JPH03265794A - Vapor liquid two-phase flow dividing pipe - Google Patents
Vapor liquid two-phase flow dividing pipeInfo
- Publication number
- JPH03265794A JPH03265794A JP2063801A JP6380190A JPH03265794A JP H03265794 A JPH03265794 A JP H03265794A JP 2063801 A JP2063801 A JP 2063801A JP 6380190 A JP6380190 A JP 6380190A JP H03265794 A JPH03265794 A JP H03265794A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- liquid
- branch
- steam
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 61
- 230000005514 two-phase flow Effects 0.000 title claims abstract description 38
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 35
- 239000003638 chemical reducing agent Substances 0.000 abstract description 11
- 238000005260 corrosion Methods 0.000 abstract description 4
- 230000007797 corrosion Effects 0.000 abstract description 4
- 230000003628 erosive effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 241000283986 Lepus Species 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Branch Pipes, Bends, And The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、化学プラント、原子力発電プラント等に用い
る気液二相流輸送配管の分岐管に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a branch pipe of a gas-liquid two-phase flow transport pipe used in chemical plants, nuclear power plants, etc.
(従来の技術)
従来の気液二相流分岐管の原子力発電プラントへの適用
例について説明する。例えば、沸騰水型原子炉発電プラ
ントは、第5図に示すような系統になっている。まず、
原子炉101で発生した主蒸気は、約68 kg/ c
Tlabsの飽和蒸気であって、主蒸気管102を経て
高圧タービン103の人口に流入する。この高圧タービ
ン103で仕事をした蒸気は、定格運転時で約12%〜
13%の湿った蒸気となって、その出口からクロスアラ
ウンド管104に流入する。そのため、このクロスアラ
ウンド管104内の流体の流れは気液二相流となってい
て、管の壁面を液膜が流れ、また、管内を液滴が流れる
いわゆる“環状噴霧流”となっている。そこで、これら
の湿分を蒸気から除去するためにクロスアラウンド管1
04に湿分分離器105が接続されていて、クロスアラ
ウンド管104を経て湿分分離器105内に流入した気
液二相流は、液と蒸気とに分離される。ここで、分離さ
れた蒸気は、低圧タービン107a107bの人口に導
入されるとともに、液はM/Sドレン管106を経て高
圧ヒータ113に流入されてそこで熱回収を行うように
なっている。(Prior Art) An example of application of a conventional gas-liquid two-phase flow branch pipe to a nuclear power plant will be described. For example, a boiling water reactor power plant has a system as shown in FIG. first,
The main steam generated in reactor 101 is approximately 68 kg/c
The saturated steam of the Tlabs flows into the high pressure turbine 103 via the main steam pipe 102 . The steam that has done work in this high-pressure turbine 103 is approximately 12% or more during rated operation.
The steam becomes 13% wet and flows into the cross-around pipe 104 from its outlet. Therefore, the flow of fluid inside this cross-around pipe 104 is a gas-liquid two-phase flow, with a liquid film flowing on the wall surface of the pipe and a so-called "annular spray flow" in which droplets flow inside the pipe. . Therefore, in order to remove this moisture from the steam, a cross-around pipe 1 is installed.
A moisture separator 105 is connected to the moisture separator 105, and the gas-liquid two-phase flow that flows into the moisture separator 105 through the cross-around pipe 104 is separated into liquid and vapor. Here, the separated steam is introduced into the low-pressure turbine 107a107b, and the liquid flows into the high-pressure heater 113 via the M/S drain pipe 106, where heat is recovered.
一方、低圧タービン107a、107bで仕事をし発電
機108を駆動させた蒸気は、低圧タービン107a、
107bの出口から流出して復水器109に入って凝縮
して復水となる。この復水は、復水ポンプ110、低圧
ヒータ1lla。On the other hand, the steam that did work in the low pressure turbines 107a and 107b and drove the generator 108 is
It flows out from the outlet of 107b, enters the condenser 109, and condenses to become condensate. This condensate is supplied to a condensate pump 110 and a low pressure heater 1lla.
11 l b、 111 c、原子炉給水ポンプ11
2および高圧ヒータ113を経て原子炉101に戻る。11 l b, 111 c, reactor feed water pump 11
2 and the high pressure heater 113 before returning to the nuclear reactor 101.
また、蒸気は高圧タービン103および低圧タービン1
07a、107bから抽気管114a。In addition, the steam is supplied to the high pressure turbine 103 and the low pressure turbine 1.
07a, 107b to bleed pipe 114a.
114b、114c、114d、114eを介して抽気
され高圧ヒータ113a、113bおよび低圧ヒータ1
1.1.a、1llb、1llcにそれぞれ導入され、
復水および給水を加熱する。これらタービンからの抽気
蒸気は、湿り蒸気であって、抽気管114a、114b
、114c、114d。114b, 114c, 114d, 114e, high pressure heaters 113a, 113b and low pressure heater 1
1.1. a, 1llb, and 1llc, respectively,
Heating condensate and feed water. The steam extracted from these turbines is wet steam, and the steam extracted from the turbines 114a and 114b is
, 114c, 114d.
114e内の流体の流れは、湿り度4%〜40%の気液
二相流となっている。The fluid flow in 114e is a gas-liquid two-phase flow with a humidity of 4% to 40%.
さらに、原子力発電プラントでは、機器の配置構成上、
湿分分離器105に接続されるクロスアラウンド管10
4および各ヒータに入る抽気管114a、 114b
、 114c、 114d。Furthermore, in nuclear power plants, due to the arrangement of equipment,
Cross-around pipe 10 connected to moisture separator 105
4 and bleed pipes 114a, 114b entering each heater.
, 114c, 114d.
114eを分岐することがある。第6図は、気液二相流
分岐管の一例を示したものである。ここでは、高圧ター
ビン103から1台の湿分分離器105a、105bに
湿り蒸気を分配するためにクロスアラウンド管104を
Y分岐管116を用いて二叉に分岐するようになってい
る。そして、湿分を分離された蒸気は低圧タービン10
7a。114e may be branched. FIG. 6 shows an example of a gas-liquid two-phase flow branch pipe. Here, in order to distribute wet steam from the high pressure turbine 103 to one moisture separator 105a, 105b, the cross-around pipe 104 is branched into two using a Y branch pipe 116. The steam from which the moisture has been separated is then transferred to a low pressure turbine 10.
7a.
107bへ供給されるとともに、液はM/Sドレン管か
ら排出される。While being supplied to 107b, the liquid is discharged from the M/S drain pipe.
(発明が解決しようとする課題)
この従来のY分岐管116による気液二相流の分岐方法
は、蒸気のみの単相流を分配する方法と同じ方法を用い
ているので、各湿分分離器に同量の蒸気量が流入するよ
うに分岐後の損失を合わせた配管構成としている。しか
しながら、最近の気液二相流のT分岐管(T−Junc
tion)による蒸気−水の分配試験結果報告(M、T
、Rubel +et a!、”Phase Dist
r4bution during Steam−wat
er Flowin a l1orizontal T
−junction ”、 Int、J、Multjp
hase Flow、Vol、14.No、425−4
38.1.988)では、蒸気の分配比と水の分配比が
同等にならず、湿り度、分配比によって分岐後の蒸気・
水の分配比が変ることを示唆している。第4図(、a
)は、気液二相流分岐管の蒸気量と水量の分配比を測定
する試験装置の概略構成を示している。この試験装置は
、上流母管10、下流母管12およびこれらから直角方
向に分岐した枝管11からなるT継手構成となっている
。そして、この試験装置により測定した上流母管10を
流れる蒸気1WGI、水量WL1、また枝管11を流れ
る蒸気NWG8、水量WL8から分岐前の上流母管10
と分岐後の枝管11の蒸気量分配比(WO2/WGI
)と水量分配比(WL3 /WLI )の試験結果に基
づく関係を図示したのが第4図(、b)である。第4図
(b)では、横軸に水量分配比(WL3 /WLI )
が、また、縦軸に蒸気量分配比(WO2/WGI)が示
されている。ここで、WO2/WGI −WLl /W
LI−1の場合は、枝管11に全流量が流れた場合を表
わす。また、第4図(b)中45°の斜線は、蒸気量と
水量とが同じ比率で分れる場合を示す。(Problems to be Solved by the Invention) This conventional method of branching a gas-liquid two-phase flow using the Y branch pipe 116 uses the same method as the method of distributing a single-phase flow of only steam, so each moisture separation The piping is configured to account for losses after branching so that the same amount of steam flows into the vessel. However, recent T-junction pipes for gas-liquid two-phase flow
Steam-water distribution test result report (M, T
, Rubel +et a! , “Phase Dist.
r4bution during Steam-wat
er Flowin a l1orizontal T
-junction”, Int, J, Multjp
hase Flow, Vol. 14. No, 425-4
38.1.988), the steam distribution ratio and the water distribution ratio are not equal, and the steam and water distribution ratio after branching depends on the humidity and distribution ratio.
This suggests that the water distribution ratio changes. Figure 4 (,a
) shows the schematic configuration of a test device for measuring the distribution ratio between the amount of steam and the amount of water in a gas-liquid two-phase flow branch pipe. This test device has a T-joint configuration consisting of an upstream main pipe 10, a downstream main pipe 12, and a branch pipe 11 branched from these in a right angle direction. Then, based on the steam 1WGI and water amount WL1 flowing in the upstream main pipe 10 measured by this test device, and the steam NWG8 and water amount WL8 flowing in the branch pipe 11, the upstream main pipe 10 before branching is determined.
and the steam distribution ratio of branch pipe 11 after branching (WO2/WGI
) and the water volume distribution ratio (WL3/WLI) based on the test results are shown in FIG. 4(,b). In Figure 4(b), the horizontal axis represents the water distribution ratio (WL3/WLI).
However, the vapor distribution ratio (WO2/WGI) is also shown on the vertical axis. Here, WO2/WGI −WLl /W
The case of LI-1 represents the case where the full flow rate flows through the branch pipe 11. Moreover, the 45° diagonal line in FIG. 4(b) indicates the case where the amount of steam and the amount of water are divided at the same ratio.
この試験結果(第4図(b))は、蒸気の見掛けの平均
流速がG5−18. 2tn/sの場合である。ここで
、蒸気の湿り度が小さい場合(第4図(b)中に示す十
印のデータ(水(液滴)の見掛けの平均流速がLS=0
.00544m/s ))は、蒸気量と水量の分配比は
、45°の斜線にほぼ重なっており両者はほぼ同一比率
で分配される。しかし、湿り度が大きくなると(第4図
(b)中に示す◇印(LS −0,0198m/s )
と目印のデータ(LS−0,0342m/s ) )
、枝管11へ流れる蒸気量に対し水量が少なくなる。目
印のデータ(LS= 0. 0198m/s )では、
蒸気量分配比が0.5の場合、水量分配比が0.22と
なっていて、このことは、湿り度が大きくなると水量の
分配比にかなりの偏差が生じることを示している。The test results (Fig. 4(b)) show that the apparent average flow velocity of steam is G5-18. This is the case of 2tn/s. Here, if the wetness of the steam is small (data marked with a cross in Figure 4(b)), the apparent average flow velocity of water (droplets) is LS = 0.
.. 00544 m/s )), the distribution ratio of the amount of steam and the amount of water almost overlaps with the 45° diagonal line, and both are distributed at almost the same ratio. However, when the humidity increases (◇ mark shown in Figure 4 (b) (LS -0,0198 m/s)
and landmark data (LS-0,0342m/s))
, the amount of water flowing into the branch pipe 11 is smaller than the amount of steam flowing into the branch pipe 11. According to the landmark data (LS = 0.0198m/s),
When the steam distribution ratio is 0.5, the water distribution ratio is 0.22, which indicates that as the humidity increases, a considerable deviation occurs in the water distribution ratio.
このように、気液二相流の分岐管による分配は、蒸気単
相流の分配と異なり蒸気の分配量を同じにしても水分の
分配は必ずしも同一とならないことを示している。そし
て、これらの蒸気・水量分配比の差異は、とくに蒸気の
湿り度が大きい場合には、原子力発電プラントの各機器
の設計点以外の湿り度となりその性能上問題点を生じる
。また、水量の分配による片寄りは、湿分分離器では分
離ドレン量(水量)の片寄りとして現出し、ドレン系シ
ステムにアンバランスを生じるおそれがある。In this way, the distribution of a gas-liquid two-phase flow using a branch pipe shows that unlike the distribution of a single-phase steam flow, even if the amount of steam distributed is the same, the distribution of moisture is not necessarily the same. These differences in the steam/water distribution ratio, especially when the steam is highly humid, result in a moisture level other than the design point of each device in the nuclear power plant, causing problems in its performance. In addition, the uneven distribution of water amount manifests as unevenness in the amount of separated drain (water amount) in the moisture separator, which may cause an imbalance in the drain system.
さらに、気液二相流配管では、エロージョン、コロ−ジ
ョンによる配管内壁の減肉の問題が従来から発生してい
る。これは、管内の流速、湿り度、温度、水質、配管形
状等によって配管内壁の減肉の進行速度が具なり、とく
に蒸気の湿り度については、他の条件が同一の場合、湿
り度が大きくなるほど減肉率が大となるからである。こ
れらの問題点を回避するために、気液二相流の分岐管に
よる分配は、蒸気単相流の分配とは違って、蒸気の分配
比と液(水)の分配比とが等しくなるような構成にする
必要がある。Furthermore, in gas-liquid two-phase flow piping, problems of thinning of the inner wall of the piping due to erosion and corrosion have conventionally occurred. This is because the rate of thinning of the inner wall of the pipe depends on the flow velocity, humidity, temperature, water quality, pipe shape, etc. in the pipe, and especially with regard to the humidity of steam, if other conditions are the same, the humidity will be higher. This is because the rate of thinning becomes large. In order to avoid these problems, distribution of gas-liquid two-phase flow using branch pipes is different from distribution of single-phase steam flow, in which the distribution ratio of steam and liquid (water) are made equal. It is necessary to have a suitable configuration.
本発明は上記の点に鑑みてなされたもので、接続する機
器の配置構成上分岐管が丁字形に分岐していても蒸気量
と水量とがほぼ同等に分配できるように流体の流れ方を
考慮した気液二相流分岐管を提供することを目的として
いる。The present invention has been made in view of the above points, and even if the branch pipe is branched into a T-shape due to the arrangement of the connected equipment, the flow of the fluid is changed so that the amount of steam and the amount of water can be distributed almost equally. The purpose of this invention is to provide a gas-liquid two-phase flow branch pipe.
(課題を解決するための手段)
本発明は、上流側に配設された母管と、この母管に連結
された曲げ管と、曲げ管の下流側の背側に母管の管軸心
から曲げ管の曲率中心側に偏って連結された直管とから
なることを特徴とする気液二相流分岐管に関する。(Means for Solving the Problems) The present invention provides a main pipe disposed on the upstream side, a bent pipe connected to the main pipe, and a tube axis of the main pipe located on the back side of the downstream side of the bent pipe. The present invention relates to a gas-liquid two-phase flow branch pipe characterized by comprising a straight pipe connected to a bent pipe biased towards the center of curvature.
(作 用)
上記のように構成された気液二相流分岐管では、母管よ
り導入された気液二相流は曲げ管の領域を通過する際、
管内の液膜と液滴に遠心力が作用するとともに、主流の
流れ方向が直管の偏りにより少しずれその結果流れ抵抗
が大となる。そのため、従来のものに比べて直管側へ液
膜と液滴が流れ易くなり、蒸気量と水量とがほぼ同等に
それぞれの分岐管へ分配される。(Function) In the gas-liquid two-phase flow branch pipe configured as described above, when the gas-liquid two-phase flow introduced from the main pipe passes through the region of the bent pipe,
Centrifugal force acts on the liquid film and droplets inside the pipe, and the flow direction of the mainstream is slightly shifted due to the deviation of the straight pipe, resulting in a large flow resistance. Therefore, the liquid film and droplets flow more easily to the straight pipe side than in the conventional case, and the amount of steam and water are distributed almost equally to each branch pipe.
(実施例)
以下本発明の気液二相流分岐管の一実施例を第1図につ
いて説明する。(Example) An example of the gas-liquid two-phase flow branch pipe of the present invention will be described below with reference to FIG.
第1図に示すように、気液二相流を2つの機器に分配す
る気液二相流分岐管は、母管1とこの母管1に連結した
屈曲状の同径の曲げ管2aとこの曲げ管2aに連結され
縮径部を形成するレデューサ4とこのレデューサ4から
延出した縮径された直管3aからなり、この直管3aは
、湿分分離器等の並設された機器5a、5bに接続され
ている。As shown in Fig. 1, the gas-liquid two-phase flow branch pipe that distributes the gas-liquid two-phase flow to two devices consists of a main pipe 1, a bent pipe 2a connected to the main pipe 1, and a bent pipe 2a of the same diameter. It consists of a reducer 4 connected to this bent pipe 2a to form a reduced diameter section, and a straight pipe 3a with a reduced diameter extending from this reducer 4, and this straight pipe 3a is used to connect equipment such as a moisture separator etc. 5a and 5b.
これら曲げ管2 a %レデューサ4および直管3aが
枝管部(分岐管)を構成している。さらに、曲げ管2a
の外側屈曲部(背側)に別の直管3bをその管軸心が母
管1の管軸心から屈曲部の中心よりにずれるように配設
するとともに曲げ管2bと直管3Cを接続して別の分岐
管を構成する。そして、この分岐管は機器5bに接続さ
れる。また、曲げ管2aの内部には気液二相流の流れを
機器5aを案内するガイドベーン6を配設する。These bent pipe 2 a % reducer 4 and straight pipe 3 a constitute a branch pipe section (branch pipe). Furthermore, the bent pipe 2a
Another straight pipe 3b is arranged at the outer bent part (dorsal side) of the main pipe 1 so that its axis is shifted from the center of the bent part from the pipe axis of the main pipe 1, and the bent pipe 2b and the straight pipe 3C are connected. to configure another branch pipe. This branch pipe is then connected to the device 5b. Further, a guide vane 6 for guiding the flow of the gas-liquid two-phase flow to the device 5a is arranged inside the bent pipe 2a.
このようにして構成された気液二相流分岐管において、
流体の流れは第3図に示すようになる。In the gas-liquid two-phase flow branch pipe configured in this way,
The fluid flow is as shown in FIG.
気液二相流(環状噴霧流)の分岐管内の流れを図示した
のが第3図であって、第3図(a)に示すように従来の
気液二相流分岐管では、流れが上流母管10から直進す
る下流母管12内の流れに対して分岐した枝管11内で
は液膜20と液滴21が流れにくい状態となっている。Figure 3 shows the flow of the gas-liquid two-phase flow (annular spray flow) in the branch pipe, and as shown in Figure 3(a), in the conventional gas-liquid two-phase flow branch pipe, the flow is The liquid film 20 and droplets 21 are in a state where it is difficult for the liquid film 20 and droplets 21 to flow in the branch pipe 11, which branches off from the flow in the downstream main pipe 12 that advances straight from the upstream main pipe 10.
これに対して本発明の気液二相流分岐管では、第3図(
b)に示すように、枝管部に曲げ管2aを用いているの
で、この曲げN2aの領域を流れが通過する際、管内の
液膜20と液滴21に遠心力が作用し、曲げ管2aの外
周部、とくに直管3bに分岐する手前の曲り部とレデュ
ーサ4の手前の溜り部に液膜が余分に形成される。一方
、曲げ管2の内周部には薄い液膜20が形成される。さ
らに、母管1の流れ方向が直管3bが母管1の管軸心か
ら屈曲部の中心によりずれているため少しずれ流れ抵抗
が大となる。ほか枝管3b側の圧力損失が少なくなり、
かつ流量バランスが等しくなる。そのため、分岐した枝
管3a側へ液膜20と液滴が流れ易くなり、蒸気量と水
量とをほぼ同等に、それぞれ分岐管へ分配できるように
なる。とくに、本発明の明の分岐管では、蒸気分配に関
して分岐管から機器5a。On the other hand, in the gas-liquid two-phase flow branch pipe of the present invention, as shown in Fig. 3 (
As shown in b), since the bent pipe 2a is used in the branch pipe section, when the flow passes through the area of this bend N2a, centrifugal force acts on the liquid film 20 and droplets 21 in the pipe, causing the bent pipe to An excess liquid film is formed on the outer circumferential portion of tube 2a, particularly at the bent portion before branching into straight pipe 3b and at the reservoir portion in front of reducer 4. On the other hand, a thin liquid film 20 is formed on the inner circumference of the bent pipe 2. Furthermore, since the flow direction of the main pipe 1 is slightly shifted from the center of the bending part of the straight pipe 3b from the pipe axis of the main pipe 1, the flow resistance becomes large. In addition, the pressure loss on the branch pipe 3b side is reduced,
And the flow balance becomes equal. Therefore, the liquid film 20 and droplets easily flow toward the branched pipe 3a, and the amount of steam and water can be distributed to the branch pipes in substantially equal amounts. In particular, in the light branch pipe of the present invention, equipment 5a is removed from the branch pipe for steam distribution.
5bまでの圧力損失がそれぞれ等しくなるように直管3
a、3b、3C%曲げ管2a。straight pipe 3 so that the pressure loss up to 5b is equal.
a, 3b, 3C% bent pipe 2a.
2bおよびレデューサ4の口径、長さを設定しであるた
め蒸気量と水量がほぼ同等に分配される。Since the apertures and lengths of the reducer 2b and the reducer 4 are set, the amount of steam and the amount of water are distributed almost equally.
また、液体(水)の分配に関しては、第3図(b)に示
すように母管1内の液膜20と液滴21は、母管1に連
結した曲げ管2aとガイドベーン6により枝管3aに流
れを変えられるため枝管3a側に向う蒸気の流れに同伴
し易くなり、液体(水)の分配も蒸気とほぼ同程度にな
されることになる。Regarding the distribution of liquid (water), as shown in FIG. Since the flow can be changed to the pipe 3a, it becomes easier to accompany the flow of steam toward the branch pipe 3a, and the liquid (water) is distributed to the same extent as the steam.
本実施例の気液二相流分岐管では、主流(ここでは流れ
が上流側と同じ方向の流れをいう)と支流(ここでは主
流に対して偏向する流れをいう)を曲げ管2a、2bを
用いて直管側が主流となるようにして直進する流れを曲
げ管から枝管として取り出すようにしである。そのため
液体(水)が枝管側に流れ易くなるとともに、分岐管に
より各機器に蒸気・液体ともに均等に分配することが可
能となり、各機器に対する設計上の湿り度が確保され、
結局、各機器の性能が確保される。また、液体が分岐管
に均等に分配されるためドレン系システムのバランスが
健全に保たれる。さらに、分配後の各分岐管内の湿り度
が均一化されるので、エロージョン、コロ−ジョンによ
る配管内壁の減肉が極力防止される。In the gas-liquid two-phase flow branch pipe of this embodiment, the main stream (here, the flow is in the same direction as the upstream side) and the tributary stream (here, the flow is deflected with respect to the main stream) are bent into pipes 2a and 2b. This is done so that the straight pipe side becomes the main flow, and the straight flow is taken out from the bent pipe as a branch pipe. This makes it easier for liquid (water) to flow to the branch pipes, and the branch pipes make it possible to evenly distribute both steam and liquid to each device, ensuring the designed humidity level for each device.
In the end, the performance of each device is ensured. Additionally, the liquid is evenly distributed to the branch pipes, keeping the drain system well balanced. Furthermore, since the moisture level within each branch pipe after distribution is made uniform, thinning of the inner wall of the pipe due to erosion and corrosion is prevented as much as possible.
また、気液二相流を3つの機器に分配する本発明の気液
二相流分岐管の実施例を第2図について説明する。この
実施例の分岐管では、母管1に第1機器7(例えば湿分
分離器)に分岐する屈曲状の第1曲げ管2aを連結し、
レデューサ4aにより縮径して第1枝管3aに連結し、
第1機器7に接続する。そして、曲げ管2aの外側屈曲
部(背側)に直管3bをその管軸心が母管1の管軸心か
ら屈曲部の中心よりにずれるように配設するとともに曲
げ管2bとレデューサ4bを介して枝管3cを接続し、
この先端に第1機器7に並設された第2機器8を配設す
る。さらに、この実施例で1
は、前述したのと同様に曲げ管2bの背側に別の直管3
dを配設し、曲げ管2Cと枝管3eを介して第2機器8
に並設された第3機器9に接続する。Further, an embodiment of the gas-liquid two-phase flow branch pipe of the present invention for distributing the gas-liquid two-phase flow to three devices will be described with reference to FIG. In the branch pipe of this embodiment, a bent first bent pipe 2a that branches to a first device 7 (for example, a moisture separator) is connected to the main pipe 1,
The diameter is reduced by a reducer 4a and connected to the first branch pipe 3a,
Connect to the first device 7. Then, a straight pipe 3b is arranged at the outer bent part (back side) of the bent pipe 2a so that its pipe axis is shifted from the pipe axis of the main pipe 1 from the center of the bent part, and the bent pipe 2b and the reducer 4b Connect the branch pipe 3c via
A second device 8, which is arranged in parallel with the first device 7, is disposed at this tip. Furthermore, in this embodiment, 1 is provided with another straight pipe 3 on the back side of the bent pipe 2b as described above.
d, and the second device 8 is connected via the bent pipe 2C and the branch pipe 3e.
The third device 9 is connected to the third device 9 installed in parallel.
なお、曲げ管2a、2b内に先の実施例と同様にガイド
ベーンを配設してもよい。このようにして構成された分
岐管では気液二相流は、先の実施例と同じように均等に
分配される。本実施例の気液二相流分岐管では、主流に
対して各機器に流れる支流の圧力損失が少なくなり、し
かも、液体が支流に流れ易くなる。そのため、各機器に
気液を均等に分配することが可能となる。さらに、分岐
管を一方向に連続して複数本並設(本実施例では3本)
できるので、配管の設置スペースの節約が可能となり全
体として原子力発電プラント等のコンパクト化が可能と
なる。Note that guide vanes may be provided within the bent pipes 2a and 2b as in the previous embodiment. In the branch pipe constructed in this way, the gas-liquid two-phase flow is evenly distributed as in the previous embodiment. In the gas-liquid two-phase flow branch pipe of this embodiment, the pressure loss in the tributaries flowing to each device with respect to the main stream is reduced, and the liquid can more easily flow into the tributaries. Therefore, it becomes possible to evenly distribute gas and liquid to each device. Furthermore, multiple branch pipes are installed in parallel in one direction (three in this example).
This makes it possible to save space for installing piping, making it possible to downsize nuclear power plants and the like as a whole.
本発明によれば、気液二相流を各機器に分配する分岐管
を母管から曲げ管を用いて枝管を延出させこの曲げ管の
背側から主流を直管で取り出すようにしているため、枝
管側の圧力損失が低減され2
るとともに液が枝管に流れ易くなる。このため、蒸気量
と水量を各機器に均一に分配でき、しかも、各機器の設
計上の湿り度が十分確保される。その結果、各機器の性
能が保証され、かつ、水量の各分岐管間における片寄り
による湿り度の増加に伴うエロージョン、コロ−ジョン
に起因する配管内壁の減肉の防止が可能となる等顕著な
効果を奏する。According to the present invention, the branch pipe for distributing the gas-liquid two-phase flow to each device is extended from the main pipe using a bent pipe, and the main flow is taken out from the back side of the bent pipe using a straight pipe. As a result, pressure loss on the branch pipe side is reduced and liquid flows more easily into the branch pipe. Therefore, the amount of steam and water can be uniformly distributed to each device, and the designed humidity of each device can be ensured sufficiently. As a result, the performance of each device is guaranteed, and it is also possible to prevent thinning of the inner walls of the pipes due to erosion and corrosion caused by increased humidity due to uneven water flow between branch pipes. It has a great effect.
第1図は本発明の気液二相流分岐管の一実施例の概略図
、第2図は本発明の他の実施例の概略図、第3図は本発
明の気液二相流分岐管の機能を従来のものと比較して示
すための分岐管内のその水車軸線で切断した気液二相流
の流れ状態を示す説明図、第4図は従来の気液二相流分
岐管の蒸気量と水量の分配比を測定する試験装置の概略
図と測定された分岐後の枝管の蒸気量分配比(WG3
/WGl)と水量分配比(WL3 /WLI>の関係を
示すグラフ、第5図は原子力発電プラントの概略系統図
、第6図は原子力発電プラントの気液二相流分岐管の使
用例を示す概略図である。
]・・・母管、2・・・曲げ管、3a・・・枝管、3b
・・・直管、4・・・レデューサ、5. 7. 8.
9・・・機器、6・・・ガイドベーン、101・・・原
子炉、103・・・高圧タービン、104・・・クロス
アランド管、105・・・湿分分離器、]07・・・低
圧タービン、108・・・発電機、109・・・復水器
、114・・・抽気管。FIG. 1 is a schematic diagram of an embodiment of the gas-liquid two-phase flow branch pipe of the present invention, FIG. 2 is a schematic diagram of another embodiment of the present invention, and FIG. 3 is a schematic diagram of an embodiment of the gas-liquid two-phase flow branch pipe of the present invention. An explanatory diagram showing the flow state of a gas-liquid two-phase flow cut along the turbine axis in a branch pipe in order to compare the function of the pipe with a conventional one. Schematic diagram of the test device for measuring the distribution ratio of steam and water and the measured steam distribution ratio of branch pipes after branching (WG3
/WGl) and the water distribution ratio (WL3 /WLI>), Figure 5 is a schematic diagram of a nuclear power plant, and Figure 6 is an example of the use of a gas-liquid two-phase flow branch pipe in a nuclear power plant. It is a schematic diagram.]... Main pipe, 2... Bent pipe, 3a... Branch pipe, 3b
... Straight pipe, 4... Reducer, 5. 7. 8.
9... Equipment, 6... Guide vane, 101... Nuclear reactor, 103... High pressure turbine, 104... Cross-land pipe, 105... Moisture separator,] 07... Low pressure Turbine, 108... Generator, 109... Condenser, 114... Air extraction pipe.
Claims (1)
と、該曲げ管の下流側の背側に前記母管の管軸心から前
記曲げ管の曲率中心側に偏って連結された直管とからな
ることを特徴とする気液二相流分岐管。A main pipe disposed on the upstream side, a bent pipe connected to the main pipe, and a bent pipe connected to the main pipe, and on the back side of the downstream side of the bent pipe, the pipe axis of the main pipe is biased toward the center of curvature of the bent pipe. A gas-liquid two-phase flow branch pipe characterized in that it consists of a connected straight pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2063801A JPH03265794A (en) | 1990-03-14 | 1990-03-14 | Vapor liquid two-phase flow dividing pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2063801A JPH03265794A (en) | 1990-03-14 | 1990-03-14 | Vapor liquid two-phase flow dividing pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03265794A true JPH03265794A (en) | 1991-11-26 |
Family
ID=13239840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2063801A Pending JPH03265794A (en) | 1990-03-14 | 1990-03-14 | Vapor liquid two-phase flow dividing pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03265794A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012203572A1 (en) | 2011-05-17 | 2012-11-22 | Mitsubishi Electric Corporation | Control device for controlling fuel supply in internal combustion engine of vehicle, has catalyzer-deterioration diagnostic-inhibition part inhibiting diagnose parameter obtained by diagnostic unit based on temperature of transducer |
JP2016113840A (en) * | 2014-12-16 | 2016-06-23 | 三菱重工業株式会社 | Water intake facility of plant |
-
1990
- 1990-03-14 JP JP2063801A patent/JPH03265794A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012203572A1 (en) | 2011-05-17 | 2012-11-22 | Mitsubishi Electric Corporation | Control device for controlling fuel supply in internal combustion engine of vehicle, has catalyzer-deterioration diagnostic-inhibition part inhibiting diagnose parameter obtained by diagnostic unit based on temperature of transducer |
JP2016113840A (en) * | 2014-12-16 | 2016-06-23 | 三菱重工業株式会社 | Water intake facility of plant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2425280C2 (en) | Water separator for steam turbine plants | |
JP7489770B2 (en) | A device for measuring fluid flow through pipes in semiconductor manufacturing equipment | |
JPH11101403A (en) | Heating system of feed water of power plant | |
JPH03265794A (en) | Vapor liquid two-phase flow dividing pipe | |
JPS6119347Y2 (en) | ||
JP2008513191A (en) | Partially loadable falling membrane evaporator and method for partial load operation | |
JP3188271B2 (en) | Water / steam separator | |
US1145222A (en) | Means for increasing the velocity of fluids for metering purposes. | |
JP2019019937A (en) | Silencer | |
JP2953812B2 (en) | Bleed tube | |
US5710717A (en) | Method for predicting and adjusting the distribution of two-phase fluids flowing through a piping network | |
RU2661578C1 (en) | Universal thermo-hydraulic distributor | |
CN104595721B (en) | High pressure separate type temperature reducing system | |
JPH02218802A (en) | Steam turbine | |
JPH06331100A (en) | Vent piping structure | |
JP2734491B2 (en) | Two-phase enthalpy measuring device | |
JP2740053B2 (en) | Outlet piping for reactor pressure vessel | |
JP2618980B2 (en) | Moisture separation device | |
CN208810404U (en) | A kind of Coating Pretreatment exhaust system with drainage system | |
JP2007064501A (en) | Steaming method for boiler plant, boiler plant, and steaming device for boiler plant | |
JP3345509B2 (en) | Drain discharge device | |
JP2003336804A (en) | Steam drum | |
JPH0139835B2 (en) | ||
JPS55125301A (en) | Steam turbine | |
JP2002333102A (en) | Steam generator |