JPH03267319A - Production of nonoriented silicon steel sheet excellent in magnetic property - Google Patents

Production of nonoriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH03267319A
JPH03267319A JP2067759A JP6775990A JPH03267319A JP H03267319 A JPH03267319 A JP H03267319A JP 2067759 A JP2067759 A JP 2067759A JP 6775990 A JP6775990 A JP 6775990A JP H03267319 A JPH03267319 A JP H03267319A
Authority
JP
Japan
Prior art keywords
roll
rolling
groove
rolled
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2067759A
Other languages
Japanese (ja)
Other versions
JPH0823046B2 (en
Inventor
Akihiko Nishimoto
昭彦 西本
Yoshihiro Hosoya
佳弘 細谷
Katsumi Tanigawa
谷川 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2067759A priority Critical patent/JPH0823046B2/en
Publication of JPH03267319A publication Critical patent/JPH03267319A/en
Publication of JPH0823046B2 publication Critical patent/JPH0823046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel

Abstract

PURPOSE:To improve magnetic flux density by carrying out a part of rollings prior to the annealing of a hot rolled plate by using a rolling roll having longitudinal grooves in which the arrangement, size, etc., of grooves arc specified and which are provided in the peripheral direction of the roll. CONSTITUTION:A hot rolled strip of a steel having a composition consisting of, by weight, <=0.01% C, <=7.0% Si, 0.1-1.5% Mn, <=0.1% P, <0.01% S, <=0.001% or 0.05-1.0% Al, <=0.005% N, and the balance Fe is used. This steel strip is subjected, if necessary, to annealing, cold- rolled or warm-rolled once or subjected to cold rolling or warm rolling twice or more while process-annealed between the cold or warm rolling stages, and then annealed, by which a silicon steel sheet is obtained. At this time, in the above cold or warm rolling stage, rollings in one or more passes not including the final pass are carried out by using a roll formed by arranging, in the peripheral direction of the roll surface, longitudinal grooves in which groove pitch (l)(mm) and groove depth (d)(mm) satisfy inequalities I, II with respect to the initial sheet thickness (t)(mm) of the stock to be rolled and also the cross-sectional area S(mm<2>) of the groove part per groove pitch (l) in the cross section passing a roll shaft satisfies an inequality III at equal spaces in the longitudinal direction of the roll. Then, rollings in one or more passes including the final pass are carried out by using smooth roll.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は優れた磁気特性、特に高い磁束密度を有する無
方向性電磁鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, particularly high magnetic flux density.

〔従来技術及び発明が解決すべき課題〕従来、良好な磁
気特性を有する無方向性電磁鋼板を製造するために、数
々の製造技術が開発されている。磁気特性のなかでも磁
束密度は鋼板の集合組織と密接な関係があり、磁化容易
軸である( 100)軸を鋼板表面にできるだけ集積さ
せることが必要である。そのために、熱延板焼鈍により
熱延板組織を改良する技術、冷圧率を適正化することに
より、続いて行なう焼鈍時の再結晶集合組織を制御する
技術、冷圧、焼鈍を2回以上行なうことにより磁気特性
上好ましい集合組織へと濁汰していく技術などが知られ
ているが、いずれも十分に満足できるような改善効果は
得られないのが実情である。
[Prior Art and Problems to be Solved by the Invention] Conventionally, a number of manufacturing techniques have been developed in order to manufacture non-oriented electrical steel sheets having good magnetic properties. Among the magnetic properties, the magnetic flux density is closely related to the texture of the steel sheet, and it is necessary to integrate the (100) axis, which is an axis of easy magnetization, on the surface of the steel sheet as much as possible. To this end, we have developed a technology to improve the hot-rolled sheet structure through hot-rolled sheet annealing, a technology to control the recrystallized texture during subsequent annealing by optimizing the cold-rolling rate, and a technique for cold-rolling and annealing two or more times. Techniques are known in which the texture is turbidized to have a preferable texture in terms of magnetic properties, but the reality is that none of these methods yields a sufficiently satisfactory improvement effect.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、このような従来技術に鑑み、ロール周方向に
縦溝を有するロールを用いて冷間圧延を行なうことによ
り磁束密度の改善を試みたものである。
In view of such prior art, the present invention attempts to improve the magnetic flux density by performing cold rolling using a roll having vertical grooves in the circumferential direction of the roll.

ところで、グループロール(溝付きロール)による電磁
鋼板の冷間圧延技術は、従来、方向性電磁鋼板と無方向
性電磁鋼板の特徴を兼ね備えた(100)面上立方集合
組織を有する電磁鋼板を製造するための有力手段として
検討されてきた(例えば、「鉄と鋼J 63(1977
)P、1828、P、1838、P、2335、「鉄と
鋼J 70(1984)P、2065)。その技術思想
は、冷間圧延時に鋼板の幅出しを行なうことによって、
再結晶焼鈍後に(100)  (011>〜(100)
  (Ovす〉の集合組織を発達させることにある。こ
のような技術思想に基づくものとして、例えば、特公昭
54−10922号、特公昭53−30098号が提案
されている。しかし、これら従来の報告では、圧延後に
脱炭焼鈍と1000℃以上の温度での純化焼鈍が付加さ
れており、鋼組成(C> 0.03%、Si:〜3%、
Mn:〜0.2%、S>0.01%、u : 〜20p
pm)から判断しても、明らかに二次再結晶集合組織の
制御を狙いとしたものである。これに対し、従来、一般
無方向性電磁鋼板の集合組織制御への縦溝ロール圧延の
適用について検討した例は見当らない。
By the way, cold rolling technology for electrical steel sheets using group rolls (grooved rolls) has conventionally been used to produce electrical steel sheets with a (100) surface cubic texture that combines the characteristics of grain-oriented and non-oriented electrical steel sheets. It has been considered as a powerful means to
) P, 1828, P, 1838, P, 2335, "Tetsu to Hagane J 70 (1984) P, 2065).The technical idea is that by making the width of the steel plate during cold rolling,
After recrystallization annealing (100) (011>~(100)
The goal is to develop the collective structure of Ovsu. Based on this technical idea, for example, Japanese Patent Publications No. 10922/1982 and Japanese Patent Publication No. 30098/1973 have been proposed. However, these conventional In the report, decarburization annealing and purification annealing at a temperature of 1000°C or higher are added after rolling, and the steel composition (C>0.03%, Si: ~3%,
Mn: ~0.2%, S>0.01%, u: ~20p
Judging from pm), it is clearly aimed at controlling the secondary recrystallization texture. On the other hand, there has been no study on the application of fluted roll rolling to texture control of general non-oriented electrical steel sheets.

本発明はこのような現状の下で、無方向性電磁鋼板の磁
束密度を向上させることを狙いとし、冷間圧延の一部に
縦溝付ロールによる圧延を適用することにより、冷間圧
延時の集合g織形成を、従来の平滑ロール圧延における
ような平面歪状態から、板幅方向への材料の流れを伴う
変形状態に移行させることにより変化させるようにした
ものである。
Under these circumstances, the present invention aims to improve the magnetic flux density of non-oriented electrical steel sheets, and by applying rolling with fluted rolls to part of the cold rolling, the present invention aims to improve the magnetic flux density of non-oriented electrical steel sheets. The aggregated weave formation is changed by shifting from a plane strain state as in conventional smooth roll rolling to a deformation state accompanied by material flow in the sheet width direction.

本発明は、縦溝付ロールによる圧延が鋼板の磁気特性改
善に極めて有効であること、そしてさらに、その際使用
するロールの溝の配列、大きさ等が鋼板の磁気特性に大
きな影響を与えることを見い出し、かかる知見に基づき
なされたものである。
The present invention provides that rolling with vertically grooved rolls is extremely effective in improving the magnetic properties of steel sheets, and that the arrangement, size, etc. of the grooves of the rolls used at that time have a great effect on the magnetic properties of steel sheets. This study was based on this knowledge.

すなわち、本発明の特徴とするところは、重量%で、C
: 0.01%以下、Si : 7.0%以下、Mn:
0.1〜1.5%、P:0.15%以下、S : 0.
01%未満、Al二0.001%以下または0.05〜
1.0%、N : 0.005%以下、残部Fe及び不
可避的不純物からなる組成を有する熱間圧延鋼帯を、必
要に応じて焼鈍し、1回または中間焼鈍をはさむ2回以
上の冷間圧延または温間圧延を行なった後、焼鈍を施す
一連の工程によって無方向性電磁鋼板を製造するに当た
り、上記冷間圧延または温間圧延工程において、その最
終パスを含まない1以上の圧延パスにおける圧延を、ロ
ール表面の周方向に、溝ピッチQ(mm)、溝深さd(
mm)が、被圧延材の初期板厚t(an)に対し、0.
5≦(l/l)≦2.5 0.1≦(d/l)≦0.5 であり、且つ、ロール軸を通る断面における溝ピッチQ
当たりのロール溝部断面積5(an2)が、0.15≦
[S/(ld))≦0.65であるような縦溝をロール
長手方向で等間隔に配列させたロールを用いて行ない、
且つ、最終パスを含む1以上の圧延パスにおける圧延を
縦溝を有しない平滑ロールを用いて行なうようにしたこ
とにある。
That is, the feature of the present invention is that, in weight %, C
: 0.01% or less, Si: 7.0% or less, Mn:
0.1-1.5%, P: 0.15% or less, S: 0.
less than 0.01%, Al2 0.001% or less or 0.05~
A hot rolled steel strip having a composition of 1.0%, N: 0.005% or less, the balance Fe and unavoidable impurities is annealed as necessary, and cooled once or twice or more with intermediate annealing. In manufacturing a non-oriented electrical steel sheet by a series of steps of performing inter-rolling or warm rolling and then annealing, one or more rolling passes not including the final pass in the above-mentioned cold rolling or warm rolling step. rolling in the circumferential direction of the roll surface with groove pitch Q (mm) and groove depth d (
mm) is 0.
5≦(l/l)≦2.5 0.1≦(d/l)≦0.5, and the groove pitch Q in the cross section passing through the roll axis
The per roll groove cross-sectional area 5 (an2) is 0.15≦
[S/(ld))≦0.65] is carried out using a roll in which vertical grooves are arranged at equal intervals in the longitudinal direction of the roll,
Another feature is that rolling in one or more rolling passes including the final pass is performed using smooth rolls having no vertical grooves.

また、このような本発明法においては、上記冷間圧延ま
たは温間圧延工程において、縦溝付ロールを用いて行な
う圧延の(2)縦溝を有するロールを、この圧延後の被
圧延材の凸部、すなわちロール溝内に流入した鋼板部分
の溝ピッチQ(閣)当たりの断面積A(m2)が、溝ピ
ッチQ当たりのロール溝部断面積S(■2)に対し、 (A/S)≧0.6 を満足する条件で行なうことが好ましい。
In addition, in the method of the present invention, in the cold rolling or warm rolling step, (2) the roll having vertical grooves is used to roll the rolled material after this rolling. The cross-sectional area A (m2) per groove pitch Q (kaku) of the convex part, that is, the part of the steel plate that has flowed into the roll groove, is given by (A/S) with respect to the roll groove cross-sectional area S (■2) per groove pitch Q. )≧0.6.

〔作  用〕[For production]

以下、本発明の詳細をその限定理由とともに説明する。 Hereinafter, the details of the present invention will be explained together with the reasons for its limitations.

まず、鋼成分の限定理由について説明する。First, the reason for limiting the steel components will be explained.

C;本発明は、製鋼脱炭を行なうことによる利点を最大
限に享受し、その上で、冷間圧延時の組織形成の問題を
解決することに主眼を置いているため、Cは最終製品に
おいて実用上許可される限界として、その上限を0.0
1%に限定する。磁気時効に関しては、Cは少ない方が
好ましく、下限は限定しないが、実質的には製鋼脱ガス
技術の限界がその下限となる。
C; Since the present invention focuses on maximizing the benefits of steel decarburization and solving the problem of structure formation during cold rolling, C is the final product. The upper limit is 0.0 as the limit that is practically allowed in
Limited to 1%. Regarding magnetic aging, it is preferable to have a small amount of C, and although the lower limit is not limited, the lower limit is essentially the limit of steelmaking degassing technology.

Sj:本発明の技術は、実用上はSi量にかかわらず有
効であり、このため下限は特に限定しない。
Sj: The technique of the present invention is practically effective regardless of the amount of Si, and therefore the lower limit is not particularly limited.

上限に関しても、実用的なSi量の範囲では全てに適用
可能な技術であるが、7.0%を超えるSi量の鋼は、
製造法の困難さに加えて利用技術に関するメリットが無
く、このため本発明では7.0%をSiの上限とする。
Regarding the upper limit, the technology is applicable to all practical Si content ranges, but steel with Si content exceeding 7.0%
In addition to the difficulty of the manufacturing method, there is no advantage regarding the technology used, and for this reason, in the present invention, the upper limit of Si is set at 7.0%.

Al:AlはSiと同様、固有抵抗を高め、鉄損を低減
する効果があるため、無方向性電磁鋼板に添加されるこ
とが多い。本発明では、−射的な無方向性電磁鋼板に添
加される限界として、その上限を1.0%に規定する。
Al: Like Si, Al has the effect of increasing specific resistance and reducing iron loss, so it is often added to non-oriented electrical steel sheets. In the present invention, the upper limit of addition to a non-oriented electrical steel sheet is defined as 1.0%.

下限に関しては、本発明の作用効果を発揮する上で何ら
制約はない。しかし、無方向性電磁鋼板においては八〇
が微量に添加された場合、微細に析出したMNが最終焼
鈍時の粒成長を阻害し、鉄損値の増大をもたらす。この
ような問題を生じるAfl量は0.001%超〜0.0
5%未満の範囲であり、本発明では、この範囲のAl量
を含まないことを必須とする。以上の理由からAlは0
.001%以下または0,05〜1.0%と規定した。
Regarding the lower limit, there is no restriction in achieving the effects of the present invention. However, when a small amount of 80 is added to a non-oriented electrical steel sheet, finely precipitated MN inhibits grain growth during final annealing, resulting in an increase in iron loss value. The amount of Afl that causes such problems is more than 0.001% to 0.0
The amount of Al is in the range of less than 5%, and in the present invention, it is essential that the amount of Al in this range is not included. For the above reasons, Al is 0
.. 0.001% or less or 0.05 to 1.0%.

その他の元素に関しては、本発明の作用効果との関係で
特段の制限が加えられる必要はないが、磁気特性に関す
る成分元素本来の影響を配慮し、Mn : 0.1〜1
.5%、P≦0.15%、S<0.01%、N≦0.0
05%に規定する。
Regarding other elements, there is no need to impose any special restrictions in relation to the effects of the present invention, but considering the inherent influence of the component elements on magnetic properties, Mn: 0.1 to 1
.. 5%, P≦0.15%, S<0.01%, N≦0.0
05%.

次に、本発明の製造条件について説明する。本発明では
上記組成を有する熱間圧延鋼帯を必要に応じて焼鈍し、
1回または中間焼鈍をはさむ2回以上の冷間圧延または
温間圧延を行なった後、焼鈍を施す、一連の工程によっ
て無方向性電磁鋼板を製造するが、上記冷間圧延または
温間圧延工程が極めて重要であり、この圧延の一部を、
ロール表面の周方向にロール長手方向で等間隔に配列さ
れるよう形成された縦溝を有するロールを用いて行なう
ことを特徴としている。
Next, the manufacturing conditions of the present invention will be explained. In the present invention, a hot rolled steel strip having the above composition is annealed as necessary,
A non-oriented electrical steel sheet is manufactured by a series of steps in which cold rolling or warm rolling is performed once or twice or more with intermediate annealing, and then annealing is performed, but the above-mentioned cold rolling or warm rolling step is extremely important, and part of this rolling
It is characterized in that it is carried out using a roll having vertical grooves formed on the roll surface in the circumferential direction and arranged at equal intervals in the roll longitudinal direction.

本発明において、溝付きロール圧延に使用するロールの
溝は、ロール周方向に形成され、且つロール長手方向で
等間隔に配列されることを必須とする。溝付きロール圧
延時及び平坦化圧延時に板幅方向のメタルフローの大き
なうねりを形成させるためには、ロール表面の溝はロー
ル周方向の縦溝でなければならない。また、その間隔が
不規則であると、最終製品の磁気特性が板幅方向位置に
よって大きく変わる場合があり、好ましくない。
In the present invention, it is essential that the grooves of the roll used for grooved roll rolling be formed in the circumferential direction of the roll and arranged at equal intervals in the longitudinal direction of the roll. In order to form large undulations in the metal flow in the width direction of the sheet during rolling with grooved rolls and flattening rolling, the grooves on the roll surface must be longitudinal grooves in the circumferential direction of the roll. Furthermore, if the spacing is irregular, the magnetic properties of the final product may vary greatly depending on the position in the sheet width direction, which is not preferable.

さらに、縦溝付ロールの縦溝の配列について、特に溝が
ロール周方向に対してなす角度が、表面欠陥(微小ヘゲ
)発生との関係で問題となる。
Furthermore, regarding the arrangement of the vertical grooves of a vertically grooved roll, the angle that the grooves make with respect to the circumferential direction of the roll poses a problem in relation to the occurrence of surface defects (micro-scratches).

前述したような、従来提案されている(100)両立方
集合組織を有する電磁鋼板の製造技術においては、縦溝
とともに横溝を有するロール、或いはロール周方向に対
して角度を付けた交差する2方向に溝を有するロールを
用いるものが主体となっている。しかし、このような溝
の交差したロールで板を圧延すると、転写された凸部が
平坦化圧延時にロールとの摩擦により潰れ、微小なラミ
ネーションが形成されてしまう。したがって、縦溝付ロ
ールとしては縦溝が交差しないものを使用することが好
ましい。ロール周方向に対して角度を有する溝を設ける
場合、通板上の要請から傾きが正反対の溝を対称的に設
ける必要がある。そして、このようにして溝を設ける場
合、傾き角度がある程度大きくなると溝どうしの交差が
不可避となる。
In the conventionally proposed manufacturing technology for electrical steel sheets having a (100) bicubic texture, as described above, rolls have horizontal grooves as well as vertical grooves, or two intersecting directions at an angle to the roll circumferential direction are used. The main type uses rolls with grooves. However, when a plate is rolled with such rolls having intersecting grooves, the transferred convex portions are crushed by friction with the rolls during flattening rolling, resulting in the formation of minute laminations. Therefore, it is preferable to use a vertically grooved roll whose vertical grooves do not intersect. When providing grooves having an angle with respect to the roll circumferential direction, it is necessary to provide grooves with opposite inclinations symmetrically due to requirements for sheet threading. When grooves are provided in this manner, when the inclination angle becomes large to a certain extent, the grooves inevitably intersect with each other.

したがって、溝にロール周方向に対して角度を付する場
合でも、縦溝どうしが交差しない限度とすべきである。
Therefore, even when the grooves are formed at an angle with respect to the roll circumferential direction, the vertical grooves should not intersect with each other.

縦溝間隔等との関係で、縦溝のロール周方向に対する角
度は5°以下とすることが好ましい。
In relation to the vertical groove spacing, etc., it is preferable that the angle of the vertical grooves with respect to the roll circumferential direction is 5° or less.

本発明においては、縦溝付きロール圧延で使用されるロ
ールの溝断面形状は特に規定しない。断面形状は、V型
、U型、半円型、台形、正弦波形等のいずれにおいても
十分な効果が認められる。
In the present invention, the groove cross-sectional shape of the roll used in the fluted roll rolling is not particularly defined. Sufficient effects can be found in any cross-sectional shape such as V-shape, U-shape, semicircle, trapezoid, or sinusoidal shape.

第1図(A)〜(G)に本発明で使用する縦溝付きロー
ルの溝断面形状の代表例を模式的に示す。
FIGS. 1(A) to 1(G) schematically show representative examples of the groove cross-sectional shapes of the vertically grooved roll used in the present invention.

一方、溝ピッチR(mm)、溝深さd(al)、及びロ
ール軸を通る断面における溝ピッチQ当たりのロール溝
部断面積(溝の相対的な大きさ)S(mm2)は、圧延
の作用効果に対して大きな影響を与える。
On the other hand, the groove pitch R (mm), the groove depth d (al), and the roll groove cross-sectional area (relative groove size) S (mm2) per groove pitch Q in the cross section passing through the roll axis are It has a great influence on the working effect.

第2図に、ロールの溝ピッチQ、溝深さdを種々変化さ
せたときの磁束密度B5oについて調べた結果を示す。
FIG. 2 shows the results of investigating the magnetic flux density B5o when the groove pitch Q and groove depth d of the roll were varied.

図中tは被圧延材の初期板厚(閣)であり、また、ΔB
s0は通常平滑ロール圧延材に対する縦溝付きロール圧
延材の磁束密度B5゜の上昇量を示している。各供試材
は、第1表の鋼Aの組成を有する熱延板(板厚1.6m
m、2.0m、3.2mの3種類)を種々の縦溝付きロ
ールを用いて圧延し、引き続き平滑ロールで平坦化圧延
した後、800℃で焼鈍したものである。なお、溝断面
形状は板厚1.6m材は第1図(A)に示すようなV型
、2.0m材は同図(C)に示すようなU型、3.2+
s材は同図(F)に示すような角型のものを用いた。
In the figure, t is the initial plate thickness of the material to be rolled, and ΔB
s0 indicates the amount of increase in magnetic flux density B5° of the vertically grooved roll-rolled material relative to the normal smooth roll-rolled material. Each test material was a hot-rolled plate (thickness: 1.6 m) having the composition of steel A in Table 1.
3 types (m, 2.0 m, and 3.2 m) were rolled using various vertically grooved rolls, and then flattened using smooth rolls, and then annealed at 800°C. Note that the cross-sectional shape of the groove is V-shaped as shown in Figure 1 (A) for the 1.6 m thick material, U-shaped as shown in Figure 1 (C) for the 2.0 m material, and 3.2 +
The s-shaped material used was a square one as shown in the same figure (F).

同図より明らかなように、溝ピッチQが大きすぎる場合
や溝深さdが小さすぎる場合は、磁束密度向上効果が小
さく、初期板厚が変わっても、Q、dの初期板厚に対す
る比Qハ、dハが(lt)≦2.5で且つ(d/l)≧
0.1の範囲のとき、十分な磁束密度向上効果が得られ
ている。一方、溝ピッチQが小さすぎる場合や溝深さd
が大きすぎる場合、すなわち、(l/l)< 0.5あ
るいは(d / t )〉0.5の場合は、平坦化圧延
時に鋼板凸部がロールとの摩擦によって潰れる際に微小
なラミネーションを形成し、表面欠陥(微小ヘゲ)を発
生させてしまうため好ましくない。以上のような理由か
ら、本発明においては、ロールの溝ピッチQ(mn)、
溝深さd(mm)を被圧延材の初期板厚t(gn)に対
して、 0.5 ≦ (l/l)≦ 2.5 0.1  ≦ (d/l)  ≦ 0.5の範囲に限定
した。
As is clear from the figure, if the groove pitch Q is too large or the groove depth d is too small, the magnetic flux density improvement effect is small, and even if the initial plate thickness changes, the ratio of Q and d to the initial plate thickness is small. Qha and dha are (lt)≦2.5 and (d/l)≧
When the value is in the range of 0.1, a sufficient effect of improving magnetic flux density is obtained. On the other hand, if the groove pitch Q is too small or the groove depth d
If is too large, that is, (l/l)<0.5 or (d/t)>0.5, minute laminations may occur when the convex portion of the steel plate is crushed by friction with the roll during flattening rolling. This is undesirable because it causes surface defects (micro-scratches). For the above reasons, in the present invention, the groove pitch Q (mn) of the roll,
The groove depth d (mm) is set to the initial plate thickness t (gn) of the rolled material as follows: 0.5 ≦ (l/l) ≦ 2.5 0.1 ≦ (d/l) ≦ 0.5 limited to a range.

次に、第3図にロール軸を通る断面における溝ピッチQ
当たりのロール溝部断面積S (mn2)と、溝ピッチ
Q(mm)及び溝深さd(mm)で規定されるS/(f
ld)(溝部の相対的な大きさ)をパラメータとした場
合の磁束密度の変化を示す。各供試材は、第1表の鋼A
、Bの組成を有する熱延板(板厚2.01ffi(mm
)を種々の縦溝付きロールを用いて圧延し、弓き続き平
滑ロールで平坦化圧延した後、780℃で焼鈍したもの
である。溝のピッチQ、深さdが上述の最適範囲内であ
ったとしても、溝の断面形状や溝開口部の幅等の違いに
より溝部断面積Sは変化するわけであるが、第3図より
明らかなように、0.15≦C8/CQ d ))≦0
.65の範囲において十分な磁束密度の向上が認められ
る。したがって、本発明においては溝部断面積Sを0.
15≦〔S/(ld))≦0.65の範囲に限定した。
Next, Fig. 3 shows the groove pitch Q in the cross section passing through the roll axis.
S/(f
ld) (relative size of the groove portion) as a parameter. Each sample material was steel A in Table 1.
, a hot-rolled sheet having a composition of B (thickness 2.01ffi (mm
) was rolled using various vertically grooved rolls, flattened using bowed continuous smooth rolls, and then annealed at 780°C. Even if the groove pitch Q and depth d are within the optimum ranges mentioned above, the groove cross-sectional area S will change due to differences in the cross-sectional shape of the groove, the width of the groove opening, etc.; As is clear, 0.15≦C8/CQ d ))≦0
.. A sufficient improvement in magnetic flux density is observed in the range of 65. Therefore, in the present invention, the groove cross-sectional area S is set to 0.
The range was limited to 15≦[S/(ld))≦0.65.

このような縦溝付きロールは、通常、平滑ロールに機械
加工あるいはレーザー照射等によって溝を形成させるこ
とにより作製されるが、その他いかなる方法を用いて作
製してもよい。
Such a vertically grooved roll is usually produced by forming grooves on a smooth roll by machining or laser irradiation, but it may be produced using any other method.

また、本発明における縦溝付きロール圧延、平坦化圧延
は冷間圧延のみならず、温間圧延(通常:400℃以下
)で実施してもその作用効果は十分に得られる。
Furthermore, the fluted roll rolling and flattening rolling in the present invention can be carried out not only by cold rolling but also by warm rolling (usually at 400° C. or lower) to obtain sufficient effects.

また、本発明では、冷間圧延または温間圧延工程におけ
る最終パスの圧延は、鋼板表面の凹凸を完全に消失させ
るため平滑ロールを用いて行なうことを必須とするが、
その他の圧延パスについての縦溝付きロール圧延と平坦
化圧延の組み合わせは任意であり、縦溝付きロール圧延
と平坦化圧延を交互に繰り返しても、或いは縦溝付きロ
ール圧延を数パス実施した後、平坦化圧延を実施しても
よい。
Furthermore, in the present invention, the final pass of rolling in the cold rolling or warm rolling process must be carried out using smooth rolls in order to completely eliminate the unevenness on the surface of the steel sheet.
The combination of fluted roll rolling and flattening rolling for other rolling passes is arbitrary, and even if fluted roll rolling and flattening rolling are repeated alternately, or after several passes of fluted roll rolling are performed. , flattening rolling may be performed.

しかし、本発明の効果をより顕著なものとするためには
、縦溝付ロールを用いた最終のパスの圧延については、
特定の圧延条件の下で実施することが好ましい。縦溝付
ロール圧延において、その圧延条件を種々変化させ、最
終の溝付きロールによる圧延後の被圧延材の凸部、すな
わちロール溝内に流入した部分の溝ピッチQ当たりの断
面積A(m、2)と溝ピッチQ当たりのロール溝部断面
積S(m2)との比A/Sと、磁束密度B5゜の通常圧
延材に対する上昇量ΔBf0との関係を調べた。その結
果を第4図に示す。また、このとき使用したワークロー
ルの溝断面形状を第5図(D)に示す。なお、縦溝付ロ
ール圧延の溝断面形状と圧延条件以外の条件(供試材、
焼鈍条件等)は第3図の場合と同一とした。第4図に示
される結果より、A/Sが0.6以上となるような圧延
条件のとき、本発明の効果がきわめて顕著となることが
判る。
However, in order to make the effects of the present invention even more remarkable, the final pass of rolling using fluted rolls should be as follows:
It is preferable to carry out under specific rolling conditions. In rolling with fluted rolls, the rolling conditions are variously changed, and the cross-sectional area A (m , 2) and the roll groove cross-sectional area S (m2) per groove pitch Q, A/S, and the increase amount ΔBf0 of the magnetic flux density B5° relative to the normally rolled material was investigated. The results are shown in FIG. Moreover, the groove cross-sectional shape of the work roll used at this time is shown in FIG. 5(D). In addition, conditions other than the groove cross-sectional shape and rolling conditions (test material,
The annealing conditions, etc.) were the same as in the case of Fig. 3. From the results shown in FIG. 4, it can be seen that the effect of the present invention becomes extremely significant when the rolling conditions are such that A/S is 0.6 or more.

なお、本発明法における冷間圧延または温間圧延は、タ
ンデム圧延に限らず、リバース圧延でも実施することが
できる。また、中間焼鈍をはさんだ2回以上の冷圧を実
施する場合でも、最終パス、すなわち最終回の冷圧の最
後のパスを含む1パス以上で平坦化圧延を行なえばよく
、他のパスについては特に限定はない。
Note that the cold rolling or warm rolling in the method of the present invention is not limited to tandem rolling, but may also be performed by reverse rolling. Furthermore, even if cold rolling is performed two or more times with intermediate annealing in between, it is sufficient to perform flattening rolling in one or more passes including the final pass, that is, the last pass of the final cold rolling; There are no particular limitations.

第    1    表 (1%) 実施例 1゜ 第2表の調香1に示す組成の連続鋳造スラブを1200
℃に加熱後、粗圧延と仕上圧延工程を経て2.0a+t
の熱延板とし、670℃で巻取りを行なった。酸洗後、
5スタンド連続圧延機のNα1〜3スタンドで縦溝付ロ
ール圧延を、また、Nα4.5スタンドで平滑ロールに
よる平坦化圧延を実施した。縦溝付きロール圧延は、N
CLI〜3スタンドの上ロールに第5図(A)〜(D)
に示す4種類の溝形状のロールを取り付けて実施した。
Table 1 (1%) Example 1゜1200 continuous cast slabs having the composition shown in Perfume 1 of Table 2
After heating to ℃, it undergoes rough rolling and finish rolling process to 2.0a+t.
A hot-rolled sheet was prepared and coiled at 670°C. After pickling,
Rolling with fluted rolls was carried out on stands Nα1 to 3 of a 5-stand continuous rolling mill, and flattening rolling was carried out using smooth rolls on a stand Nα4.5. Rolling with vertical grooves is N
Figures 5 (A) to (D) on the upper roll of CLI~3 stand.
The tests were carried out using rolls with four types of groove shapes shown in the figure.

また、比較例として走1〜5スタンドともに通常の平滑
ロールを用いた圧延も行なった。これらを800°Cで
連続焼鈍した後、その磁気特性を測定した。また、これ
らの実機冷圧板を実験室にて625〜850℃の種々の
温度で均熱時間90secの焼鈍を行ない、X線積分反
射強度を測定した。
In addition, as a comparative example, rolling was also carried out using normal smooth rolls for both stands 1 to 5. After continuously annealing these at 800°C, their magnetic properties were measured. Further, these actual cold-pressed plates were annealed in a laboratory at various temperatures from 625 to 850° C. for a soaking time of 90 seconds, and the integrated X-ray reflection intensity was measured.

第6図に、縦溝付ロール圧延後の鋼板C断面ミクロ組織
の写真を示す。同図の(A)〜(D)は、それぞれ第5
図(A)〜(D)の溝形状の溝付ロールにより圧延した
ものである。
FIG. 6 shows a photograph of the cross-sectional microstructure of the steel sheet C after rolling with a fluted roll. (A) to (D) in the same figure are the fifth
It is rolled using a grooved roll having the groove shapes shown in Figures (A) to (D).

第7図(A)に、第5図(A)の溝形状を有する溝付ロ
ールによる圧延材の平坦化圧延後の(200)極点図を
、また第7図(B)に、通常の平滑ロル圧延材の圧延後
の(200)極点図を示す。さらに、第8図(A)に第
7図(A)の鋼板の800℃連続焼鈍後の(200)極
点図を、また第8図(B)に第7図(B)の鋼板の同じ
<800℃連続焼鈍後の(200)極点図を示す。
FIG. 7(A) shows the (200) pole figure after flattening rolling of the rolled material with the grooved roll having the groove shape of FIG. 5(A), and FIG. The (200) pole figure of the roll-rolled material after rolling is shown. Furthermore, Fig. 8(A) shows the (200) pole figure of the steel plate of Fig. 7(A) after continuous annealing at 800°C, and Fig. 8(B) shows the same < The (200) pole figure after continuous annealing at 800°C is shown.

また第9図(A)〜(F)に、溝形状が第5図(B )
(C)(D )(7)溝付ロールニよル圧延材(7) 
(200)面、(222)面のX線積分反射強度を、通
常平滑ロール圧延材と比較して示す。
In addition, the groove shapes in Figures 9 (A) to (F) are shown in Figure 5 (B).
(C) (D) (7) Grooved roll roll material (7)
The integrated X-ray reflection intensity of the (200) plane and the (222) plane is shown in comparison with that of a normal smooth roll rolled material.

これらの結果から、縦溝付ロール圧延材は通常平滑ロー
ル圧延材とは圧延時の変形状態が異なり、圧延集合組織
、−成典結晶集合組織が変化していることがわかる。
From these results, it can be seen that the deformation state of the fluted roll-rolled material during rolling is different from that of the normal smooth roll-rolled material, and that the rolling texture and -original crystal texture are changed.

磁気特性の測定結果を第3表に示す。これによれば、縦
溝付ロール圧延材は、通常平滑ロール圧延材に比べ、磁
気特性特に磁束密度が優れていることが判る。
Table 3 shows the measurement results of magnetic properties. According to this, it can be seen that the fluted roll-rolled material is superior in magnetic properties, especially magnetic flux density, compared to the normal smooth roll-rolled material.

実施例 2゜ 第2表の調香2〜4の組成を有する連続鋳造スラブを1
140℃に加熱後、粗圧延、仕上圧延工程を経て2.0
mmの熱延板とし、640℃で巻取りを行なった。
Example 2゜One continuous casting slab having the composition of perfumes 2 to 4 in Table 2
After heating to 140℃, rough rolling and finish rolling process to 2.0℃
A hot-rolled sheet having a diameter of 1.0 mm was prepared and wound up at 640°C.

調香2の一部と調香3.4について熱延板焼鈍を実施し
、調香2は巻取りまま材と焼鈍材、調香3.4は焼鈍材
について、酸洗後、種々の条件で縦溝付ロール圧延を実
施し、引き続き0.5閣まで平坦化圧延を行なった後、
調香2は900℃、調香3は950℃、調香4は960
℃の各温度で最終焼鈍を実施し、焼鈍後の磁気特性を測
定した。なお、上記熱延板焼鈍は、調香2は750℃、
調香3.4は850℃で箱焼鈍(BA)により実施した
。この焼鈍は、APライン等の連続焼鈍でも実施可能で
あり、調香3,4については950℃での連続焼鈍(A
P)も併せて実施した。また、調香3については、85
0℃X 3hrの中間焼鈍をはさむ2回冷圧、調香4に
ついては圧延温度300℃の温間圧延も実施した。また
、比較のため同様の供試材について、従来の平滑ロール
のみによる圧延を行ない、その磁気特性を測定した。
Hot-rolled plate annealing was carried out for part of Perfume 2 and Perfume 3.4, and for Perfume 2, the as-rolled material and annealed material, and for Perfume 3.4, the annealed material were subjected to various conditions after pickling. After rolling with fluted rolls and then flattening to 0.5 degrees,
Perfume 2 is 900℃, Perfume 3 is 950℃, Perfume 4 is 960
Final annealing was performed at various temperatures of °C, and the magnetic properties after annealing were measured. In addition, the above hot rolled sheet annealing is performed at 750°C for fragrance adjustment 2;
Perfuming 3.4 was carried out by box annealing (BA) at 850°C. This annealing can also be carried out by continuous annealing on the AP line, etc., and for fragrances 3 and 4, continuous annealing at 950°C (A
P) was also carried out. Also, for perfume 3, 85
Cold rolling was performed twice with intermediate annealing at 0° C. for 3 hours, and warm rolling at a rolling temperature of 300° C. was also performed for perfume adjustment 4. For comparison, similar test materials were rolled using only conventional smooth rolls, and their magnetic properties were measured.

これらの結果を第4表に示す。These results are shown in Table 4.

(智t%)(Wisdom t%)

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(G)は、縦溝付きロールの溝断面形状
を示す説明図である。第2図は、ロールの溝ピッチQ、
溝深さdと磁束密度上昇量ΔBsoとの関係を示す図で
ある。第3図は、縦溝の大きさを表わすパラメータS/
(ld)と磁束密度B、aとの関係を示す図である。第
4図は、縦溝付ロール圧延における圧延条件A/Sと磁
束密度の上昇量ΔB snとの関係を示す図である。 第5図は、縦溝付ロールの溝断面形状、寸法を示す説明
図である。第6図(A)〜(D)は、縦溝付ロール圧延
後の鋼板C方向断面金属組織を示す顕微鏡拡大写真であ
る。第7図(A)(B)は、それぞれ本発明材及び従来
材の圧延集合組織を示す(200)極点図である。第8
図(A)(B)は、それぞれ本発明材及び従来材の一次
再結晶集合組織を示す(200)極点図である。第9図
(A)〜(F)は1本発明材、従来材の集合組織を示す
図である。 pe n t    aYl状 1.6硼窄  V型 × 4に面欠F!l登生 1.0 0 3.0 t S/fl・d 第 4 図 0.05 08 1 5 8 0 A/S 第 5図 第 図 D 第 7 図 D 第 図 D
FIGS. 1(A) to 1(G) are explanatory diagrams showing the cross-sectional shape of the grooves of the vertically grooved roll. Figure 2 shows the groove pitch Q of the roll,
FIG. 3 is a diagram showing the relationship between groove depth d and magnetic flux density increase amount ΔBso. Figure 3 shows the parameter S/, which represents the size of the vertical groove.
FIG. 3 is a diagram showing the relationship between (ld) and magnetic flux density B, a. FIG. 4 is a diagram showing the relationship between rolling conditions A/S and the amount of increase in magnetic flux density ΔB sn in fluted roll rolling. FIG. 5 is an explanatory diagram showing the groove cross-sectional shape and dimensions of the vertically grooved roll. FIGS. 6(A) to 6(D) are enlarged microscopic photographs showing the cross-sectional metallographic structure of the steel sheet in the C direction after rolling with fluted rolls. FIGS. 7(A) and 7(B) are (200) pole figures showing the rolling textures of the present invention material and the conventional material, respectively. 8th
Figures (A) and (B) are (200) pole figures showing the primary recrystallization texture of the present invention material and the conventional material, respectively. FIGS. 9(A) to 9(F) are diagrams showing textures of a material of the present invention and a conventional material. Pen t aYl-shaped 1.6 blemish V-shaped x 4 with face cut F! 1.0 0 3.0 t S/fl・d 4th Fig. 0.05 08 1 5 8 0 A/S Fig. 5 Fig. D Fig. 7 D Fig. D

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、C:0.01%以下、Si:7.0%
以下、Mn:0.1〜1.5%、P:0.15%以下、
S:0.01%未満、Al:0.001%以下または0
.05〜1.0%、N:0.005%以下、残部Fe及
び不可避的不純物からなる組成を有する熱間圧延鋼帯を
、必要に応じて焼鈍し、1回または中間焼鈍をはさむ2
回以上の冷間圧延または温間圧延を行なった後、焼鈍を
施す一連の工程によって無方向性電磁鋼板を製造するに
当たり、上記冷間圧延または温間圧延工程において、そ
の最終パスを含まない1以上の圧延パスにおける圧延を
、ロール表面の周方向に、溝ピッチl(mm)、溝深さ
d(mm)が、被圧延材の初期板厚t(mm)に対し、 0.5≦(l/t)≦2.5 0.1≦(d/t)≦0.5 であり、且つロール軸を通る断面における溝ピッチl当
たりのロール溝部断面積S(mm^2)が、 0.15≦〔S/(ld)〕≦0.65 であるような縦溝をロール長手方向で等間隔に配列させ
たロールを用いて行ない、且つ、最終パスを含む1以上
の圧延パスにおける圧延を、縦溝を有しない平滑ロール
を用いて行なうことを特徴とする磁気特性の優れた無方
向性電磁鋼板の製造方法。
(1) In weight%, C: 0.01% or less, Si: 7.0%
Below, Mn: 0.1 to 1.5%, P: 0.15% or less,
S: less than 0.01%, Al: 0.001% or less or 0
.. A hot rolled steel strip having a composition consisting of 0.05 to 1.0%, N: 0.005% or less, the balance Fe and unavoidable impurities is annealed as necessary, with one or intermediate annealing 2
In manufacturing a non-oriented electrical steel sheet by a series of steps of annealing after cold rolling or warm rolling more than once, the cold rolling or warm rolling step does not include the final pass. During rolling in the above rolling passes, the groove pitch l (mm) and groove depth d (mm) in the circumferential direction of the roll surface are 0.5≦( with respect to the initial plate thickness t (mm) of the rolled material. l/t)≦2.5 0.1≦(d/t)≦0.5, and the roll groove cross-sectional area S (mm^2) per groove pitch l in the cross section passing through the roll axis is 0. 15≦[S/(ld)]≦0.65 using a roll in which vertical grooves are arranged at equal intervals in the longitudinal direction of the roll, and rolling in one or more rolling passes including the final pass is carried out. A method for producing a non-oriented electrical steel sheet with excellent magnetic properties, characterized in that the method is carried out using a smooth roll having no vertical grooves.
(2)縦溝を有するロールを用いて行なう圧延の最終の
パスにおける圧延を、該圧延によりロール溝内に流入し
た鋼板部分の溝ピッチl(mm)当たりの断面積A(m
m^2)が、溝ピッチl当たりのロール溝部断面積S(
mm^2)に対し、(A/S)≧0.6 を満足する条件で行なうことを特徴とする請求項(1)
に記載の磁気特性の優れた無方向性電磁鋼板の製造方法
(2) Rolling in the final pass of rolling performed using rolls with vertical grooves is a cross-sectional area A (m
m^2) is the roll groove cross-sectional area S(
Claim (1) characterized in that the process is carried out under the condition that (A/S)≧0.6 is satisfied for mm^2).
A method for producing a non-oriented electrical steel sheet with excellent magnetic properties as described in .
JP2067759A 1990-03-17 1990-03-17 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JPH0823046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2067759A JPH0823046B2 (en) 1990-03-17 1990-03-17 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2067759A JPH0823046B2 (en) 1990-03-17 1990-03-17 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH03267319A true JPH03267319A (en) 1991-11-28
JPH0823046B2 JPH0823046B2 (en) 1996-03-06

Family

ID=13354190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2067759A Expired - Lifetime JPH0823046B2 (en) 1990-03-17 1990-03-17 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JPH0823046B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393355A (en) * 1991-10-24 1995-02-28 Kawasaki Steel Corporation Low-iron loss grain oriented electromagnetic steel sheet and method of producing the same
KR100414461B1 (en) * 2000-05-30 2004-01-07 세이코 엡슨 가부시키가이샤 Cooling roll, ribbon-shaped magnetic materials, magnetic powders and bonded magnets
JP2006095649A (en) * 2004-09-29 2006-04-13 Daido Steel Co Ltd Manufacturing method of magnesium-alloy coil hardly causing surface defect
DE102022123890B3 (en) 2022-09-19 2023-11-16 Thyssenkrupp Steel Europe Ag Laser-textured work roll for use in a cold rolling mill, method of producing a laser-textured work roll for use in a cold rolling mill and cold rolling mill
DE102022123888A1 (en) 2022-09-19 2024-03-21 Thyssenkrupp Steel Europe Ag Laser-textured work roll for use in cold rolling mills and method for producing a laser-textured work roll for use in cold rolling mills and cold rolling mills

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393355A (en) * 1991-10-24 1995-02-28 Kawasaki Steel Corporation Low-iron loss grain oriented electromagnetic steel sheet and method of producing the same
KR100414461B1 (en) * 2000-05-30 2004-01-07 세이코 엡슨 가부시키가이샤 Cooling roll, ribbon-shaped magnetic materials, magnetic powders and bonded magnets
JP2006095649A (en) * 2004-09-29 2006-04-13 Daido Steel Co Ltd Manufacturing method of magnesium-alloy coil hardly causing surface defect
JP4645129B2 (en) * 2004-09-29 2011-03-09 大同特殊鋼株式会社 Manufacturing method of magnesium alloy coil with few surface defects
DE102022123890B3 (en) 2022-09-19 2023-11-16 Thyssenkrupp Steel Europe Ag Laser-textured work roll for use in a cold rolling mill, method of producing a laser-textured work roll for use in a cold rolling mill and cold rolling mill
DE102022123888A1 (en) 2022-09-19 2024-03-21 Thyssenkrupp Steel Europe Ag Laser-textured work roll for use in cold rolling mills and method for producing a laser-textured work roll for use in cold rolling mills and cold rolling mills
WO2024061671A1 (en) 2022-09-19 2024-03-28 Thyssenkrupp Steel Europe Ag Laser-textured working roller for use in a cold rolling mill, and method for producing a laser-textured working roller for use in a cold rolling mill, and cold rolling mill

Also Published As

Publication number Publication date
JPH0823046B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
JP2009185386A (en) Method for producing non-grain-oriented electrical steel sheet
CN106795600B (en) Cold rolled stainless steel sheet material
JP6977436B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JPH03267319A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPS5850294B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetism
JPWO2020067236A1 (en) Manufacturing method of grain-oriented electrical steel sheet and cold rolling equipment
JP3493722B2 (en) Method for producing ferritic stainless steel strip with excellent stretch formability
ATE293175T1 (en) METHOD FOR PRODUCING HOT STRIP OR SHEET FROM A MICRO ALLOYED STEEL
JP3490048B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH03229820A (en) Production of nonoriented silicon steel sheet
JPS5943824A (en) Manufacture of cold rolled steel plate for press forming
JPS60125325A (en) Production of non-directionally oriented electrical steel strip
US5614034A (en) Process for producing ultrahigh silicon electrical thin steel sheet by cold rolling
JP3379053B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH04160117A (en) Manufacture of ferritic stainless steel sheet excellent in gloss, corrosion resistance and ridging resistance
JPS5941803B2 (en) Cold rolling method for thin steel strip for drawing
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH03267318A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH03223425A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPS6016281B2 (en) Method for improving ridging of ferritic stainless steel manufactured by continuous casting method
JPH08120343A (en) Production of nonoriented silicon steel sheet having high magnetic flux density
JPS62278227A (en) Manufacture of silicon steel plate
JP2516441B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent ridging resistance
WO2019245044A1 (en) Grain-oriented electrical steel sheet with excellent magnetic characteristics