JPH03264547A - Production of long chain acyl derivatives of tartaric acid - Google Patents

Production of long chain acyl derivatives of tartaric acid

Info

Publication number
JPH03264547A
JPH03264547A JP2061852A JP6185290A JPH03264547A JP H03264547 A JPH03264547 A JP H03264547A JP 2061852 A JP2061852 A JP 2061852A JP 6185290 A JP6185290 A JP 6185290A JP H03264547 A JPH03264547 A JP H03264547A
Authority
JP
Japan
Prior art keywords
long chain
tartaric acid
dibenzyl
long
chain acyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2061852A
Other languages
Japanese (ja)
Other versions
JPH0768164B2 (en
Inventor
Hiroyuki Namikawa
博之 南川
Fusae Nakanishi
中西 房枝
Masakatsu Hado
正勝 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2061852A priority Critical patent/JPH0768164B2/en
Publication of JPH03264547A publication Critical patent/JPH03264547A/en
Publication of JPH0768164B2 publication Critical patent/JPH0768164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To produce the subject long chain acyl derivatives of tartaric acid of high purity useful as a surfactant, etc., and capable of ready separation in a high yield by passing through a long chain acyl derivative of dibenzyl tartarate as an intermediate of synthesis. CONSTITUTION:A long chain acyl derivative of dibenzyl tartarate [e.g. dibenzyl (2R, 3R)-ditetradecanoyl tartarate] represented by formula I (R is 7-17C long chain alkyl) is synthesized as a synthetic intermediate and then subjected to hydrogenation decomposition to obtain the objective long chain alkyl derivative of tartaric acid [e.g. (2R,3R)-ditetradecanoyl tartaric acid] expressed by formula II. The above-mentioned synthetic intermediate of formula I is obtained by reacting dibenzyl tartarate with a long chain carboxylic acid chloride in the presence of pyridine and 4-dimethylaminopyridine. The finally synthesized compound is a surfactant having hydrophilic groups in combination with hydrophobic groups in one molecule.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、同一分子内に親水基と親油基をあわせもつ界
面活性剤であり、また、気水界面−Lではカルボキシル
基を水面に向りて単分子膜を形成し、さらに、結晶中に
種々の有機溶媒を包接できるという特徴を有している酒
石酸長鎖アシル誘導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a surfactant that has both a hydrophilic group and a lipophilic group in the same molecule. The present invention relates to a method for producing a long-chain acyl tartaric acid derivative, which is characterized in that it forms a monomolecular film and can include various organic solvents in the crystal.

この発明の産業上の利用分野としては、食品、化粧品、
染料などの乳化剤、安定剤、分散剤、湿潤剤として、ま
た、縮合系高分子材料、有機薄膜材料、半導体関連の有
機基板材料としてさらには、染料、香料等の包接材料と
して好適と考えられ、その工業的利用範囲は多岐にわた
っている。
Industrial applications of this invention include foods, cosmetics,
It is considered suitable as an emulsifier, stabilizer, dispersant, wetting agent for dyes, etc., as a condensation polymer material, organic thin film material, semiconductor-related organic substrate material, and as an inclusion material for dyes, fragrances, etc. , its industrial applications are wide-ranging.

(式中のRは、7〜17の長鎖アルキル基従来の技術 従来の技術としては、酒石酸に長鎖カルボン酸塩化物を
作用させることにより、 一般式 (式中のRは、7〜17の長鎖アルギル基である) で表される酒石酸長鎖アシル誘導体を製造できることが
知られている(米国特許 第2,025゜984号特許
明細誉;ブリチイン オブ ザ ケミカル ソサエティ
 オブ ジャパン (13ul+、Chem、Soc、
’J pn、)第51巻、1877頁)。しかしながら
、この製造方法は、長鎖カルボン酸が副生じて目的物に
混入(約4 m 。
(R in the formula is a long chain alkyl group of 7 to 17 It is known that it is possible to produce a long-chain acyl tartaric acid derivative represented by ,Soc,
'J pn, ) Vol. 51, p. 1877). However, in this production method, a long-chain carboxylic acid is produced as a by-product and mixed into the target product (approximately 4 m2).

1%)するため、元素分析の実測値が計算値と大きく異
なることとなり、しかも、目的物とこの長鎖カルボン酸
の結晶性、反応性などがよく似ているため、分離精製が
再結晶、再沈澱、カラムクロマトグラフィー、分取高速
液体り[1マドグラフイー等を用いても非常に困難であ
るという欠点を有している。そのため、従来、酒石酸長
鎖アシル誘導体を高純度かつ高収率で得ることは困難と
されていた。
1%), the actual values of elemental analysis differ greatly from the calculated values.Moreover, since the crystallinity and reactivity of the target substance and this long-chain carboxylic acid are very similar, separation and purification may require recrystallization, It has the disadvantage that it is extremely difficult to use even if reprecipitation, column chromatography, preparative high-performance liquid chromatography [1], etc. are used. Therefore, it has conventionally been difficult to obtain long-chain acyl tartaric acid derivatives with high purity and high yield.

発明が解決しようとする課題 本発明者は、分離精製が容易で酒石酸長鎖アシル誘導体
を高純度かつ高収率で与える製造方法を開発するため鋭
意研究を重ねた結果、酒石酸ジベンジルエステル長鎖ア
シル誘導体を合成中間体として経由することを特徴とす
る酒石酸長鎖アシル誘導体の製造方法がその目的に適合
しうろことを見い出し、この知見に基づいてこの発明を
なすに至った。
Problems to be Solved by the Invention The present inventor has conducted intensive research to develop a manufacturing method that is easy to separate and purify and provides long-chain tartaric acid acyl derivatives with high purity and high yield. The inventors have discovered that a method for producing long-chain acyl tartaric acid derivatives, which is characterized by using an acyl derivative as a synthetic intermediate, is suitable for the purpose, and based on this knowledge, the present invention has been accomplished.

課題を解決するための手段 すなわち、本発明は、一般式 (式中のRは、7〜17の長鎖アルギル基である) で表わされる酒石酸長鎖アルキル誘導体の製造方法を提
供するものである。一般式(II)におけるRは炭素数
7〜10の長鎖アルキル基であり、このようなものとし
てヘプチル基、ノニル基、ウンデシル基、トリデシル基
、ペンタデシル基、ヘプタデシル基などがある。
Means for Solving the Problems, That is, the present invention provides a method for producing a long-chain alkyl tartrate derivative represented by the general formula (R in the formula is a long-chain argyl group of 7 to 17). . R in the general formula (II) is a long-chain alkyl group having 7 to 10 carbon atoms, such as a heptyl group, a nonyl group, an undecyl group, a tridecyl group, a pentadecyl group, a heptadecyl group, and the like.

この一般式(11)で表わされる化合物は、一般式 %式% () (式中のRは、炭素数7〜17の長鎖アルキル基である
) で表される酒石酸ジベンジルエステル長鎖アシル誘導体
を合成中間体として経由することにより、高純度でかつ
高収率で製造することができる。
The compound represented by this general formula (11) is a long-chain acyl tartrate dibenzyl ester represented by the general formula % (R in the formula is a long-chain alkyl group having 7 to 17 carbon atoms). By using a derivative as a synthetic intermediate, it can be produced with high purity and high yield.

この際の合成中間体として用いられる前記一般式(1)
の酒石酸ジベンジルエステル長鎖アシル誘導体は、酒石
酸ジベンジルエステルにピリジンと4−ジメチルアミノ
ピリジン存在下、長鎖カルボン酸塩化物を作用させるこ
とにより得られる。
The general formula (1) used as a synthetic intermediate in this case
The long-chain acyl tartrate dibenzyl ester derivative can be obtained by reacting tartrate dibenzyl ester with a long-chain carboxylic acid chloride in the presence of pyridine and 4-dimethylaminopyridine.

この化合物は、アルコールから再結晶することにより、
高純度の針状結晶として精製することができる。この化
合物の精製の段階で、副生ずる長鎖カルボン酸エステル
を完全に除くことができるので、以後の操作では長鎖カ
ルボン酸および相当するエステルが混入することがなく
なり、その結果、最終目的物である前記一般式(I)の
酒石酸長鎖アシル誘導体を高純度で得ることができる。
By recrystallizing this compound from alcohol,
It can be purified as highly pure needle-like crystals. During the purification of this compound, long-chain carboxylic acid esters that are produced as by-products can be completely removed, so that long-chain carboxylic acids and corresponding esters will not be contaminated in subsequent operations, and as a result, the final target product will not be contaminated with long-chain carboxylic acids and corresponding esters. A certain long-chain acyl tartrate derivative of general formula (I) can be obtained with high purity.

前記一般式(11)で表される酒石酸長鎖アシル誘導体
は、一般式(I)の化合物を水素化分解することにより
、純度高くしかも高収率で得られる。
The long-chain acyl tartaric acid derivative represented by the general formula (11) can be obtained with high purity and high yield by hydrogenolyzing the compound of the general formula (I).

一般式(1)の化合物の水素化分解は、この化合物を有
機溶媒中に溶解させ十分かくはんしながら、これに、触
媒量のパラジウム/活性炭を添加し、続いて、水素雰囲
気下、室温でかくはんする。その後、濾過して触媒を除
いたのち、溶媒を留去することによって、目的物を単一
生成物として得ることができる。
Hydrogenolysis of the compound of general formula (1) is carried out by dissolving this compound in an organic solvent and stirring thoroughly, adding a catalytic amount of palladium/activated carbon to this, and then stirring at room temperature under a hydrogen atmosphere. do. Thereafter, the target product can be obtained as a single product by filtering to remove the catalyst and then distilling off the solvent.

反応溶媒としては、溶解性から、エタノール、塩化メチ
レン、クロロホルム、ベンゼン、酢酸エチルなどが用い
られる。このなかでも、原料と生成物の両方を良好に溶
解するエタノール/ベンゼン(7/3、容積比)混合溶
媒が望ましい。反応時間は、5時間で十分である。水素
圧は常圧以上が適当である。
Ethanol, methylene chloride, chloroform, benzene, ethyl acetate, etc. are used as the reaction solvent in view of solubility. Among these, a mixed solvent of ethanol/benzene (7/3, volume ratio) is desirable because it dissolves both the raw material and the product well. A reaction time of 5 hours is sufficient. The appropriate hydrogen pressure is normal pressure or higher.

このようにして得られる反応混合物から目的化合物を精
製単離するためには、反応混合物にクロロホルム、ベン
ゼンなどの有機溶媒を加え、濾過により触媒を除いた後
、溶媒を減圧除去することにより、一般式(11)の化
合物を単一生成物として高収率で得ることができる。高
純度試料を得るためには、ざらに、ナトリウムで充分乾
燥したヘキサンから再結晶することが望ましい。
In order to purify and isolate the target compound from the reaction mixture obtained in this way, an organic solvent such as chloroform or benzene is added to the reaction mixture, the catalyst is removed by filtration, and the solvent is removed under reduced pressure. The compound of formula (11) can be obtained as a single product in high yield. In order to obtain a high-purity sample, it is desirable to recrystallize from hexane that has been thoroughly dried with sodium.

本発明の製造法で得た一般式(11)の化合物は、赤外
線吸収スペクトルでは、1723〜1728cm−’に
カルボキシル基、1745〜1750cm −’にエス
テル基に由来する特性吸収を示し、IH−NMRにおい
ては、δ値が0.9ppm、1゜2−1. 4ppm、
   1. 6−1.  ”ippm、  2゜4−2
.5ppm、5.8ppmの位置にそれぞれ、長鎖アル
キル基のメチル基の水素原子に、メチレン基の水素原子
に、酒石酸部位のメチン基の水素原子に帰属されるシグ
ナルが観測でき、これらによって生成物を同定すること
ができる。
The compound of general formula (11) obtained by the production method of the present invention shows characteristic absorption derived from a carboxyl group at 1723 to 1728 cm-' and an ester group at 1745 to 1750 cm-' in an infrared absorption spectrum, and in IH-NMR. , the δ value is 0.9 ppm, 1°2-1. 4ppm,
1. 6-1. ”ippm, 2゜4-2
.. Signals assigned to the hydrogen atom of the methyl group of the long-chain alkyl group, the hydrogen atom of the methylene group, and the hydrogen atom of the methine group of the tartaric acid moiety can be observed at positions 5 ppm and 5.8 ppm, respectively, and these indicate that the product can be identified.

発明の効果 本発明の製造方法により得られる一般式(11)の化合
物は、実測の元素分析値が誤差範囲で計算値と一致する
。また、この製造方法によって得られる化合物は、IH
−NMRスペクトル中に、長鎖カルボン酸に由来する2
、  3−2. 4.ppmが現れないことから、長鎖
カルボン酸を混入していないことがわかる。以上のこと
から、この製造方法が高純度の目的化合物を高収率で与
えることがわかる。
Effects of the Invention In the compound of general formula (11) obtained by the production method of the present invention, the actually measured elemental analysis value agrees with the calculated value within the error range. Moreover, the compound obtained by this production method is IH
-2 in the NMR spectrum derived from long-chain carboxylic acids.
, 3-2. 4. Since ppm does not appear, it can be seen that no long chain carboxylic acid is mixed. From the above, it can be seen that this production method provides a highly purified target compound in high yield.

次に、本発明を実施例によりざらに詳細に説明する。Next, the present invention will be roughly explained in detail using examples.

参考例 1 ジベンジル(2R,3R)−ジテトラデカノイル酒石酸
の製造 ジベンジル酒石酸8.4.g (0,026mo l)
とピリジン4.0ml (0,046mo 1.)をベ
ンゼン50m1に溶解させ、少量の4.−N、N−ジメ
チルアミノピリジンを加え、0°Cに冷却した後、かく
はんしながらテトラデカン酸塩化物12.5g (50
,6g)を滴下した。室温で一夜かくはんした後、反応
混合物を細かく砕いた氷に注いだ。この液に酢酸エチル
を加えて抽出した後、有機層を飽和食塩水で洗浄し無水
硫酸ナトリウムで乾燥した。ついで減圧下で溶媒を除去
し、これにトルエンを加えて減圧下でトルエンを留去し
、室温で放置すると固化した。これをエタノールから再
結晶することにより白色針状結晶として目的物10.5
1g(収率、54%)を得た。このものの物理的性質は
次の通りである。
Reference Example 1 Production of dibenzyl (2R,3R)-ditetradecanoyltartaric acid Dibenzyltartaric acid 8.4. g (0,026mol)
and 4.0 ml (0,046 mo 1.) of pyridine were dissolved in 50 ml of benzene, and a small amount of 4. -N,N-dimethylaminopyridine was added, and after cooling to 0°C, 12.5 g of tetradecanoic acid chloride (50
, 6 g) was added dropwise. After stirring overnight at room temperature, the reaction mixture was poured onto finely crushed ice. After extraction by adding ethyl acetate to this liquid, the organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. Then, the solvent was removed under reduced pressure, toluene was added thereto, the toluene was distilled off under reduced pressure, and the mixture solidified when left at room temperature. By recrystallizing this from ethanol, the desired product 10.5 was obtained as white needle-like crystals.
1 g (yield, 54%) was obtained. The physical properties of this material are as follows.

融点  646C 9 薄層クロマトグラフィーのRf値 (展開溶媒 クロロホルム)0.8 参考例1の(A)におけるテトラデカン酸塩化物の代わ
りに、各々該当する酸塩化物を用いて同様な操作によっ
て、次に示す化合物を得た。
Melting point: 646C 9 Rf value of thin layer chromatography (developing solvent: chloroform) 0.8 In place of the tetradecanoic acid chloride in (A) of Reference Example 1, the corresponding acid chloride was used to perform the following procedure in the same manner. The compound shown was obtained.

ジベンジル(2R,3R)−ジオクタノイル酒石酸  
(融点37.5−38.2°C)ジベンジル(2R,3
R)−ジベンジル酒石酸  (融点44.0−45.3
°C)ジベンジル(2R,3R)−シトデカノイル酒石
酸  (融点54.5−55.5’ C)ジベンジル(
2R,3R)−ジオクタデカノイル酒石酸  (融点7
5.5−76.5°C)ジベンジルm e s o−ジ
テトラデカノイル酒石酸      (融点43.0−
44.0°C)実施例1 (2R,3R)−ジテトラデカノイル酒石酸の製造 10 密閉性の容器内でジベンジル(2R,3R)−ジテトラ
デカノイル酒石M1.2g (0,oo16mol)を
エタノール/ベンセン(7/3、容積比)混合溶媒10
m1に溶解させ、これに5%パラジウム/活性炭を0.
15g加え、ついで2〜3秒間減圧したのち、水素を容
器内に導入した。
Dibenzyl (2R,3R)-dioctanoyltartaric acid
(melting point 37.5-38.2°C) dibenzyl (2R, 3
R)-dibenzyltartaric acid (melting point 44.0-45.3
°C) dibenzyl (2R,3R)-cytodecanoyltartaric acid (melting point 54.5-55.5'C) dibenzyl (
2R,3R)-dioctadecanoyltartaric acid (melting point 7
5.5-76.5°C) dibenzyl meso-ditetradecanoyltartaric acid (melting point 43.0-
44.0°C) Example 1 Production of (2R,3R)-ditetradecanoyl tartaric acid 10 Dibenzyl (2R,3R)-ditetradecanoyl tartaric acid M1.2 g (0,0016 mol) in a sealed container ethanol/benzene (7/3, volume ratio) mixed solvent 10
ml, and add 5% palladium/activated carbon to it.
After adding 15 g and then reducing the pressure for 2 to 3 seconds, hydrogen was introduced into the container.

室温で5時間かくはんし、クロロホルム10m1を加え
触媒を濾過で除去した。溶媒を減圧上留去し、更にベン
ゼン5mlを加えペンセンを減圧上留去した。得られた
白色粉末なヘキサンから再結晶することにより白色りん
片状結晶として目的化合物0.56g(収率、62%)
を得た。この化合物は’H−NMRスペクトルで δ(ppm)=0.9,1.20−1.25゜1、55
−1.65.2. /1o−2,50゜5.75 に吸収があった。このものの物理的性質は次の通りであ
る。
The mixture was stirred at room temperature for 5 hours, 10 ml of chloroform was added, and the catalyst was removed by filtration. The solvent was distilled off under reduced pressure, 5 ml of benzene was further added, and pentene was distilled off under reduced pressure. By recrystallizing from the obtained white powder hexane, 0.56 g of the target compound was obtained as white flaky crystals (yield, 62%).
I got it. The 'H-NMR spectrum of this compound shows that δ (ppm) = 0.9, 1.20-1.25°1, 55
-1.65.2. There was absorption at /1o-2,50°5.75. The physical properties of this material are as follows.

融点 81.4−81.8°C 元素分析値(C32■]5808として)11 CH 計算値(%)  67.34 10.24実測値(%)
 67.20 10.55このものの’H−NMRスペ
クトルを第1図に示す。
Melting point 81.4-81.8°C Elemental analysis value (as C32■]5808) 11 CH Calculated value (%) 67.34 10.24 Actual value (%)
67.20 10.55 The 'H-NMR spectrum of this product is shown in Figure 1.

実施例2 (2R,3R)−ジオクタノイル酒石酸の製造密閉性の
容器内でジベンジル(2R,3R)−ジオクタノイル酒
石酸1.OOg (0,0017mol)をエタノール
/ベンゼン(7/3、容積比)混合溶媒9mlに溶解さ
せ、これに5%パラジウム/活性炭を0.15g加え、
ついで2〜3秒間減圧したのち、水素を容器内に導入し
た。室温で5時間かくはんし、クロロホルム10m1を
加え触媒を濾過で除去した。溶媒を減圧上留去し、更に
ベンゼン5mlを加えベンゼンを減圧上留去することに
より油状の一水和物として目的化合物0.44g (収
率、60%)を得た。このものの12− 物理的性質は次の通りである。
Example 2 Preparation of (2R,3R)-dioctanoyltartaric acid Dibenzyl (2R,3R)-dioctanoyltartaric acid 1. OOg (0,0017 mol) was dissolved in 9 ml of ethanol/benzene (7/3, volume ratio) mixed solvent, and 0.15 g of 5% palladium/activated carbon was added thereto.
Then, after reducing the pressure for 2 to 3 seconds, hydrogen was introduced into the container. The mixture was stirred at room temperature for 5 hours, 10 ml of chloroform was added, and the catalyst was removed by filtration. The solvent was distilled off under reduced pressure, 5 ml of benzene was added, and the benzene was distilled off under reduced pressure to obtain 0.44 g (yield, 60%) of the target compound as an oily monohydrate. 12- The physical properties of this are as follows.

元素分析値(C2oI■3609として)c     
H 計算値(%)  67.12 8.29実測値(%) 
 56.98 8.29実施例3 (2R,3R)−ジデカノイル酒石酸の製造密閉性の容
器内でジベンジル(2R,3R)−ジデカノイル酒石酸
1.1 g (0,0016m。
Elemental analysis value (as C2oI■3609)c
H Calculated value (%) 67.12 8.29 Actual value (%)
56.98 8.29 Example 3 Preparation of (2R,3R)-didecanoyltartaric acid 1.1 g (0,0016 m.

1)をエタノール/ベンゼン(7/3、容積比)混合溶
媒10m1に溶解させ、これに5%パラジウム/活性炭
を0.15g加え、ついで2〜3秒間減圧したのち、水
素を容器内に導入した。室温で5時間かくはんし、クロ
ロホルム10m1を加え触媒を濾過で除去した。溶媒を
減圧上留去し、更にベンゼン5mlを加えベンゼンを減
圧上留去した。得られた白色粉末をヘキサンから再結晶
することにより白色りん片状結晶として目的化合物0.
47g(収率、60%)を得た。このものの物理的性質
は次の通りである。
1) was dissolved in 10 ml of ethanol/benzene (7/3, volume ratio) mixed solvent, 0.15 g of 5% palladium/activated carbon was added thereto, the pressure was reduced for 2 to 3 seconds, and hydrogen was introduced into the container. . The mixture was stirred at room temperature for 5 hours, 10 ml of chloroform was added, and the catalyst was removed by filtration. The solvent was distilled off under reduced pressure, and 5 ml of benzene was further added and benzene was distilled off under reduced pressure. The obtained white powder was recrystallized from hexane to obtain the desired compound as white flaky crystals.
47 g (yield, 60%) was obtained. The physical properties of this material are as follows.

融点   56.5−57.0°C 元素分析値(C2A H420eとして)CH 計算値(%)  62.86 9.23実測値(%) 
 62.66 9.25実施例4 (2R,3R)−シトデカノイル酒石酸の製造密閉性の
容器内でジベンジル(2R,3R)−シトデカノイル酒
石酸1.5g (0,0021mo1)をエタノール/
ベンゼン(7/3、容積比)混合溶媒10m1に溶解さ
せ、これに5%パラジウム/活性炭を0.15g加え、
ついで2〜3秒間減圧したのち、水素を容器内に導入し
た。室温で5時間かくはんし、クロロホルム10m1を
加え触媒を濾過で除去した。溶媒を減圧上留去し、更に
ベンゼン5mlを加えベンゼンを減圧上留去した。得ら
れた白色粉末なヘキサンから再結晶することにより白色
りん片状結晶として目的化合物13− 14− 0.74g(収率、65%)を得た。この化合物は’H
−NMRスペクトルで δ(r)I)m)=0.9,1.25−1.40゜1.
60−1.70,2.40−2.50゜5.75 に吸収があった。このものの物理的性質は次の通りであ
る。
Melting point 56.5-57.0°C Elemental analysis value (as C2A H420e) CH Calculated value (%) 62.86 9.23 Actual value (%)
62.66 9.25 Example 4 Production of (2R,3R)-cytodecanoyltartaric acid 1.5 g (0,0021 mo1) of dibenzyl (2R,3R)-cytodecanoyltartaric acid was mixed with ethanol/in a sealed container.
Dissolve in 10 ml of benzene (7/3, volume ratio) mixed solvent, add 0.15 g of 5% palladium/activated carbon,
Then, after reducing the pressure for 2 to 3 seconds, hydrogen was introduced into the container. The mixture was stirred at room temperature for 5 hours, 10 ml of chloroform was added, and the catalyst was removed by filtration. The solvent was distilled off under reduced pressure, and 5 ml of benzene was further added and benzene was distilled off under reduced pressure. By recrystallizing from the obtained white powder hexane, 0.74 g (yield, 65%) of the target compound 13-14- was obtained as white flaky crystals. This compound is 'H
-NMR spectrum δ(r)I)m)=0.9,1.25-1.40°1.
There was absorption at 60-1.70, 2.40-2.50°5.75. The physical properties of this material are as follows.

融点   67−68°C 元素分析値(C2eH5sOnとして)C、H 計算値く%)  65.34 9.79実測値(%’)
  64.89 9.59このものの1H す。
Melting point 67-68°C Elemental analysis value (as C2eH5sOn) C, H calculated value (%) 65.34 9.79 Actual value (%')
64.89 9.59 1H of this thing.

NMRスペクトルを第2図に示 実施例5 (2R,3R)−ジオクタデカノイル酒石酸の製造 密閉性の容器内でジベンジル(2R,3R) −ジオク
タデカノイル酒石酸1.□g (0,0012mol)
をコータノール/ベンゼン(7/3、容積比)混合溶媒
10m1に溶解させ、これに5%パラジウム/活性炭を
0.15g加え、ついで2〜3秒間減圧したのち、水素
を容器内に導入した。
The NMR spectrum is shown in FIG. 2. Example 5 Preparation of (2R,3R)-Dioctadecanoyltartaric acid Dibenzyl (2R,3R)-dioctadecanoyltartaric acid 1. □g (0,0012mol)
was dissolved in 10 ml of a mixed solvent of Cortanol/benzene (7/3, volume ratio), 0.15 g of 5% palladium/activated carbon was added thereto, the pressure was reduced for 2 to 3 seconds, and then hydrogen was introduced into the container.

室温で5時間かくはんし、クロロボルム10m1を加え
触媒を濾過で除去した。溶媒を減圧下留去し、更にベン
ゼン5mlを加えベンゼンを減圧下留去した。得られた
白色粉末をヘキサンから再結晶することにより白色りん
片状結晶として目的化合物0.43g(収率、55%)
を得た。この化合物はIH−NMRスペクトルで δ(1)I)m)=0.9,1.20−1.40゜1.
60−1.70,2.40−2.50゜5.75 に吸収があった。このものの物理的性質は次の通りであ
る。
The mixture was stirred at room temperature for 5 hours, 10 ml of chloroborum was added, and the catalyst was removed by filtration. The solvent was distilled off under reduced pressure, and 5 ml of benzene was further added and benzene was distilled off under reduced pressure. The obtained white powder was recrystallized from hexane to obtain 0.43 g of the target compound as white flaky crystals (yield, 55%).
I got it. The IH-NMR spectrum of this compound shows that δ(1)I)m)=0.9,1.20-1.40°1.
There was absorption at 60-1.70, 2.40-2.50°5.75. The physical properties of this material are as follows.

融点  95.5−96.59C 元素分析値(048■l7408として)CH 15− 16− 計算値(%)  70.3/110.92実測値(%)
  69.74 10.79融点  90.0−91.
5°に のものの’H−NMRスペクトルを第3図に示す。
Melting point 95.5-96.59C Elemental analysis value (as 048■l7408) CH 15- 16- Calculated value (%) 70.3/110.92 Actual value (%)
69.74 10.79 Melting point 90.0-91.
The 'H-NMR spectrum at 5° is shown in FIG.

実施例6 m e s o−ジオクタデカノイル酒石酸の製造密閉
性の容器内でジベンジルm e s o−ジテトラデカ
ノイル酒石MO,76g (0,OO13mof)をエ
タノール/ベンゼン(7/3、容積比)混合溶媒8ml
に溶解させ、これに5%パラジウム/活性炭を0.15
g加え、ついで2〜3秒間減圧したのち、水素を容器内
に導入した。室温で5時間かくはんし、クロロホルム1
0m1を加え触媒を濾過で除去した。溶媒を減圧下留去
し、更にベンゼン5mlを加えベンゼンを減圧下留去し
た。得られた白色粉末をヘキサンから再結晶することに
より白色りん片状結晶として目的化合物0゜49g(収
率、65%)を得た。このものの物理的性質は次の通り
である。
Example 6 Preparation of m e s o -dioctadecanoyl tartaric acid In a sealed container, dibenzyl m e s o -ditetradecanoyl tartaric acid, MO, 76 g (0,0013 mof) was mixed with ethanol/benzene (7/3, Volume ratio) mixed solvent 8ml
5% palladium/activated carbon in 0.15%
After adding g and then reducing the pressure for 2 to 3 seconds, hydrogen was introduced into the container. Stir at room temperature for 5 hours, add chloroform 1
0ml was added and the catalyst was removed by filtration. The solvent was distilled off under reduced pressure, and 5 ml of benzene was further added and benzene was distilled off under reduced pressure. The obtained white powder was recrystallized from hexane to obtain 0.49 g (yield, 65%) of the target compound as white flaky crystals. The physical properties of this material are as follows.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の化合物のうち、実施例1のIH−NM
Rスペクトル図(重クロロホルム中、25℃)、第2図
は実施例4の ’H−NMRスペクトル図(重クロロホ
ルム中、25°C)、第3図は実施例5の ’H−NM
Rスペクトル図(重クロロホルム中、25°C)である
Figure 1 shows IH-NM of Example 1 among the compounds of the present invention.
R spectrum (in deuterated chloroform, 25°C), Figure 2 is the 'H-NMR spectrum of Example 4 (in deuterated chloroform, 25°C), and Figure 3 is 'H-NMR spectrum of Example 5.
It is an R spectrum diagram (in deuterated chloroform, 25°C).

Claims (1)

【特許請求の範囲】 一般式 ▲数式、化学式、表等があります▼ ・・・・・・( I ) (式中のRは、炭素数7〜17の長鎖アル キル基である) で表される酒石酸ジベンジルエステル長鎖アシル誘導体
を合成中間体として経由することを特徴とする 一般式 ▲数式、化学式、表等があります▼・・・・・(II) (式中のRは、7〜17の長鎖アルキル基 である) で表わされる酒石酸長鎖アシル誘導体の製 造方法。
[Claims] Represented by the general formula ▲ Numerical formulas, chemical formulas, tables, etc. ▼ ...... (I) (R in the formula is a long-chain alkyl group with 7 to 17 carbon atoms) A general formula characterized by using a long-chain acyl tartrate dibenzyl ester derivative as a synthetic intermediate ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (II) (R in the formula is 7 to 17 long-chain alkyl group) A method for producing a long-chain acyl tartaric acid derivative represented by:
JP2061852A 1990-03-13 1990-03-13 Method for producing long-chain acyl tartrate derivative Expired - Lifetime JPH0768164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2061852A JPH0768164B2 (en) 1990-03-13 1990-03-13 Method for producing long-chain acyl tartrate derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2061852A JPH0768164B2 (en) 1990-03-13 1990-03-13 Method for producing long-chain acyl tartrate derivative

Publications (2)

Publication Number Publication Date
JPH03264547A true JPH03264547A (en) 1991-11-25
JPH0768164B2 JPH0768164B2 (en) 1995-07-26

Family

ID=13183042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2061852A Expired - Lifetime JPH0768164B2 (en) 1990-03-13 1990-03-13 Method for producing long-chain acyl tartrate derivative

Country Status (1)

Country Link
JP (1) JPH0768164B2 (en)

Also Published As

Publication number Publication date
JPH0768164B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
JPH02262551A (en) New poyfunctional alpha-diazo-beta-keto ester and preparation and use thereof
KR101278874B1 (en) Method for preparing of 1-palmitoyl-3-acetylglycerol and Method for preparing of 1-palmitoyl-2-linoleoyl-3-acetyl glycerol using the same
CN112047973B (en) Cannabinoids compound, preparation method, composition and application thereof
AU6204199A (en) Derivatives of isosorbide mononitrate and its use as vasodilating agents with reduced tolerance
IL127861A (en) Crystals of vitamin d derivatives and process for the preparation thereof
JPH03264547A (en) Production of long chain acyl derivatives of tartaric acid
JP3429432B2 (en) Vitamin D derivative crystal and method for producing the same
EP3118197A1 (en) Production method for heteroarylcarboxylic acid ester derivative, production intermediate thereof, and crystal
KR100554085B1 (en) Optically active aziridine-2-carboxylate derivatives and a process for preparing them
JPS5850240B2 (en) Production method for new androstane-based diene derivatives
JPS6160078B2 (en)
DE19853558A1 (en) Process for the preparation of 2,3-dihydroindoles (indolines), novel 2,3-dihydroindoles and their use
Irngartinger et al. Structure determination of bicyclo [1.1. 1] pentane diesters
EP0298695B1 (en) Tartaric acid amide derivative and method of producing the same
TW200909434A (en) Production process of coumarin dimer compound
HU182227B (en) Process for preparing hexitols containing free carboxyl group
SU330743A1 (en) Method of preparing esters
JPS59216841A (en) Agent for optical resolution
JPH05105668A (en) Thiol compound in crystal form
JPH0368571A (en) Production of n-substituted 2,4,6-triiminotriazine derivative
Avestro et al. Formation of a hetero [3] rotaxane by a dynamic component-swapping strategy
JPH07188092A (en) Production of optically active norbornene derivative
JPWO2005026160A1 (en) Heterocyclic crystals
SE462684B (en) NEW TRANS - EBURNAMEN DERIVATIVES AND PHARMACEUTICAL PREPARATION
JPH10120697A (en) Production of sialic acid derivative

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term