JPH03267350A - Irradiation resisting austenitic stainless steel - Google Patents

Irradiation resisting austenitic stainless steel

Info

Publication number
JPH03267350A
JPH03267350A JP6423290A JP6423290A JPH03267350A JP H03267350 A JPH03267350 A JP H03267350A JP 6423290 A JP6423290 A JP 6423290A JP 6423290 A JP6423290 A JP 6423290A JP H03267350 A JPH03267350 A JP H03267350A
Authority
JP
Japan
Prior art keywords
irradiation
stainless steel
austenitic stainless
steel
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6423290A
Other languages
Japanese (ja)
Inventor
Takahiko Kato
隆彦 加藤
Heishichirou Takahashi
高橋 平七郎
Shinzo Ikeda
池田 伸三
Yasuhisa Aono
泰久 青野
Kiyotomo Nakada
仲田 清智
Masakiyo Izumitani
泉谷 雅清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6423290A priority Critical patent/JPH03267350A/en
Publication of JPH03267350A publication Critical patent/JPH03267350A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the lowering of intergranular Cr concentration under neutron irradiation and to obtain an irradiation resisting austenitic stainless steel by incorporating C, Si, Mn, Cr, Ni, Mo, Ti, Zr, and Hf in specific proportions and specific relations. CONSTITUTION:This steel is an irradiation resisting austenitic stainless steel which has a composition containing, by weight, 0.001-0.03% C, <=1% Si, <=2% Mn, 15-18% Cr, 8-15% Ni, 0-3% Mo, and at least one kind among >0.4-<0.5% Ti, >0.2-<0.9% Zr, and >0.2-<1.7% Hf, satisfying 0.2<Ti+Zr/1.9+Hf/3.7<0.5, and further containing, if necessary, 0.001-0.1% N. In this steel, reduction in Cr concentration in grain boundaries can be prevented under irradiation and deterioration in irradiation embrittlement resistance and stress corrosion cracking resistance can be inhibited without causing deterioration in mechanical properties due to neutron irradiation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規なオーステナイト系ステンレス鋼に係り
、特に原子炉炉心部材として中性子照射を受ける炉心部
の機器部品類の、機械的性質を低下させることなく、照
射下での粒界Cr濃度低下を防止するのに好適なオース
テナイトステンレス鋼に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a new austenitic stainless steel, particularly for use in reducing the mechanical properties of equipment parts in the reactor core that are subjected to neutron irradiation as core members of nuclear reactors. The present invention relates to an austenitic stainless steel suitable for preventing a decrease in grain boundary Cr concentration under irradiation without causing any irradiation.

〔従来の技術〕[Conventional technology]

従来、軽水炉炉心の機器部品には主として、5US30
4が使用されている。原子炉の運転期間中、炉心部の機
器部品は中性子照射を受けるので機器部品材料は耐照射
性に優れたものが望まれている。
Conventionally, 5US30 was mainly used for light water reactor core equipment parts.
4 is used. During the operation of a nuclear reactor, equipment components in the reactor core are exposed to neutron irradiation, so materials for equipment parts are desired to have excellent irradiation resistance.

材料の耐照射性で、特に、重要な性質は照射脆化と照射
下の応力腐食割れである。照射脆化については、例えば
、特許1323615号に見られる様に、材料に微量の
添加元素を含有させることにより改善されることが指摘
されている。また照射下の応力腐食割れ性については同
様に微量の■族及び■族元素を添加することにより改善
されることが特開昭62−93075号公報に記載され
ている。
Particularly important properties in the radiation resistance of materials are radiation embrittlement and stress corrosion cracking under irradiation. It has been pointed out that irradiation embrittlement can be improved by incorporating a trace amount of an additive element into the material, as seen in, for example, Japanese Patent No. 1,323,615. Furthermore, it is described in JP-A-62-93075 that the stress corrosion cracking resistance under irradiation can be similarly improved by adding trace amounts of group (1) and group (2) elements.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記発明の従来技術においては、原子炉
中で高い線量の中性子照射を被むることにより結晶粒界
でのCrの濃度が減少し、オーステナイトステンレス鋼
の耐照射脆化性及び照射下での耐応力腐食割れ性が悪化
することを認識していない。
However, in the prior art of the above invention, the concentration of Cr at grain boundaries decreases due to exposure to high doses of neutron irradiation in a nuclear reactor, and the irradiation embrittlement resistance of austenitic stainless steel and its resistance to irradiation decrease. They were not aware that stress corrosion cracking resistance would deteriorate.

本発明は、照射下での粒界Cr濃度低下を防止するに耐
照射性オーステナイトステンレス鋼を提供することを目
的とする。
An object of the present invention is to provide an irradiation-resistant austenitic stainless steel that prevents a decrease in grain boundary Cr concentration under irradiation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、重量で、C0.OO1〜0.03%。 The present invention has a C0. OO1-0.03%.

Si1%以下、Mn2%以下、Cr15−18%。Si 1% or less, Mn 2% or less, Cr 15-18%.

Ni8〜15%、Mo0〜3%を有するオーステナイト
ステンレス鋼にTi、Zr、Hfの一種または二種以上
を、 で含有し、さらに添加元素Ti、Zr、Hfの、照射下
における粒界Cr濃度低下を防止する効果を損わないた
めに、Nの含有量を0.001〜0.1にしたものであ
る。
One or more of Ti, Zr, and Hf are contained in an austenitic stainless steel having 8 to 15% Ni and 0 to 3% Mo, and the grain boundary Cr concentration of the additional elements Ti, Zr, and Hf is reduced under irradiation. In order not to impair the effect of preventing this, the N content is set to 0.001 to 0.1.

〔作用〕[Effect]

オーステナイトステンレス鋼の照射下で誘起される粒界
でのCr濃度の低下は、照射により材料中に導入される
照射点欠陥すなわち空孔と格子間原子の粒界への移動に
よるものである。つまりCrは、空孔と相互作用するこ
とにより空孔の流れと逆向きに移動する交換機構により
粒界から離れていく。本発明は、上記粒界Cr濃度減少
を防止する方法として、Crの移動の駆動力となる点欠
陥の量を減少させることを思いついた。さらに照射によ
って生成される点欠陥の量を減少させる方法として、空
孔と強く相互作用する元素の添加により空孔をその元素
にトラップして格子間原子との相互消滅を促進させる方
法を考案し、種々の元素の添加と有効な添加量の検討を
行った。その結果、Ti、Zr、Hfの一種または二種
以上を前述のように含有させるものである。
The decrease in Cr concentration at grain boundaries induced under irradiation of austenitic stainless steel is due to the migration of irradiation point defects, ie, vacancies, and interstitial atoms introduced into the material by irradiation to the grain boundaries. In other words, Cr moves away from grain boundaries by an exchange mechanism in which it interacts with pores and moves in the opposite direction to the flow of pores. The present invention has come up with the idea of reducing the amount of point defects that act as a driving force for Cr movement, as a method for preventing the above-mentioned decrease in grain boundary Cr concentration. Furthermore, as a method to reduce the amount of point defects generated by irradiation, we devised a method of adding an element that strongly interacts with vacancies to trap vacancies in that element and promote mutual annihilation with interstitial atoms. We investigated the addition of various elements and their effective amounts. As a result, one or more of Ti, Zr, and Hf are contained as described above.

これらの添加により、照射による粒界でのCr濃度の減
少を防止できることを、中性子照射の模擬試験として超
高圧電子顕微鏡を用いた電子照射試験により発見し、本
発明をするに至った。これら添加元素の働きは、上記の
様にこれらの添加元素が照射により生成した点欠陥すな
わち空孔を強くトラップすることにより格子間原子との
相互消滅を促進させ、空孔の量が著しく引き下げられる
ため粒界からのCrの移動を抑制するものと考えられ、
その結果、照射下で誘起される粒界でのCr濃度低下の
防止を達成できたと考えられる。
It was discovered through an electron irradiation test using an ultra-high-voltage electron microscope as a neutron irradiation simulation test that the addition of these materials can prevent a decrease in the Cr concentration at grain boundaries due to irradiation, leading to the present invention. As mentioned above, these additive elements strongly trap point defects, or vacancies, generated by irradiation, thereby promoting mutual annihilation with interstitial atoms, and the amount of vacancies is significantly reduced. Therefore, it is thought to suppress the movement of Cr from the grain boundaries,
As a result, it is considered that the reduction in Cr concentration at grain boundaries induced by irradiation could be prevented.

また上記添加元素の効果は、CまたはNが多量に存在す
ると、CまたはNが粒界でCrの化合物を照射中に生成
し、粒界でCr濃度の減少が誘起させるため、Cまたは
Nを各々0.03重量%または0.1 重量%より引き
下げないと、有効な働きをしない。但し、鋼の製造性及
びコストの点から、CまたはNの下限値は0.001 
重量%以上が好ましい。また上記Ti、Zr、Hfの添
加量は最低値以下では上記効果がなくさらに最高値以上
では、溶接性や加工性が悪化する。
In addition, the effect of the above additive elements is that when a large amount of C or N exists, C or N forms at the grain boundaries during irradiation with Cr compounds, which induces a decrease in the Cr concentration at the grain boundaries. It will not work effectively unless it is reduced below 0.03% by weight or 0.1% by weight, respectively. However, from the viewpoint of steel manufacturability and cost, the lower limit of C or N is 0.001.
It is preferably at least % by weight. Furthermore, if the amounts of Ti, Zr, and Hf added are below the minimum value, the above effects will not be obtained, and if the amounts are above the maximum value, weldability and workability will deteriorate.

また、他の成分元素は耐照射性9強度、耐食性を考慮し
て、下記の範囲内とすることが好ましい。
In addition, other component elements are preferably within the following ranges in consideration of irradiation resistance 9 strength and corrosion resistance.

(1)Si:1%以下 Siは耐照射脆化向上のために有効であるが、1%をこ
えるとかえって高温水中での応力腐食割れ性を害するの
で好ましくない。また、鋼の溶解の際、脱酸を完全する
ためには、1%以下添加してもよい。
(1) Si: 1% or less Si is effective for improving resistance to irradiation embrittlement, but if it exceeds 1%, it is not preferable because it actually impairs stress corrosion cracking in high-temperature water. Furthermore, in order to complete deoxidation during melting of steel, it may be added in an amount of 1% or less.

(2) Mn : 2%以下 強度や加工性向上に有効であるが、2%を越えると逆に
脆化をもたらすため、2%以下とする。
(2) Mn: 2% or less is effective in improving strength and workability, but exceeding 2% causes embrittlement, so it should be kept at 2% or less.

(3)Ni:8〜15%以下 Niは耐食性、照射下でのオーステナイト相安定性及び
耐照射性から8〜15%が望ましい。
(3) Ni: 8 to 15% or less Ni is desirably 8 to 15% in terms of corrosion resistance, austenite phase stability under irradiation, and irradiation resistance.

(4)Cr: 15−20%以下 Crは15%以下では強度及び耐食性が低下し、また、
20%以上では耐照射性が低下するので特に15〜18
%の範囲が望ましい。
(4) Cr: 15-20% or less If Cr is 15% or less, strength and corrosion resistance decrease, and
If it exceeds 20%, the irradiation resistance will decrease, so especially if it is 15 to 18%.
A range of % is desirable.

(5)Mo:0〜3%以下 MOは、添加しなくても上記機器部品材料として使用で
きるが、さらに耐食性の向上に配慮する場合に有効な添
加元素である。しかし、3%を越えて添加するとδ相の
析出を促進し材料の脆化を引きおこすので好ましくない
(5) Mo: 0 to 3% or less MO can be used as the above-mentioned equipment component material without being added, but it is an effective additive element when consideration is given to improving corrosion resistance. However, adding more than 3% is not preferable because it promotes precipitation of the δ phase and causes embrittlement of the material.

〔実施例〕〔Example〕

実施例1 第1表に1本発明のオーステナイトステンレス鋼&2,
3.4の化学組成(重量%)を比較鋼1゜5.6.7と
共に示す。Nα1はいわゆる5US316L鋼である。
Example 1 Table 1 shows 1 austenitic stainless steel of the present invention &2,
The chemical composition (wt%) of 3.4 is shown together with comparative steel 1°5.6.7. Nα1 is so-called 5US316L steel.

残部はFeである。Nα2,3゜4は各々本発明の添加
元素Ti、Zr、Hfを本発明の添加量の範囲で含有し
たものである。また&5,6.7は化較鋼として各々V
、Nb、Taを原子%で本発明鋼(Nα1ないし3)と
同程度含有した鋼である。これらの鋼を溶製、造塊後、
熱間圧延、冷間圧延し、最終的に10oO〜1150℃
で30分間溶体化処理を施して照射用試料とした。試料
は中性子照射を模擬した超高圧電子顕微鏡を用いた電子
照射で試験した。照射条件は電子の加速電圧IMeV、
500℃、10dpa (1dpaは中性子照射量の約
lXl0”n/aJに相当する)である。第1図は照射
後結晶粒界近傍のCr濃度変化をEDX (エネルギ分
散型X線分析装置)で分析した結果を示す。比較材Nα
1,5゜6.7では粒界で著しいCr濃度の低下が観察
されるが、本発明鋼Nα2,3.4では粒界でのCr濃
度低下は防止されている。
The remainder is Fe. Nα2, 3°4 each contains the additive elements Ti, Zr, and Hf according to the present invention within the range of the additive amount according to the present invention. In addition, &5 and 6.7 are respectively V as comparative steels.
, Nb, and Ta in atomic % to the same extent as the steels of the present invention (Nα1 to 3). After melting these steels and forming ingots,
Hot rolled, cold rolled, finally 10oO~1150℃
The sample was subjected to solution treatment for 30 minutes to prepare a sample for irradiation. The samples were tested by electron irradiation using an ultra-high voltage electron microscope that simulates neutron irradiation. The irradiation conditions are electron acceleration voltage IMeV,
500°C, 10 dpa (1 dpa corresponds to approximately lXl0"n/aJ of neutron irradiation). Figure 1 shows the change in Cr concentration near grain boundaries after irradiation using EDX (energy dispersive X-ray analyzer). The analysis results are shown below. Comparative material Nα
At 1.5°6.7, a significant decrease in Cr concentration is observed at the grain boundaries, but in the steel of the present invention Nα2, 3.4, the decrease in Cr concentration at the grain boundaries is prevented.

さらにTiとZrを各々0.2,0.2重量%&1に添
加した鋼、ZrとHfを各々0.2.0.3重量%Nα
1に添加した鋼、TiとHfを各々0.2゜0.4 重
量%Na 1に添加した鋼、Ti、Zr。
Furthermore, steel with Ti and Zr added at 0.2 and 0.2 wt% &1, and Nα with Zr and Hf added at 0.2 and 0.3 wt% each
Steel with added Ti and Hf at 0.2° and 0.4% by weight Na 1, Ti and Zr respectively.

Hfを各々0.12,0.21,0.30 添加した鋼
を作製し、上記と同様の照射試験したが、粒界でのCr
濃度の減少は防止されていた。これらの鋼は本発明のオ
ーステナイト鋼である。
Steels with 0.12, 0.21, and 0.30 Hf added were prepared and subjected to the same irradiation test as above, but Cr at the grain boundaries
A decrease in concentration was prevented. These steels are the austenitic steels of the present invention.

実施例2 第2図は、BWR型原子炉炉心部の概略断面図であり、
図中、1は中性子源パイプ、2は上部格子板、3は中性
子計装管、4は制御棒を示す。これらの部品を実施例1
で示した本発明のNα5,6゜7並びにTiとZr、Z
rとHf、TiとHf及びTiとZrとHfを複合添加
した鋼で作製したが従来製造方法で容易に製造できた。
Example 2 FIG. 2 is a schematic cross-sectional view of the core of a BWR type nuclear reactor.
In the figure, 1 is a neutron source pipe, 2 is an upper grid plate, 3 is a neutron instrumentation tube, and 4 is a control rod. These parts are shown in Example 1.
Nα5,6°7 of the present invention shown in , and Ti, Zr, Z
The steels were manufactured using composite additions of r and Hf, Ti and Hf, and Ti, Zr, and Hf, and could easily be manufactured using conventional manufacturing methods.

また図中1〜4で示す機器部品の他にこれらの機器部品
間に介在する細いパーツ等も本発明の上記材料で容易に
作製できた。
In addition to the device parts 1 to 4 in the figure, thin parts interposed between these device parts could also be easily manufactured using the above-mentioned materials of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原子炉炉心及び核融合炉炉壁で中性子
照射を受ける機器部品材料の照射下で起こる粒界Cr濃
度の減少を防止することができる。
According to the present invention, it is possible to prevent a decrease in grain boundary Cr concentration that occurs under irradiation of equipment component materials that are irradiated with neutrons in a nuclear reactor core and a fusion reactor wall.

その結果、これら炉の安全性、信頼性の向上に効果があ
り、ひいては、該機器部品材料の長寿命化による炉運転
の経済性向上に効果がある。
As a result, it is effective in improving the safety and reliability of these furnaces, and in turn, it is effective in improving the economic efficiency of furnace operation by extending the life of the equipment component materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の鋼の照射による粒界近傍のCr濃度
変化を比較鋼と共にCr濃度の関係を示す線図、第2図
は、本発明鋼で作製したBWR炉内構造物の断面図であ
る。 1・・・中性子源パイプ、2・・・上部格子板、3・・
・中性子計装管、4・・・制御棒。         
   7.7.0ト 弁封 4゛川勝男隔ニノ□ !f−1図
Figure 1 is a diagram showing the relationship between the change in Cr concentration near grain boundaries due to irradiation of the steel of the present invention and the comparative steel, and Figure 2 is a cross-section of a BWR reactor internal structure fabricated using the steel of the present invention. It is a diagram. 1... Neutron source pipe, 2... Upper grid plate, 3...
・Neutron instrumentation tube, 4...control rod.
7.7.0 Benfu 4゛Katsuo Kawa Nino□! f-1 diagram

Claims (1)

【特許請求の範囲】 1、重量で、C0.001〜0.03%、Si1%以下
、Mn2%以下、Cr15〜18%、Ni8〜15%、
MoO〜3%と、Ti0.4%を越え0.5%未満、Z
r0.2%を越え0.9%未満及びHf0.2%を越え
1.7%未満の少なくとも1種とを含み、Ti、Zr及
びHfが下記の式の範囲内であることを特徴とする耐照
射性オーステナイトステンレス鋼。 0.2<Ti+(Zr/1.9)+(Hf/3.7)<
0.52、特許請求の範囲第1項において、重量比で0
.001〜0.1%のNを含有することを特徴とする耐
照射性オーステナイトステンレス鋼。
[Claims] 1. By weight: C 0.001 to 0.03%, Si 1% or less, Mn 2% or less, Cr 15 to 18%, Ni 8 to 15%,
MoO ~ 3%, Ti over 0.4% and less than 0.5%, Z
It is characterized by containing at least one of r more than 0.2% and less than 0.9% and Hf more than 0.2% and less than 1.7%, and Ti, Zr and Hf are within the range of the following formula. Irradiation resistant austenitic stainless steel. 0.2<Ti+(Zr/1.9)+(Hf/3.7)<
0.52, in claim 1, the weight ratio is 0.
.. An irradiation-resistant austenitic stainless steel characterized by containing 0.001 to 0.1% of N.
JP6423290A 1990-03-16 1990-03-16 Irradiation resisting austenitic stainless steel Pending JPH03267350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6423290A JPH03267350A (en) 1990-03-16 1990-03-16 Irradiation resisting austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6423290A JPH03267350A (en) 1990-03-16 1990-03-16 Irradiation resisting austenitic stainless steel

Publications (1)

Publication Number Publication Date
JPH03267350A true JPH03267350A (en) 1991-11-28

Family

ID=13252172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6423290A Pending JPH03267350A (en) 1990-03-16 1990-03-16 Irradiation resisting austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPH03267350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715071A1 (en) * 2004-01-13 2006-10-25 Mitsubishi Heavy Industries, Ltd. Austenitic stainless steel, method for producing same and structure using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715071A1 (en) * 2004-01-13 2006-10-25 Mitsubishi Heavy Industries, Ltd. Austenitic stainless steel, method for producing same and structure using same
EP1715071A4 (en) * 2004-01-13 2007-08-29 Mitsubishi Heavy Ind Ltd Austenitic stainless steel, method for producing same and structure using same
US8172959B2 (en) 2004-01-13 2012-05-08 Mitsubishi Heavy Industries, Ltd. Austenitic stainless steel, manufacturing method for the same, and structure using the same

Similar Documents

Publication Publication Date Title
KR100187539B1 (en) Zirconium alloy with superior corrosion resistance
US5116569A (en) Austenitic steel excellent in resistance to neutron irradiation embrittlement and members made of the steel
TWI460739B (en) A spacer grid and method of manufacturing the same
RU2262753C2 (en) Fast reactor fuel element (versions) and the can for its fabrication
CN110373573B (en) Gadolinium-rich nickel-tungsten-based alloy material for nuclear shielding and preparation method thereof
JPH0559494A (en) Austenitic stainless steel excellent in radiation induced segregation resistance
CA1088785A (en) Weld metal resistant to neutron-bombardment embrittlement
US5278881A (en) Fe-Cr-Mn Alloy
KR100896988B1 (en) High-Cr Ferritic/Martensitic Steels having improved neutron irradiation stability containing an enriched boron-11 for the in-core component materials in the Gen-? fission reactor and the fusion reactor
CN104294181A (en) Low-alloy steel
JPH03267350A (en) Irradiation resisting austenitic stainless steel
US3576622A (en) Nickel-base alloy
US3856517A (en) Irradiation swelling resistant alloy for use in fast neutron reactors
JP2726299B2 (en) High corrosion resistant zirconium alloy for nuclear reactors
JPH07100842B2 (en) Reactor core member with excellent stress corrosion cracking resistance
US5539794A (en) Reduction of manganese content of stainless alloys to mitigate corrosion of neighboring in-core zirconium based components
US4361443A (en) Solid solution strengthened iron-base austenitic alloy
RU2800699C1 (en) Corrosion resistant neutron absorbing steel
KR20130116668A (en) Zirconium alloy having excellent mechanical properties and corrosion resistance for nuclear fuel rod cladding tube
JPH089755B2 (en) Intergranular corrosion resistance Fe-Cr-Mn alloy and its use
RU2703318C1 (en) Radiation-resistant austenitic steel for the wwpr in-vessel partition
JPH05171359A (en) Austenitic stainless steel markedly lowered in contents of nitrogen and boron
RU2124065C1 (en) Austenite, iron-chromium-nickel alloy for spring members of atomic reactors
Hamada et al. Niobium-added type 308 stainless steel weld metal resistant to sensitization by postweld heat treatment and low-temperature aging
JP5493061B2 (en) Austenitic high-purity iron alloy with excellent radiation damage resistance