JPH03266642A - Sheet for molding use - Google Patents

Sheet for molding use

Info

Publication number
JPH03266642A
JPH03266642A JP6608890A JP6608890A JPH03266642A JP H03266642 A JPH03266642 A JP H03266642A JP 6608890 A JP6608890 A JP 6608890A JP 6608890 A JP6608890 A JP 6608890A JP H03266642 A JPH03266642 A JP H03266642A
Authority
JP
Japan
Prior art keywords
layer
resin
molding
polypropylene
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6608890A
Other languages
Japanese (ja)
Inventor
Shigeru Tanaka
茂 田中
Masayoshi Suyama
須山 雅好
Masanori Takeuchi
雅則 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP6608890A priority Critical patent/JPH03266642A/en
Publication of JPH03266642A publication Critical patent/JPH03266642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain a sheet for molding with a wide molding temp. range and excellent steam barrier properties, gas barrier properties, transparency, heat resistance and n-heptane resistance by laminating a polyester film layer on at least one face of a composite sheet wherein a polypropylene resin layer is placed on one face of a layer prepd. by blending a polypropylene with a specified petroleum resin having no polar group and a specified hydrogenation rate, through a polyurethane resin layer. CONSTITUTION:A sheet for molding is prepd. by laminating a layer (layer D) consisting of a polyester film on at least one layer of a layer B consisting of a polypropylene resin of a composite sheet having the layer B of at least one face on a layer (layer A) prepd. by blending 100 pts.wt. polypropylene with 10-100 pts.wt. petroleum resin having at least no polar group and a hydro genation rate of 95 % or higher, through a layer (layer C) consisting of a polyu rethane resin. The petroleum resin having at least no polar group incorporated in the layer A is a cyclopentadiene resin using directly a petroleum unsatd. hydrocarbon as a raw material or a resin using a higher olefinic hydrocarbon as a raw material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水蒸気バリア性、ガスバリア性、透明性、耐
熱性および成形性に優れた成形用シートに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a moldable sheet having excellent water vapor barrier properties, gas barrier properties, transparency, heat resistance, and moldability.

[従来の技術] 従来成形用シートとしては、ポリプロピレン、ポリ塩化
ビニル、ポリスチレン、ポリエステル系が大半を占め、
これらに特性を付加するためポリ塩化ビニリデン、エチ
レンビニルアルコール共重合体、紙などを積層したもの
が知られている。
[Prior art] Conventional molding sheets are mostly made of polypropylene, polyvinyl chloride, polystyrene, and polyester.
In order to add properties to these materials, materials laminated with polyvinylidene chloride, ethylene vinyl alcohol copolymer, paper, etc. are known.

また、ポリオレフィンフィルムをポリエステルフィルム
の間に配する例(特開昭52−11.1979号公報)
がある。
Also, an example in which a polyolefin film is arranged between polyester films (Japanese Patent Application Laid-Open No. 1979-11-1979)
There is.

最近、ポリプロピレンに石油樹脂を添加し、透明性及び
水蒸気バリア性を改善することが開示されている(例え
ば特開昭60−163949号公報など)。
Recently, it has been disclosed that a petroleum resin is added to polypropylene to improve transparency and water vapor barrier properties (for example, Japanese Patent Laid-Open No. 163949/1983).

[発明が解決しようとする課題] 上記の多種類の成形用シートはそれぞれ一長一短がある
ため、食品及び医薬品メーカーは内容物により使い分け
ているのが現状である。
[Problems to be Solved by the Invention] The various types of molding sheets described above each have advantages and disadvantages, so food and pharmaceutical manufacturers currently use them depending on the contents.

ポリプロピレンは、水蒸気バリア性、透明性は良いが、
成形性、耐熱性およびガスバリア性に劣る。ポリ塩化ビ
ニル、ポリスチレンは成形性、ガスバリア性、透明性は
良いか、水蒸気バリア性および耐熱性に劣る。ポリエス
テルは成形性、透明性、ガスバリア性および耐熱性は良
いが、水蒸気バリア性に劣り、また他素材に比べ価格が
高く経済的でない。
Polypropylene has good water vapor barrier properties and transparency, but
Poor moldability, heat resistance and gas barrier properties. Polyvinyl chloride and polystyrene have good moldability, gas barrier properties, and transparency, but are poor in water vapor barrier properties and heat resistance. Although polyester has good moldability, transparency, gas barrier properties, and heat resistance, it has poor water vapor barrier properties, and is expensive and uneconomical compared to other materials.

また、ポリオレフィンフィルム(特にポリエチレンフィ
ルム)をポリエステルフィルムの間に配したフィルム(
特開昭52−111979号公報)は、中間層のポリオ
レフィンフィルムのために、十分な成形性が得られず、
また水蒸気バリア性も十分なものではなかった。
In addition, a film in which a polyolefin film (especially a polyethylene film) is placed between polyester films (
JP-A No. 52-111979) cannot obtain sufficient moldability due to the polyolefin film of the intermediate layer.
Moreover, the water vapor barrier property was also not sufficient.

また、ポリプロピレンに石油樹脂を添加したフィルム(
特開昭60−163949号公報)では、成形機での成
形温度範囲が狭く、成形時にフィルム表面から石油樹脂
がブリードアウトして表面のべたつき、透明性悪化、外
観不良を呈し好ましいものではなかった。
In addition, a film made of polypropylene with petroleum resin added (
In JP-A-60-163949), the molding temperature range of the molding machine was narrow, and the petroleum resin bleed out from the film surface during molding, resulting in surface stickiness, poor transparency, and poor appearance, which was not desirable. .

また、油性食品用として用いる場合、食品衛生試験(厚
生省20号)にてn−へブタンで抽出を行なうと、添加
した石油樹脂がすべて抽出されてしまうため衛生性的に
も好ましいものではなかった。(以下、石油樹脂かn−
へブタンに抽出されにくいことを耐n−へブタン性と略
称する。)本発明は、上記問題点を解決し、成形時の成
形温度範囲が十分広く、水蒸気バリア性、ガスバリア性
、透明性、耐熱性、耐n−ヘプタン性に優れた成形用シ
ートを提供せんとするものである。
In addition, when used for oil-based foods, if extraction is performed with n-hebutane in the food hygiene test (Ministry of Health and Welfare No. 20), all of the added petroleum resin will be extracted, which is not hygienic. . (Hereinafter referred to as petroleum resin or n-
The resistance to extraction by hebutane is abbreviated as n-hebutane resistance. ) The present invention aims to solve the above-mentioned problems and provide a molding sheet that has a sufficiently wide molding temperature range and has excellent water vapor barrier properties, gas barrier properties, transparency, heat resistance, and n-heptane resistance. It is something to do.

[課題を解決するための手段] 本発明は、ポリプロピレン100重量部に、少なくとも
極性基を含まない水素添加率95%以上の石油樹脂を1
0〜100重量部混合してなる層(A層)の少なくとも
片面のポリプロピレン樹脂よりなる層(B層)を有する
複合シートの少なくとも一方のB層面に、ポリウレタン
系樹脂よりなる層(C層)を介してポリエステルフィル
ムよりなる層(D層)を積層してなることを特徴とする
成形用シートに関するものである。
[Means for Solving the Problems] The present invention provides 100 parts by weight of polypropylene with 1 part petroleum resin containing no polar groups and a hydrogenation rate of 95% or more.
A layer made of a polyurethane resin (layer C) on at least one B layer side of a composite sheet having a layer made of a polypropylene resin (layer B) on at least one side of a layer made of a mixture of 0 to 100 parts by weight (layer A). The present invention relates to a molding sheet characterized by laminating a layer (D layer) made of polyester film with a polyester film interposed therebetween.

本発明におけるA層およびB層に適用されるポリプロピ
レンは特に限定されるものではないか、極限粘度(η)
が1,0〜3.6di、7g、特に1゜3〜2. 4d
1.、.7gの範囲のものが望ましく、またアイソタク
チック・インデックス(IT)は95W1%以上のもの
が望ましい。
The polypropylene applied to the A layer and B layer in the present invention is not particularly limited, and has an intrinsic viscosity (η) of
is 1.0-3.6di, 7g, especially 1°3-2. 4d
1. ,.. It is desirable that the weight is in the range of 7g, and the isotactic index (IT) is preferably 95W1% or more.

ポリプロピレン以外の第2成分、例えばエチレン、ブテ
ンなどを結晶性を大きく阻害しない範囲で共重合させて
もよい。もちろん、該ポリプロピレンに添加剤として公
知の結晶核剤、酸化防止剤、熱安定剤、滑り剤、帯電防
止剤、ブロッキング防止剤、充填剤、脱臭剤、抗菌剤、
粘度調整剤、着色防止剤などを添加しても良い。
A second component other than polypropylene, such as ethylene or butene, may be copolymerized within a range that does not significantly impede crystallinity. Of course, the polypropylene has additives such as crystal nucleating agents, antioxidants, heat stabilizers, slip agents, antistatic agents, anti-blocking agents, fillers, deodorizing agents, antibacterial agents, etc.
A viscosity modifier, color inhibitor, etc. may be added.

またA層に添加する少なくとも極性基を含まない石油樹
脂とは、水酸基(−OH) 、カルボキシル基(−CO
OH) 、ハロゲン基(−X) 、スルフォン酸基(−
8o、YXY=H,Na、Mgなど)など、およびそれ
らの変性体などからなる極性基を有さない石油樹脂、す
なわち石油系不飽和炭化水素を直接原料とするシクロペ
ンタジェン系、あるいは高級オレフィン系炭化水素を主
原料とする樹脂である。該石油樹脂のガラス転移温度T
gは50℃以上のものが好ましく、76℃以上のものが
本発明の成形用シートにとってより好ましい。
In addition, the petroleum resin that does not contain at least polar groups to be added to the A layer refers to hydroxyl groups (-OH), carboxyl groups (-CO
OH), halogen group (-X), sulfonic acid group (-
8o, YXY=H, Na, Mg, etc.) and modified products thereof, petroleum resins without polar groups, i.e., cyclopentadiene-based or higher olefins made directly from petroleum-based unsaturated hydrocarbons. It is a resin whose main raw material is hydrocarbon. Glass transition temperature T of the petroleum resin
g is preferably 50°C or higher, more preferably 76°C or higher for the moldable sheet of the present invention.

該石油樹脂の水素添加率(以下水添率と略称することか
ある)は95%以上が必要であり、98%以上とした水
添石油樹脂が本発明積層体の場合は特に好ましい。代表
的な該樹脂としては、水添脂環族石油樹脂(例えば、商
品名“エスコレッツ”(トーネックス■製など)がある
The hydrogenation rate (hereinafter sometimes abbreviated as hydrogenation rate) of the petroleum resin needs to be 95% or more, and it is particularly preferable when the hydrogenated petroleum resin is 98% or more for the laminate of the present invention. Typical examples of the resin include hydrogenated alicyclic petroleum resins (for example, the trade name "Escolettes" (manufactured by Tonex ■, etc.).

また、極性基を含まない石油樹脂には、水酸基、アルデ
ヒド基、ケトン基、カルボキシル基、ハロゲン基、スル
フォン酸基、など、およびそれらの変性体などからなる
極性基を有さないテルペン樹脂、すなわち(C5Ha 
) n (ここでnは2〜15の整数)の組成の炭化水
素およびそれから導かれる変性化合物を含むものとする
。テルペン樹脂のことを別称としてテルペノイドと呼ぶ
こともある。代表的な化合物乞としては、ピネン、カレ
ン、ミルセン、オシメン、リモネン、テルピノレン、テ
ルピネン、サピネン、トリシクレン、ピサポレン、ジン
ギペレン、サンタレン、カンホレン、ミレン、トタレン
、などがあり、本発明積層体の場合、水素を付加させ、
その水添率を95%以上とする必要かあり、好ましくは
98%以上とするのが望ましく、特に水添βピネン、水
添ジペンテンなどが好ましい。
In addition, petroleum resins that do not contain polar groups include terpene resins that do not have polar groups such as hydroxyl groups, aldehyde groups, ketone groups, carboxyl groups, halogen groups, sulfonic acid groups, and modified products thereof, i.e. (C5Ha
) n (where n is an integer of 2 to 15) and modified compounds derived therefrom. Terpene resins are also sometimes called terpenoids. Typical chemical compounds include pinene, carene, myrcene, ocimene, limonene, terpinolene, terpinene, sapinene, tricyclene, pisapolene, gingiperene, santarene, camphorene, mylene, and totalene, and in the case of the laminate of the present invention, hydrogen add
The hydrogenation rate needs to be 95% or more, preferably 98% or more, and hydrogenated β-pinene, hydrogenated dipentene, etc. are particularly preferred.

なお、極性基を有する石油樹脂、あるいは水添率95%
未満の石油樹脂では、水蒸気バリア性が悪化するため本
発明のA層としては適さない。
In addition, petroleum resin with polar groups or hydrogenation rate of 95%
If the petroleum resin is less than 100%, the water vapor barrier property will deteriorate, so it is not suitable as the layer A of the present invention.

A層は、該ポリプロピレン樹脂100重量部に対し、該
石油樹脂を10〜100重量部含有することが必要であ
る。添加量が10重量部より少ないと、水蒸気バリア性
および成形性が悪くなり、100重量部を越えると成形
性、耐熱性および透明性が悪化して好ましくない。
Layer A needs to contain 10 to 100 parts by weight of the petroleum resin based on 100 parts by weight of the polypropylene resin. If the amount added is less than 10 parts by weight, water vapor barrier properties and moldability will deteriorate, and if it exceeds 100 parts by weight, moldability, heat resistance and transparency will deteriorate, which is not preferred.

A層の厚みは、医薬品包装のPress−Throug
h−Pack (FTP)成形に用いる場合は100〜
500μmの範囲が好ましく、食品包装などの容器成形
に用いる場合は、100〜1000μmが好ましく、3
00〜700μmがより好ましい。上記範囲より薄いと
成形後の形態保持性が悪く、逆に上記範囲より厚いと成
形後の形態保持性は良いが、透明性が悪化し、また経済
的でない。
The thickness of layer A is Press-Through for pharmaceutical packaging.
100~ when used for h-Pack (FTP) molding
The range is preferably 500 μm, and when used for container molding such as food packaging, the range is preferably 100 to 1000 μm.
00 to 700 μm is more preferable. If it is thinner than the above range, the shape retention after molding is poor, and on the other hand, if it is thicker than the above range, the shape retention after molding is good, but the transparency deteriorates and it is not economical.

本発明では、A層の少なくとも片面にポリプロピレン樹
脂の層(B層)が積層される必要がある。
In the present invention, a polypropylene resin layer (B layer) needs to be laminated on at least one side of the A layer.

B層がないと、A層に添加した石油樹脂が表層にブリー
ドアウトして、押出しキャスト性が悪化したり、C層と
の接着強度が弱くなる。また、B層にはA層と積層する
際に、石油樹脂が移行するが、C層を積層するために移
行量は5%以下にすることが好ましい。
Without layer B, the petroleum resin added to layer A would bleed out to the surface layer, resulting in poor extrusion castability and weak adhesive strength with layer C. Furthermore, petroleum resin migrates to layer B when layer A is laminated thereon, but in order to layer layer C, it is preferable to limit the amount of the transfer to 5% or less.

B層の厚みは、特に限定するものではないが、10〜1
00μmが好ましく、20〜50μmがより好ましい。
The thickness of layer B is not particularly limited, but is 10 to 1
00 μm is preferable, and 20 to 50 μm is more preferable.

10μ口より薄いと石油樹脂のブリードアウトを押さえ
きれず、100μmを越えると成形温度範囲が狭くなる
If it is thinner than 10 μm, bleed-out of the petroleum resin cannot be suppressed, and if it exceeds 100 μm, the molding temperature range becomes narrow.

さらに、本発明では、A層の片面にのみB層を有すると
きは該8層面に、またA層の両面にB層を有するときは
その少なくとも一方の該8層面に、後述するC層を介し
てD層が積層される必要がある。C層がないとD層か積
層できないばかりでなく、耐n−へブタン性に劣る。
Furthermore, in the present invention, when the A layer has the B layer on only one side, it is applied to the 8 layer surface, and when the A layer has the B layer on both sides, at least one of the 8 layer surfaces is provided with the C layer described later. It is necessary to stack the D layer. Without the C layer, not only the D layer cannot be laminated, but also the n-hebutane resistance is poor.

C層はポリウレタン系樹脂からなり、厚み(溶剤除去後
)は0. 2〜20μmが好ましく、0゜5〜15μm
がより好ましい。C層厚みが0. 2μm未満であると
、積層が難しくなるのみでなく耐n−へブタン性に劣る
。また20μmを越えると成形時にムラか発生するだけ
でなく、乾燥工程でのラインスピードが遅くなり生産性
が劣ったり、価格が高く経済的でなく、また、成形温度
範囲が狭くなる。
The C layer is made of polyurethane resin and has a thickness (after solvent removal) of 0. 2-20 μm is preferable, 0°5-15 μm
is more preferable. C layer thickness is 0. If it is less than 2 μm, not only will lamination be difficult, but the n-hebutane resistance will be poor. Moreover, if it exceeds 20 μm, not only will unevenness occur during molding, but the line speed in the drying process will be slow, resulting in poor productivity, high price, uneconomical, and the molding temperature range will be narrow.

C層に使用するポリウレタン系樹脂とは、主鎖の繰返し
単位中にウレタン結合を持つポリウレタン系の接着剤の
ことであり、イソシアネートとポリオールを常温または
、加熱下で反応させたものである。
The polyurethane resin used for the C layer is a polyurethane adhesive having urethane bonds in the repeating unit of the main chain, and is made by reacting isocyanate and polyol at room temperature or under heating.

イソシアネートの具体例を挙げれば、2.6−トリレン
ジイソシアネート、2.4−トリレンジイソシアネート
、キシリレンジイソシアネート、ジフェニルメタンジイ
ソシアネート、1,6−ヘキサメチレンジイソシアネー
ト、およびこれらの誘導体から得られる分子中に2個以
上のイソシアネート基を有する化合物かある。
Specific examples of isocyanates include 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, 1,6-hexamethylene diisocyanate, and molecules obtained from these derivatives. Some compounds have more than one isocyanate group.

ポリオールとしては、ポリオキシプロピレングリコール
、ポリオキシプロピレン−ポリオキシエチレングリコー
ルのようなポリエーテル型のものと、テレフタレル酸、
イソフタル酸、アジピン酸、セバシン酸などのジカルボ
ン酸成分と、エチレングリコール、1,4−ブタンジオ
ール、ジエチレングリコール、ポリエチレングリコール
、ネオペンチルグリコールなどを縮合させたものを主と
するポリエステル型の種類がある。
Polyols include polyether type ones such as polyoxypropylene glycol and polyoxypropylene-polyoxyethylene glycol, terephthalic acid,
There are polyester types that are mainly made by condensing dicarboxylic acid components such as isophthalic acid, adipic acid, and sebacic acid with ethylene glycol, 1,4-butanediol, diethylene glycol, polyethylene glycol, and neopentyl glycol.

前者をポリエーテルポリウレタン、後者をポリエステル
ポリウレタンと言う。またアクリル、エポキシ樹脂など
もある。
The former is called polyether polyurethane, and the latter is called polyester polyurethane. There are also acrylic and epoxy resins.

本発明に使用するポリウレタン系接着剤としては、耐n
−へブタン性、接着性などの点から特にポリエステルポ
リウレタン接着剤が好ましい。
The polyurethane adhesive used in the present invention is
- Polyester polyurethane adhesives are particularly preferred from the viewpoint of hebutane properties, adhesive properties, etc.

ポリオールとポリイソシアネートの混合比は水酸基と、
イソシアネート基の当量の割合[NGO]/ [0)(
]が1〜9、好ましくは1,5〜7である。同値が1未
満であると積層が十分に行なわれず、また同値が9を越
えると成形時にC層に亀裂が入るため、成形性、透明性
、水蒸気バリア性、ガスバリア性、耐n−へブタン性が
悪化し、本発明の成形用シートの特徴かうしなわれるこ
とがある。
The mixing ratio of polyol and polyisocyanate is hydroxyl group,
Equivalent proportion of isocyanate groups [NGO]/[0)(
] is 1-9, preferably 1,5-7. If the value is less than 1, lamination will not be performed sufficiently, and if the value exceeds 9, cracks will occur in the C layer during molding, resulting in improved moldability, transparency, water vapor barrier properties, gas barrier properties, and n-hebutane resistance. The characteristics of the moldable sheet of the present invention may deteriorate.

また、本発明では、少なくとも一方のB層面にC層を介
してD層が積層される必要がある。D層がないと、耐熱
性に劣るばかりでなく、成形温度範囲が狭くなり、ガス
バリア性に劣り、またアルミ箔などと貼合わせた後の耐
カール性に劣る。
Further, in the present invention, it is necessary that the D layer is laminated on at least one B layer surface with the C layer interposed therebetween. Without the D layer, not only is the heat resistance inferior, but the molding temperature range is narrowed, the gas barrier properties are inferior, and the curling resistance after bonding with aluminum foil etc. is inferior.

D層はポリエステルフィルムより構成される。Layer D is composed of polyester film.

D層に適用されるポリエステルとしては、テレフタル酸
とエチレングリコールを重縮合して得られるポリエチレ
ンテレフタレートを代表例として例示することができる
が、これに限定されるものではなく、ポリエチレンテレ
フタレート単位が70〜97モル%の範囲で他のジカル
ボン酸などやジオール成分などを共重合してもよく、む
しろ共重合する方が成形温度範囲が広くなり好ましい。
As the polyester applied to the D layer, polyethylene terephthalate obtained by polycondensing terephthalic acid and ethylene glycol can be exemplified as a representative example, but it is not limited thereto, and polyethylene terephthalate units are 70 to 70. Other dicarboxylic acids, diol components, etc. may be copolymerized within a range of 97 mol %, but copolymerization is preferable since the molding temperature range is wider.

共重合の成分としてはアジピン酸、セバシン酸、イソフ
タル酸などのジカルボン酸やトリメリット酸、ピロメリ
ット酸などの多官能カルボン酸成分、ジエチレングリコ
ール、ネオペンチルグリコール、P−キシレングリコー
ル、1.4−シクロヘキサンジメタツール、平均分子量
150〜20. 000のポリアルキレングリコール、
ブタンジオールなどのジオール成分があげられる。また
、該ポリエステルには、本発明の目的を阻害しない範囲
内で、酸化防止剤、熱安定剤、滑剤、顔料、紫外線吸収
剤などが含まれてもよい。
Copolymerization components include dicarboxylic acids such as adipic acid, sebacic acid, and isophthalic acid, polyfunctional carboxylic acids such as trimellitic acid and pyromellitic acid, diethylene glycol, neopentyl glycol, P-xylene glycol, and 1,4-cyclohexane. Dimetator, average molecular weight 150-20. 000 polyalkylene glycol,
Examples include diol components such as butanediol. Further, the polyester may contain antioxidants, heat stabilizers, lubricants, pigments, ultraviolet absorbers, etc. within a range that does not impede the object of the present invention.

該ポリエステルの融解温度Tmは、210℃〜265℃
、好ましくは215〜250℃であると成形性が良好と
なる。また結晶化度Xcは、30〜50%、好ましくは
35〜45%であると成形後の形態保持性が良い。
The melting temperature Tm of the polyester is 210°C to 265°C
, preferably 215 to 250°C, provides good moldability. Further, when the crystallinity Xc is 30 to 50%, preferably 35 to 45%, shape retention after molding is good.

上記ポリエステルからなるフィルムは、二軸配向されて
いると、該ポリプロピレンシートとラミネートした後の
成形性か良好となり、ガスバリア性、耐熱性が良好とな
る。二軸配向ポリエステルフィルムの複屈折率は、0.
02〜0.20であり、より好ましくは0.05〜0.
15の範囲である。0.02未満では、ガスバリア性に
劣り、耐熱性が悪く形態保持性に劣る。一方、0.20
を越えると成形時にフィルムが破断するなど成形性が悪
化する。
When the film made of polyester is biaxially oriented, it will have good moldability after being laminated with the polypropylene sheet, and will have good gas barrier properties and heat resistance. The birefringence of the biaxially oriented polyester film is 0.
02 to 0.20, more preferably 0.05 to 0.0.
The range is 15. If it is less than 0.02, gas barrier properties are poor, heat resistance is poor, and shape retention is poor. On the other hand, 0.20
If it exceeds this value, the moldability will deteriorate, such as the film breaking during molding.

容器およびPTP用シートに必要な特性の一つに、シー
トが成形し易い(成形温度幅が広い)ことがある。一般
にポリプロピレンの成形可能な温度幅は1〜2℃と言わ
れており、ポリプロピレン単体では成形が難しい。そこ
で、ポリプロピレンの水蒸気バリア性を改良し、しかも
成形温度幅を広げることを可能としたのが石油樹脂の添
加であった。また本発明の成形用シートとすることによ
り、成形温度幅がさらに広くなり、pvc (ポリ塩化
ビニル樹脂)成形用の成形機でも充分成形出来る温度幅
とすることができ、また、ガスバリア性、耐熱性、耐n
−へブタン性をも付与することができた。
One of the characteristics required for sheets for containers and PTP is that the sheet be easy to mold (a wide range of molding temperatures). Generally, the temperature range at which polypropylene can be molded is said to be 1 to 2°C, and polypropylene alone is difficult to mold. Therefore, the addition of petroleum resin made it possible to improve the water vapor barrier properties of polypropylene and widen the molding temperature range. In addition, by using the molding sheet of the present invention, the molding temperature range can be further widened, and the temperature range can be sufficiently molded even with a molding machine for molding PVC (polyvinyl chloride resin). resistance, n resistance
- It was also possible to impart hebutane properties.

次に本発明の成形用シートの製造方法について説明する
が、これに限定されるものではない。
Next, a method for producing a molding sheet according to the present invention will be described, but the method is not limited thereto.

ポリプロピレンに、特定の石油樹脂を添加混合した樹脂
(A層の原料)と、ポリプロピレン樹脂(B層の原料)
をそれぞれ別々の押出機に供給し、溶融ポリマーを口金
内で積層し、20〜70℃に保たれたキャスティングド
ラム上に押出キャストし冷却固化させて、A層/B層ま
たはB層/A層/B層の構成のポリプロピレン複合シー
トを得る。
A resin made by adding and mixing a specific petroleum resin to polypropylene (raw material for layer A), and polypropylene resin (raw material for layer B)
are fed to separate extruders, the molten polymers are laminated in the die, extrusion cast onto a casting drum kept at 20 to 70°C, cooled and solidified to form A layer/B layer or B layer/A layer. A polypropylene composite sheet having the structure of /B layer is obtained.

一方、十分に乾燥された極限粘度0.50〜0゜80、
好ましくは0.55〜0.70のポリエステルペレット
を、270〜290℃に加熱された押出機に供給してT
型口金よりシート状に押出し、25〜50℃に保たれた
キャスティングドラム上で冷却固化してシートを得、引
続き該シートを70〜120℃で3〜5倍に縦延伸した
のち、20〜50℃の冷却ロールで冷却する。続いてこ
のフィルムの両端をクリップで把持してステンターに導
き60〜130℃の雰囲気中で3〜5倍に延伸後ただち
に170〜230℃で数秒間熱処理する。
On the other hand, thoroughly dried intrinsic viscosity 0.50~0°80,
Preferably, polyester pellets of 0.55 to 0.70 are fed to an extruder heated to 270 to 290°C to
It is extruded into a sheet form from a die die, cooled and solidified on a casting drum maintained at 25 to 50°C to obtain a sheet, and then longitudinally stretched to 3 to 5 times at 70 to 120°C. Cool on a cooling roll at °C. Subsequently, both ends of the film are held with clips, introduced into a stenter, stretched 3 to 5 times in an atmosphere at 60 to 130°C, and immediately heat treated at 170 to 230°C for several seconds.

この時数%のリラックスを許しながら熱処理すると寸法
安定性が良好となる。
If heat treatment is performed while allowing several percent relaxation at this time, dimensional stability will be improved.

以上の様にして得られたポリエステルフィルム(D層)
の表面に、必要に応じて酸素、炭酸ガス、窒素ガスなど
の雰囲気中でコロナ放電処理あるいはプラズマ処理を施
す。また、印刷インキやガスバリア性を付与するポリ塩
化ビニリデンなどの塗布やその他紫外線吸収付与剤の塗
布などを施してもよく、また、金属酸化物のスパッタリ
ングにより、ガスバリア性を有する透明蒸着層を設けて
も良い。
Polyester film obtained as above (D layer)
The surface of the substrate is subjected to corona discharge treatment or plasma treatment in an atmosphere of oxygen, carbon dioxide, nitrogen gas, etc. as necessary. In addition, coating with printing ink, polyvinylidene chloride, etc. that imparts gas barrier properties, or coating of other ultraviolet absorbing agents may be applied, and a transparent vapor deposited layer with gas barrier properties may be provided by sputtering a metal oxide. Also good.

次に、該ポリエステルフィルム(D層)の表面にポリオ
ール/イソシアネート混合液を一定厚みに塗布した後、
50℃〜90℃に保たれたオーブン中を通して溶剤を除
去して、C層/D層からなるポリエステル複合フィルム
を得る。続いて、オーブン出口において前記ポリプロピ
レン複合シート(A層/B層またはB層/A層/B層)
のB層とC層/D層の0層が合うように重ねて、A層/
B層/C層/D層、B層7/A層、/73層/C層/D
局またはD層/C層/B層/A層/B層/C層/D層に
積層すると同時に60〜100℃に加熱したロールでプ
レス圧着し、冷却ロールで冷却してから巻き取ることに
より、本発明の成形シートが得られる。
Next, after applying a polyol/isocyanate mixture to a certain thickness on the surface of the polyester film (layer D),
The solvent is removed through an oven kept at 50°C to 90°C to obtain a polyester composite film consisting of C layer/D layer. Subsequently, at the oven exit, the polypropylene composite sheet (layer A/layer B or layer B/layer A/layer B)
Layer B layer and C layer/D layer so that the 0 layer matches, and then add A layer/
B layer/C layer/D layer, B layer 7/A layer, /73 layer/C layer/D
At the same time as laminating layers D, C, B, A, B, C, and D, they are press-bonded with a roll heated to 60 to 100°C, cooled with a cooling roll, and then rolled up. , a molded sheet of the present invention is obtained.

[発明の効果] 本発明は、ポリプロピレンに特定の石油樹脂を添加混合
した層の少なくとも片面にポリプロピレン樹脂を積層し
たシートに、ポリウレタン系樹脂層を介してポリエステ
ルフィルムを積層した成形用シートであって、次のよう
な優れた効果を生じるものである。
[Effects of the Invention] The present invention provides a molding sheet in which a polyester film is laminated via a polyurethane resin layer on a sheet in which a polypropylene resin is laminated on at least one side of a layer made of polypropylene and a specific petroleum resin. , which produces the following excellent effects.

(1)水蒸気バリア性、ガスバリア性に優れ、食品およ
び医薬品包装などの幅広い用途に適応できる。
(1) It has excellent water vapor barrier properties and gas barrier properties, and can be applied to a wide range of applications such as food and pharmaceutical packaging.

(2)ポリプロピレンホモポリマー層にポリエステル層
を積層したシートに比べ、成形性に優れ、成形後の形態
保持性が良い。
(2) Compared to a sheet in which a polypropylene homopolymer layer is laminated with a polyester layer, it has excellent moldability and good shape retention after molding.

(3)ポリプロピレンシートよりも耐熱性に優れ、水系
の食品はもとより、油物の食品包装の容器に用いること
ができ、従来より使用温度範囲が広がり、電子レンジお
よびレトルト用として適応できる。
(3) It has better heat resistance than polypropylene sheets, and can be used not only for water-based foods but also for food packaging containers for oily foods, has a wider operating temperature range than before, and can be used in microwave ovens and retorts.

(4)透明性が良く、容器の内容物の目視が容易である
(4) Good transparency makes it easy to visually check the contents of the container.

(5)n−へブタンによる添加剤、石油樹脂の抽出がほ
とんど無い。
(5) There is almost no extraction of additives and petroleum resins by n-hebutane.

[特性値の測定方法・評価基準] (1)水蒸気透過率 JIS  Z−0208に従い40℃、90%RHで測
定した値で、g/%・日/シート単位で表わした。成形
用シートとしての水蒸気バリア性は、水蒸気透過率0.
80以下が必要である。
[Measurement method and evaluation criteria for characteristic values] (1) Water vapor transmission rate A value measured at 40° C. and 90% RH according to JIS Z-0208, expressed in g/%·day/sheet. The water vapor barrier properties of the sheet for molding include a water vapor transmission rate of 0.
80 or less is required.

(2)酸素透過率 ASTM  D−1434に従い測定した値でcc/ボ
・日/シート単位で表わした。成形用シートとしてのガ
スバリア性は、酸素透過率100以下が必要である。
(2) Oxygen permeability The value was measured according to ASTM D-1434 and expressed in units of cc/day/sheet. The gas barrier property as a sheet for molding requires an oxygen permeability of 100 or less.

(3)耐n−へブタン性 n−へブタンを満したシャーレ−中に、ポリプロピレン
積層体のD層面を室温で1時間浸して取出した後、n−
へブタンが蒸発した後の核部の状態を観察し、変化のな
いもの:O(良好)、表面がべたつくもの、あるいは添
加物がブリードアウトして光っているもの:×(不良)
とした。
(3) Resistance to n-hebutane After soaking the D layer side of the polypropylene laminate in a petri dish filled with n-hebutane at room temperature for 1 hour and taking it out,
Observe the state of the core after the hebutane has evaporated; if there is no change: O (good), if the surface is sticky or if the additive bleeds out and shines: × (bad).
And so.

(4)極限粘度[ηコ ASTM  D−1601に従ってテトラリン中で測定
したもので、di/g単位で表わす。
(4) Intrinsic viscosity [η] Measured in tetralin according to ASTM D-1601, expressed in di/g.

(5)  アイソタクチックインデックス(I I)沸
騰n−へブタンの抽出残量(w1%)で表わす。
(5) Isotactic index (II) It is expressed as the extraction residual amount (w1%) of boiling n-hebutane.

(6)複屈折率(Δn) Abbeの屈折計に、マウント液としてヨウ化メチレン
を用い、フィルムの長手方向の屈折率nXと幅方向の屈
折率nyを測定し、nxとnyの差により求めた。
(6) Birefringence (Δn) Using an Abbe refractometer with methylene iodide as the mounting liquid, measure the refractive index nX in the longitudinal direction and the refractive index ny in the width direction of the film, and find it by the difference between nx and ny. Ta.

(2)融解温度(Tm) ・溶融結晶化温度(T me
)試料5■を走査型熱量計DSC−II型(Perki
n  EImer社製)にセットし、窒素気流下で昇温
速度20℃/分にて室温より測定し、融解に伴う吸熱ピ
ーク温度を融解温度Tmとする。
(2) Melting temperature (Tm) - Melt crystallization temperature (T me
) Sample 5 was measured using a scanning calorimeter DSC-II model (Perki
n (manufactured by EImer) and measured from room temperature under a nitrogen stream at a heating rate of 20° C./min, and the endothermic peak temperature accompanying melting is defined as the melting temperature Tm.

また、同様にして試料を280℃にて5分間保った後に
、降温速度20℃/分にて室温まで温度を下げていった
時に、結晶化に伴う放熱ピーク温度を溶融結晶化温度T
mcとする。
Similarly, after keeping the sample at 280°C for 5 minutes, the temperature was lowered to room temperature at a cooling rate of 20°C/min.
Let it be mc.

(8)ガラス転移温度Tg ガラス転移温度は、サンプル10■を走査型熱量計DS
C−It型(Perkin  E1mer社製)にセッ
トし、窒素気流下に昇温速度40℃/分の速度で一20
℃からスタートさせてサーモグラフを書かせ、ベースラ
インから吸熱ピークのずれる温度と、戻る温度との算術
平均値をとった温度Tgとする。
(8) Glass transition temperature Tg The glass transition temperature was measured using a scanning calorimeter DS.
Set in a C-It type (manufactured by Perkin Elmer) and heated to 120°C at a heating rate of 40°C/min under a nitrogen stream.
A thermograph is drawn starting from ℃, and the arithmetic mean value of the temperature at which the endothermic peak deviates from the baseline and the temperature at which it returns is determined as temperature Tg.

(9)結晶化度(Xc) n−へブタンと四塩化炭素の混合液をガラス円筒中に流
し込み、直線的な密度勾配を得、この中に試料を投入し
て、25℃での平衡位置を読み取り密度(d)を算出し
、次式にて試料の結晶化度を求める。
(9) Crystallinity (Xc) A mixture of n-hebutane and carbon tetrachloride is poured into a glass cylinder to obtain a linear density gradient, and a sample is placed in this to determine the equilibrium position at 25°C. Read the density (d) and calculate the crystallinity of the sample using the following formula.

Xc:結晶化度 dC:結晶領域の密度。Xc: crystallinity dC: density of crystalline regions.

da:無定形領域の密度 (ト)透明性 FTPおよび容器に内容物を詰め、外側から中を見た時
に、内容物の文字や色、形が鮮明に見えるものを○、ぼ
やけて鮮明に見えないものを×、医薬品の錠剤やカプセ
ル包装のFTP用途での成形テストは、FTP成形機(
CKD製 FBPV3)にて行ない、成形性は成形可能
な温度幅、表面のべたつき(外観)、アルミ箔とのシー
ル後におけるカール状態(耐カール性)を目視にて次の
ように評価した。
da: Density of amorphous area (g) Transparency When the contents are packed in an FTP or container and viewed from the outside, the text, color, and shape of the contents are clearly visible. FTP molding machine (FTP molding machine)
The moldability was evaluated by visually observing the moldable temperature range, surface stickiness (appearance), and curl state after sealing with aluminum foil (curl resistance) as follows.

○:成形可能温度幅が4℃以上で、表面のべたつきがあ
り、カールの小さいもの。
○: The moldable temperature range is 4°C or higher, the surface is sticky, and the curl is small.

×:成形可能温度幅が28C以下で、表面のべたつきが
あり、カールの大きいもの。
×: The moldable temperature range is 28C or less, the surface is sticky, and the curl is large.

△コ○と×の中間のもの。△ Something between ○ and ×.

また、食品包装の容器での成形テストは、三菱重工業■
製MOP−504成形機にて120℃〜140℃に予熱
してポリエステルフィルム(D層)を容器の内側になる
ように成形したとき、成形品の外観により、次のように
評価した。
In addition, molding tests on food packaging containers are conducted by Mitsubishi Heavy Industries, Ltd.
When the polyester film (layer D) was preheated to 120° C. to 140° C. and formed on the inside of the container using a MOP-504 molding machine produced by MOP-504, the appearance of the molded product was evaluated as follows.

○:底の角の部分までシャープに成形されたもの。○: Shaped sharply down to the bottom corner.

△:底の角の部分がややシャープさに欠けるもの。△: The bottom corners are somewhat lacking in sharpness.

×:型通りの成形ができなかったり、成形品に割れを生
じたりするもの。
×: The molded product cannot be molded according to the mold or cracks occur in the molded product.

(財)耐熱性(形態保持性) 成形品(容器)を熱風オーブン中に入れ、形態保持性を
目視観察し、次のように評価した。
Heat Resistance (Shape Retention) The molded product (container) was placed in a hot air oven, and the shape retention was visually observed and evaluated as follows.

○:150℃・2分間でも形がくずれないもの。○: Items that do not lose their shape even after 2 minutes at 150°C.

62150℃・2分間ではやや縁部が変形するが、14
0℃・2分間では形がくずれないもの。
At 62150℃ for 2 minutes, the edges are slightly deformed, but 14
Items that do not lose their shape after 2 minutes at 0℃.

X:140℃・2分間で形がくずれるもの。X: Items that lose their shape after 2 minutes at 140°C.

なお、形がくずれるとは、成形した容器の縁部がゆがん
だり、底部の角の部分が丸くなったり、容器全体あるい
は部分的に凹凸が発生することをいう。
Note that deformation refers to distortion of the edges of a molded container, rounding of the bottom corner, or unevenness of the entire or partial container.

[実施例コ 次に、実施例に基づいて本発明の実施態様を説明する。[Example code] Next, embodiments of the present invention will be described based on Examples.

実施例I A層のポリプロピレンとして、極限粘度[ηコ=1..
90dl/g、アイソタクチックインデックス(I I
)=98w1%の三井“ノーブレン” (三井東圧化学
■製)を用い、石油樹脂として、水添率99%で無極性
のポリジシクロペンタジェン樹脂“エスコレッツ”53
20(トーネックス■製)を用いた。該ポリプロピレン
樹脂100重量部に対して、該石油樹脂30重量部を均
一ブレンドした原料を240℃に加熱した90胴φ主押
出機に供給した。240℃に加熱した35肛φ副押出機
の方には、[η] =1.40dl/g、I T=98
wt%のポリプロピレン(三井“ノーブレン”)を供給
した。溶融したそれぞれの原料をピノール方式にてポリ
プロピレン5/ポリプロピレン十石油樹脂、/ポリプロ
ピレンの3層構成(B/A/B)とした後、T形口金よ
りシート状に押出し、表面温度63℃の金属ドラムに巻
きつけ冷却固化し、厚み構成25/350./25μm
の未延伸シートを得た。B層の表層面にコロナ放電処理
(空気中)を行なった。
Example I The polypropylene of the A layer had an intrinsic viscosity [η co=1. ..
90 dl/g, isotactic index (II
) = 98w1% Mitsui "Noblen" (manufactured by Mitsui Toatsu Chemical ■) was used as a petroleum resin, and a non-polar polydicyclopentadiene resin "Escolettes" 53 with a hydrogenation rate of 99% was used.
20 (manufactured by Tonex ■) was used. A raw material obtained by uniformly blending 100 parts by weight of the polypropylene resin and 30 parts by weight of the petroleum resin was supplied to a 90-cylinder diameter main extruder heated to 240°C. For the 35-hole sub-extruder heated to 240°C, [η] = 1.40 dl/g, I T = 98
wt% polypropylene (Mitsui “Noblen”) was supplied. The molten raw materials were made into a three-layer structure (B/A/B) of 5 polypropylene/10 petroleum resin/polypropylene using the pinol method, and then extruded into a sheet from a T-shaped die to form a metal with a surface temperature of 63°C. Wrap it around a drum, cool and solidify it to a thickness of 25/350. /25μm
An unstretched sheet was obtained. Corona discharge treatment (in air) was performed on the surface layer of layer B.

D層として、ポリエチレンテレフタレートにイソフタル
酸を15モル%共重合させたペレットを十分真空乾燥し
たのち、290℃に加熱した押出機に供給してT型口金
よりシート状に押出し、表面温度30℃の金属ドラムに
巻きつけ冷却固化し未延伸シートを得た。この未延伸シ
ートを表面温度75℃の予熱ロール群に導き、縦方向に
3.3倍延伸し、次いで90℃の雰囲気中で予熱して横
方向に3.3倍延伸した。続いて220℃での雰囲気で
緊張熱処理を行ない、厚さ12μmの二軸延伸フィルム
を得た。該フィルムの表面にコロナ放電処理(空気中)
を行なった。
For the D layer, pellets made by copolymerizing polyethylene terephthalate with 15 mol% of isophthalic acid were thoroughly dried in vacuum, and then fed into an extruder heated to 290°C and extruded into a sheet form from a T-shaped die, and then heated to a surface temperature of 30°C. It was wound around a metal drum, cooled and solidified to obtain an unstretched sheet. This unstretched sheet was introduced into a group of preheated rolls with a surface temperature of 75° C., stretched 3.3 times in the machine direction, and then preheated in an atmosphere of 90° C. and stretched 3.3 times in the transverse direction. Subsequently, tension heat treatment was performed in an atmosphere at 220°C to obtain a biaxially stretched film with a thickness of 12 μm. Corona discharge treatment (in air) on the surface of the film
I did this.

0層として、ポリエステル・ポリウレタン接着剤を用い
た。ポリエステルには、テレフタル酸/セバシン酸(モ
ル比60.、/40)、エチレングリコール/ネオペン
チルグリコール(モル比35/65)の樹脂を使用し、
共重合ポリエステルの25%溶液(トルエン/MEK=
8/2)100重量部に対し、イソシアネートとして“
コロネート”HL(日本ポリウレタン■製)12重量部
を混合して用いた。
A polyester/polyurethane adhesive was used as the zero layer. For the polyester, resins of terephthalic acid/sebacic acid (molar ratio 60./40) and ethylene glycol/neopentyl glycol (molar ratio 35/65) are used.
25% solution of copolymerized polyester (toluene/MEK=
8/2) For 100 parts by weight, as isocyanate “
12 parts by weight of Coronate HL (manufactured by Nippon Polyurethane) were mixed and used.

該ポリエステルフィルム(D層)のコロナ放電処理面上
に、リバースコーターを使用して0層を溶剤乾燥後で5
μmの厚みになるように塗布し、乾燥オーブンにより9
0℃で乾燥し、オーブン出口でC層面にコロナ放電処理
を施したB層を重ね、80℃に加熱されたプレスロール
で圧着し、積層シート(B/A/B/C/D)を得た。
On the corona discharge treated surface of the polyester film (Layer D), use a reverse coater to coat the 0 layer with 5
Coat the film to a thickness of 9 μm and dry in a drying oven.
Layer B, which was dried at 0°C and subjected to corona discharge treatment on the C layer surface at the oven exit, was stacked and pressed with a press roll heated to 80°C to obtain a laminated sheet (B/A/B/C/D). Ta.

このシートについて評価した結果を第1表に示したが、
水蒸気バリア性、ガス(酸素)バリア性、耐n−ヘプタ
ン性に優れるとともに、PTP成形において成形温度幅
が十分広く、アルミ箔と貼合せた後の耐カール性も良好
でFTP包材として優れたものであった。また、このシ
ートを真空成形機にかけ、縦150mm、横100■、
深さ30圓の容器を成形した。成形性は良好であり、ま
た透明性も良好で、耐熱性(形態保持性)も良好であっ
た。
The results of evaluating this sheet are shown in Table 1.
It has excellent water vapor barrier properties, gas (oxygen) barrier properties, and n-heptane resistance, has a sufficiently wide molding temperature range in PTP molding, and has good curl resistance after laminating with aluminum foil, making it excellent as an FTP packaging material. It was something. In addition, this sheet was put through a vacuum forming machine, and the length was 150 mm, the width was 100 mm,
A container with a depth of 30 mm was molded. The moldability was good, the transparency was also good, and the heat resistance (shape retention) was also good.

実施例2 実施例1において、水添率96%で無極性の石油樹脂を
用い、ポリプロピレン100重量部に対して、該石油樹
脂を80重量部均一ブレンドしたA層の両面に、実施例
1−のポリプロピ128層を積層し、さらに実施例1の
ポリエステル・ポリウレタン接着剤の0層を介してポリ
エステル0層を両面に積層した以外は、実施例1と同様
に積層シー) (D/C/B/A/B/C/D)を得た
。このシートの評価結果を第1表に示した。表かられか
るように、成形用シートとしての必要特性をすべて満足
したものであった。
Example 2 In Example 1, a non-polar petroleum resin with a hydrogenation rate of 96% was used, and 80 parts by weight of the petroleum resin was uniformly blended with 100 parts by weight of polypropylene. Example 1- (D/C/B) (Lamination sheet) in the same manner as in Example 1, except that 128 layers of polypropy were laminated, and 0 layers of polyester were further laminated on both sides via the 0 layer of polyester polyurethane adhesive of Example 1. /A/B/C/D) were obtained. The evaluation results of this sheet are shown in Table 1. As can be seen from the table, all the properties required for a moldable sheet were satisfied.

実施例3 実施例1において、ポリジシクロペンタジェン樹脂“エ
スコレッッ”5320に変えて、水添率99%で無極性
のポリテルペン樹脂”クリアロン”(安原油脂■製)を
用いた以外は、実施例1と同様にして成形用シートを得
た。この評価結果は第1表に示したように、成形用シー
トとしての必要特性をすべて満足したものであった。
Example 3 Example 1 except that a non-polar polyterpene resin "Clearon" (manufactured by Cheap Crude Oil) with a hydrogenation rate of 99% was used instead of the polydicyclopentadiene resin "Escolette" 5320. A molding sheet was obtained in the same manner as above. As shown in Table 1, the evaluation results satisfied all the properties required for a sheet for molding.

比較例1 実施例1において、石油樹脂ポリジシクロペンタジェン
樹脂“エスコレッツ” 5320に変えて、極性基−C
OOHを持ち、水添されていないガムロジン“エステル
ガムH” (荒用化学■製)を用いた以外は、実施例1
と同様にして成形用シートを得た。
Comparative Example 1 In Example 1, the petroleum resin polydicyclopentadiene resin "Escolettes" 5320 was replaced with a polar group -C
Example 1 except that non-hydrogenated gum rosin “Ester Gum H” (manufactured by Arayo Kagaku ■) having OOH was used.
A molding sheet was obtained in the same manner as above.

この評価結果は第1表に示したように、極性基が有り、
水添していない樹脂はポリプロピレンとの相溶性が悪く
、水蒸気バリア性、透明性および成形性に劣ったもので
あった。
As shown in Table 1, this evaluation result shows that there are polar groups,
Non-hydrogenated resins had poor compatibility with polypropylene and were poor in water vapor barrier properties, transparency, and moldability.

比較例2.3 実施例1において、石油樹脂の添加量をポリプロピレン
100重量部に対して、5重量部と120重量部にした
以外は、実施例1と同様に成形用シートを得た。
Comparative Example 2.3 Molding sheets were obtained in the same manner as in Example 1, except that the amount of petroleum resin added was 5 parts by weight and 120 parts by weight based on 100 parts by weight of polypropylene.

この評価結果は第1表に示したように、石油樹脂の添加
量が10重量部より少ないと、水蒸気バリア性と成形性
に劣り、100重量部を越えると成形性、耐熱性および
透明性が悪化した。
As shown in Table 1, the evaluation results show that if the amount of petroleum resin added is less than 10 parts by weight, water vapor barrier properties and moldability will be poor, and if it exceeds 100 parts by weight, moldability, heat resistance, and transparency will deteriorate. It got worse.

比較例4.5.6 比較例4は、実施例1においてB層を積層せずにA層の
表面に0層を介してD層を積層した。また比較例5は、
A層の両面にB層を積層したのみで、0層とD層は積層
しなかった。
Comparative Example 4.5.6 In Comparative Example 4, Layer B was not laminated in Example 1, but Layer D was laminated on the surface of Layer A with Layer 0 interposed therebetween. In addition, Comparative Example 5 is
Layer B was only laminated on both sides of layer A, and layer 0 and layer D were not laminated.

比較例6は、実施例1においてB層の片面に公知のアン
カー処理をしたのち、該処理面に0層としてポリ塩化ビ
ニリデン(PVDC)を厚さ5μmコートし、さらにP
VDC表面にD層としてポリエチレン(P E)を厚さ
30μmになるように押出ラミネートし、成形用シート
を得た。
In Comparative Example 6, one side of the B layer in Example 1 was subjected to a known anchor treatment, and then the treated side was coated with polyvinylidene chloride (PVDC) to a thickness of 5 μm as a zero layer, and then P
Polyethylene (PE) was extrusion laminated as a D layer on the VDC surface to a thickness of 30 μm to obtain a sheet for molding.

かくして得られた積層体について評価を行なった。The thus obtained laminate was evaluated.

比較例4のB層が積層されていないと、A層に添加した
石油樹脂が押出しキャスト時にブリードアウトして、0
層を積層する際にA層との界面接着力が弱く、成形時に
はがれを生じて成形性と耐熱性(形態保持性)が悪化し
、またA層と0層の界面に石油樹脂が留って透明性が悪
化した。
If Layer B in Comparative Example 4 was not laminated, the petroleum resin added to Layer A would bleed out during extrusion casting, resulting in 0.
When laminating layers, the interfacial adhesion with layer A is weak, causing peeling during molding, resulting in poor moldability and heat resistance (shape retention), and petroleum resin remains at the interface between layer A and layer 0. Transparency has deteriorated.

比較例5では0層とD層が積層されていないと、耐n−
へブタン性と耐熱性(形態保持性)が悪化した。また0
層としてPVDCを、D層としてPEを積層した比較例
6は、成形時にPVDC層に亀裂を生じるため耐n−へ
ブタン性が不良となり、また成形時にPEが金型に粘着
して成形不良となり、耐熱性も悪化した。
In Comparative Example 5, if the 0 layer and the D layer were not laminated, the n-
Hebutanability and heat resistance (shape retention) deteriorated. 0 again
In Comparative Example 6, in which PVDC was laminated as the layer and PE was laminated as the D layer, the PVDC layer cracked during molding, resulting in poor n-hebutane resistance, and PE adhered to the mold during molding, resulting in poor molding. , heat resistance also deteriorated.

Claims (1)

【特許請求の範囲】[Claims] (1)ポリプロピレン100重量部に、少なくとも極性
基を含まない水素添加率95%以上の石油樹脂を10〜
100重量部混合してなる層(A層)の少なくとも片面
にポリプロピレン樹脂よりなる層(B層)を有する複合
シートの少なくとも一方のB層面に、ポリウレタン系樹
脂よりなる層(C層)を介してポリエステルフィルムよ
りなる層(D層)を積層してなることを特徴とする成形
用シート。
(1) 10 to 100 parts by weight of polypropylene contain at least 10 to 10 parts of petroleum resin containing no polar groups and a hydrogenation rate of 95% or more.
100 parts by weight of a layer (A layer) mixed with a polypropylene resin layer (B layer) on at least one side of the composite sheet, a layer made of polyurethane resin (C layer) on at least one side of the B layer. A molding sheet characterized by being formed by laminating a layer (D layer) made of polyester film.
JP6608890A 1990-03-15 1990-03-15 Sheet for molding use Pending JPH03266642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6608890A JPH03266642A (en) 1990-03-15 1990-03-15 Sheet for molding use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6608890A JPH03266642A (en) 1990-03-15 1990-03-15 Sheet for molding use

Publications (1)

Publication Number Publication Date
JPH03266642A true JPH03266642A (en) 1991-11-27

Family

ID=13305760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6608890A Pending JPH03266642A (en) 1990-03-15 1990-03-15 Sheet for molding use

Country Status (1)

Country Link
JP (1) JPH03266642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149460A (en) * 2016-02-25 2017-08-31 長瀬産業株式会社 tray
JP2020055245A (en) * 2018-10-03 2020-04-09 出光ユニテック株式会社 Resin sheet and package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149460A (en) * 2016-02-25 2017-08-31 長瀬産業株式会社 tray
JP2020055245A (en) * 2018-10-03 2020-04-09 出光ユニテック株式会社 Resin sheet and package

Similar Documents

Publication Publication Date Title
JP2730197B2 (en) Easy heat sealing laminated polyester film
WO2018159649A1 (en) Laminate provided with heat-sealable resin layer and polyester film having furandicarboxylic acid unit, and packaging bag
WO1993016864A1 (en) Biaxially oriented, laminated polyester film
WO2020022060A1 (en) Laminate and packaging bag comprising same
WO2021154162A1 (en) High scratch resistant laminate tube with metalized polyethylene layer decoration
KR100304738B1 (en) Polyester film, laminated metal sheet and metal container
JP2000108262A (en) Polypropylene film for metal deposition and metal- deposited polypropylene film
JPH03266642A (en) Sheet for molding use
JP2004168040A (en) Metal vapor deposited biaxially stretched polypropylene film
JPH09309147A (en) Biaxially stretched polyester film for molding container
JPH0347177B2 (en)
JP2001054939A (en) Polypropylene film for metal vapor deposition and metal vapor-deposited polypropylene film
JP7439492B2 (en) Method for selecting polyester film, method for manufacturing laminate, method for manufacturing package, and laminate
JP3293297B2 (en) Polyester film for metal plate lamination
JP3139505B2 (en) Film for metal lamination
JP4069717B2 (en) Laminated film
JP4102584B2 (en) Laminated body and packaging bag using the same
JPH0281630A (en) Polyester composite film
KR0145484B1 (en) Polymer film and its manufacturing method
JPS59232857A (en) Gas barriering polyester film
JPH02301435A (en) Moistureproof and deodorant polypropylene laminate
JP3794648B2 (en) Polyester film for metal laminate, and laminated metal plate and metal container using the same
JPH0261391B2 (en)
JP3218849B2 (en) Polyester composite film for metal lamination, laminated metal plate and metal container
JP3256093B2 (en) Resin-coated metal sheet with excellent retort resistance and heat resistance