 8... CCD for G (fixed), 9-.
- CCD for R and B, 10. '゛°°super-colored lenses,
ll-°°...Microstage, 12...
Microstage, 13... Ceramic board,
14...RGB camera, 15...Multi-level video memo! J, 16°°°...Local multivalue processing processor, 17°°°°"°focus degree image memory,
18...Distance determiner, l9-°-゛address converter, 2o...Binary distance image memory.

Claims (1)

【特許請求の範囲】[Claims] 波長によりピント合致位置の異なる光学系を用いて3波
長以上の離散スペクトル光で画像を採取する機構と、前
記各波長での画像について対応点を算出しピント合致程
度の評価を行う機構とを有することを特徴とする2値距
離画像採取装置。
It has a mechanism that collects images with discrete spectrum light of three or more wavelengths using an optical system that focuses on different positions depending on the wavelength, and a mechanism that calculates corresponding points for images at each of the wavelengths and evaluates the degree of focus. A binary distance image acquisition device characterized by:
JP6651190A 1990-03-16 1990-03-16 Binary distance image sampling device Pending JPH03267708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6651190A JPH03267708A (en) 1990-03-16 1990-03-16 Binary distance image sampling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6651190A JPH03267708A (en) 1990-03-16 1990-03-16 Binary distance image sampling device

Publications (1)

Publication Number Publication Date
JPH03267708A true JPH03267708A (en) 1991-11-28

Family

ID=13317944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6651190A Pending JPH03267708A (en) 1990-03-16 1990-03-16 Binary distance image sampling device

Country Status (1)

Country Link
JP (1) JPH03267708A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011187A1 (en) * 2010-07-23 2012-01-26 トヨタ自動車 株式会社 Distance measurement device and distance measurement method
KR20220061331A (en) * 2020-11-05 2022-05-13 세메스 주식회사 Distance measuring system and distance measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011187A1 (en) * 2010-07-23 2012-01-26 トヨタ自動車 株式会社 Distance measurement device and distance measurement method
CN102575930A (en) * 2010-07-23 2012-07-11 丰田自动车株式会社 Distance measurement device and distance measurement method
JP5229427B2 (en) * 2010-07-23 2013-07-03 トヨタ自動車株式会社 Distance measuring device and distance measuring method
US9451213B2 (en) 2010-07-23 2016-09-20 Toyota Jidosha Kabushiki Kaisha Distance measuring apparatus and distance measuring method
KR20220061331A (en) * 2020-11-05 2022-05-13 세메스 주식회사 Distance measuring system and distance measuring method

Similar Documents

Publication Publication Date Title
KR100815283B1 (en) System for simultaneous projections of multiple phase-shifted patterns for the three-dimensional inspection of an object
US5878152A (en) Depth from focal gradient analysis using object texture removal by albedo normalization
JP3481631B2 (en) Apparatus and method for determining a three-dimensional shape of an object using relative blur in an image due to active illumination and defocus
JP5167279B2 (en) Method and apparatus for quantitative three-dimensional imaging
US6909509B2 (en) Optical surface profiling systems
US6459493B1 (en) Apparatus for measuring surface form
US4629324A (en) Arrangement for measuring depth based on lens focusing
JPH10506478A (en) A device that checks the integrity of the autofocus of a cytological device
JP2001356004A (en) Image pickup device and range measuring method for image
US20180156606A1 (en) Three-dimensional shape measurement apparatus
JPH04115108A (en) Three-dimensional scanner
JP2000089092A (en) Document image pickup technique by digital camera
JP4090860B2 (en) 3D shape measuring device
TW201732263A (en) Method and system for optical three-dimensional topography measurement
JPH0690032B2 (en) Range image acquisition device
US10197781B2 (en) Vertical chromatic confocal scanning method and system
CN109827657B (en) Method and device for measuring grating constant of plain laser material
JP2000193432A (en) Measuring method with image recognition and device
JP4756148B2 (en) Gloss / color reproduction system, gloss / color reproduction program
JPH03267708A (en) Binary distance image sampling device
KR20020093507A (en) Apparatus for inspecting parts
JPH0483133A (en) Three-dimensional scanner
JP2001304821A (en) Image pickup apparatus and range measuring method
JPH05322526A (en) Three dimensional form measuring apparatus
WO2019117802A1 (en) A system for obtaining 3d images of objects and a process thereof