JPH03264116A - Method for executing u-bending of metallic plate by press - Google Patents

Method for executing u-bending of metallic plate by press

Info

Publication number
JPH03264116A
JPH03264116A JP6382690A JP6382690A JPH03264116A JP H03264116 A JPH03264116 A JP H03264116A JP 6382690 A JP6382690 A JP 6382690A JP 6382690 A JP6382690 A JP 6382690A JP H03264116 A JPH03264116 A JP H03264116A
Authority
JP
Japan
Prior art keywords
bending
press
punch
web
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6382690A
Other languages
Japanese (ja)
Inventor
Motoyuki Miyahara
宮原 征行
Jiro Iwatani
二郎 岩谷
Kenichi Watanabe
憲一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6382690A priority Critical patent/JPH03264116A/en
Publication of JPH03264116A publication Critical patent/JPH03264116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

PURPOSE:To bend a metallic plate highly accurately into a U-shape by providing a prescribed width relief in the center of the width direction of a punch bottom and giving a limited % of compression strain in the bottom dead center of a press. CONSTITUTION:When a forming steel plate 1 is pressed by a punch into the groove of a die and bent in a U-sectional shape, a 1-3% compression strain is given at the press bottom dead center to both side end parts of the web of the metallic plate 1 from each of both side ends except parts having a bent angle R each on both sides of the web in the section to each of the insides within a quarter of the web width. In this way, shape variation after the steel plate is released from the die minimized and high-accuracy U-bending can be executed.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は金属板のプレス0曲げ加工方法に関し、特許こ
は、自動車のバンパーなどのように、比較的に薄肉で、
かつ高強度な金属板をU字状の形断面形状に曲げ成形さ
れてなる製品を、寸法精度良く成形する金属板のプレス
0曲げ加工方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a press zero bending method for metal plates, and is applicable to relatively thin-walled metal plates such as automobile bumpers.
The present invention also relates to a metal plate press zero bending method for forming a product made by bending a high-strength metal plate into a U-shaped cross-sectional shape with good dimensional accuracy.

〔従来の技術〕[Conventional technology]

周知のように、比較的に薄肉な金属板をU字状の形断面
形状にプレス0曲げ加工するには、■溝ダイスを用い、
■曲げを繰り返して成形する方法と、型溝ダイスを用い
て一工程で曲げ成形する方法とがあるが、■溝ダイスを
用いる場合は、ウェブ幅およびフランジ寸法の如何によ
っては適用の制約を受け、かつ効率面で劣ることより、
一般に、自動車のバンパー等のようなU字状の断面形状
をもつ製品の成形には、型溝ダイスを用いて一工程で曲
げ成形する方法を採用されることが多い。
As is well known, in order to press and bend a relatively thin metal plate into a U-shaped cross-sectional shape, a groove die is used.
■There is a method of forming by repeating bending, and a method of bending and forming in one step using a grooved die.■When using a grooved die, there are restrictions on application depending on the web width and flange dimensions. , and from being inferior in terms of efficiency,
Generally, in the molding of products having a U-shaped cross-section, such as automobile bumpers, a method of bending the product in one step using a grooved die is often adopted.

この型溝ダイスを用いるプレス0曲げ加工は、その概念
説明図である第6図a乃至第6図すに示すように、破戒
形用の金属板Mを、ポンチPにてダイスDの型溝d内に
圧入して、U字状の断面形状に曲げると共に(第5図a
)、プレス下死点において、ポンチPの先端面(以下、
ポンチ底と記す)とダイスDの型溝dの内底面(以下、
底押し板と記す)とにより、金属板Mのフランジ面に押
圧を加え(以下、決め押しと記す′)、金属板Mを、ポ
ンチPの先端部形状になしませて、所定のU字状の断面
形状としく第5図b)、しかる後に、離型することで達
成される。
In the press zero bending process using this mold groove die, as shown in FIGS. d and bend it into a U-shaped cross section (Fig. 5 a).
), at the bottom dead center of the press, the tip surface of the punch P (hereinafter referred to as
(hereinafter referred to as the punch bottom) and the inner bottom surface of the die groove d of the die D (hereinafter referred to as the punch bottom)
Pressure is applied to the flange surface of the metal plate M (hereinafter referred to as a final push) using a bottom press plate (referred to as a bottom press plate), and the metal plate M is shaped into the shape of the tip of the punch P to form a predetermined U-shape. The cross-sectional shape of FIG. 5b) is then achieved by releasing the mold.

なお、このプレス0曲げ加工に際して、金属板Mは、第
6図aに示すように、その成形途中で、ポンチPの先端
下方にて“たるみ”を生しるが、この“たるみ”は、プ
レス下死点における決め押しにて、ポンチおよびダイス
(以下、両者を総称するに金型とする)になしませるこ
とで、金型形状に収束される。
In addition, during this press zero bending process, as shown in FIG. 6a, the metal plate M becomes "sag" below the tip of the punch P during its forming, but this "sag" The punch and die (hereinafter collectively referred to as the mold) are made to conform to the punch and die (hereinafter, both are collectively referred to as the mold) by pressing decisively at the bottom dead center of the press, thereby converging into the mold shape.

しかし、このようにしてU曲げ成形された金属板を、金
型から取り出すと、金型の形状と異なり、第7図aに示
すように、その両フランジ部が、互いに内側に形状変化
するスプリングゴー(以下、SGと略記)現象、ないし
は、第7図すに示すように、互いに外側に形状変化する
スプリングバック(以下、SBと略記)現象を起こして
、所定の寸法形状が得られないことがある。
However, when the metal plate that has been U-bended in this way is taken out of the mold, the shape of the metal plate is different from that of the mold, and as shown in Fig. Go (hereinafter abbreviated as SG) phenomenon or springback (hereinafter abbreviated as SB) phenomenon in which the shape changes outward from each other as shown in Fig. 7, and the predetermined dimensions and shape cannot be obtained. There is.

また、これらSGないしSB現象は、金属板の板厚方向
へのU曲げに起因する金属板の表裏間の残留応力差の存
在によるもので、その弾性回復力により生ずる。そのた
め、成形対象とされる金属板材の降伏強度が高まれば、
その弾性回復力も増大することより、そのSGないし5
Bi)がより大きくなるので、あるレヘルを超える高強
度金属板を、プレス0曲げ加工することは、成形品の寸
法精度を確保し難く、実施上極めて困難であった。
Further, these SG or SB phenomena are due to the existence of a residual stress difference between the front and back sides of the metal plate due to U-bending in the thickness direction of the metal plate, and are caused by the elastic recovery force thereof. Therefore, if the yield strength of the metal plate material to be formed increases,
Since its elastic recovery power also increases, its SG or 5
Bi) becomes larger, so it is difficult to press and bend a high-strength metal plate exceeding a certain level, making it difficult to ensure the dimensional accuracy of the molded product, and it is extremely difficult to carry out the process.

一方、自動車のハンハー等は、自動車の衝突時の安全性
を重量増加を伴うことなく確保する観点から、高強度銅
板を使用して、部品の比強度をより高めんとする傾向に
ある。このため、最近では、100kgf/mm”級の
高強度鋼板が使用されるようになって来ており、更には
120〜ら140kgf/mm”級の超高強度鋼板の使
用が検討されており、これら高強度および超高強度鋼板
を、精度良くプレス0曲げ加工するに実施可能な方法が
望まれていた。
On the other hand, in order to ensure safety in the event of a collision without increasing the weight of automobile parts, there is a trend toward using high-strength copper plates to further increase the specific strength of the parts. For this reason, recently, 100 kgf/mm'' class high strength steel plates have been used, and furthermore, the use of ultra high strength steel plates of 120 to 140 kgf/mm'' class is being considered. There has been a desire for a method that can be used to precisely press zero-bend these high-strength and ultra-high-strength steel plates.

そこで、従来より、これらSGないしSB現象の要素解
析および対策について多方面より検討されてきており、
例えば、「プレス成形難易ハンドブック(1987年二
日刊工業)」の165〜168頁によれば、これらSG
ないしSB現象は、その角度変化要素の説明図である第
8図に示した。”−A。
Therefore, element analysis and countermeasures for these SG or SB phenomena have been studied from various angles.
For example, according to pages 165-168 of "Press Molding Difficulty Handbook (Nikkan Kogyo, 1987)", these SG
The SB phenomenon is shown in FIG. 8, which is an explanatory diagram of its angle change elements. ”-A.

AB、BCの三つの曲げ要素それぞれの角度変化要素の
大小が、フランジ端部における角度変化の方向や大きさ
を左右して生しるものであり、OA要素は、成形途中で
生したウェブ部の゛たるみ”が底突きで曲げ戻され、こ
れが離型後に弾性回復することでフランジにおけるSG
酸成分負の角度変化成分)として生し、A”−″B要素
は、ポンチ肩Rによる曲げにより5BIti、分(正の
角度変化成分)として生し、BC要素は、底突きの過程
でA−B間の一部が曲げ戻されることでSG威分(負の
角度変化成分)として生しると指摘されている。また、
その対策としては、上記各角度変化要素ごとの精度向上
と、これら要素のバランスをとることにより寸法精度向
上が図られ、例えば、■ダイスの型溝の肩R半径の選定
;すなわち、型溝の上縁両角部R(以下、型溝肩Rと略
記)の半径が大きくなると、曲げ支点が広くなって、曲
げ過程におけるウェブのふくらみが大きくなり、底突き
の際の〇−AおよびB−C間の負の角度変化が大きくな
ることより、フランジ端部に大きなSBを生しるような
場合に、型溝肩R半径を大きくして、SBの発生を抑制
し、精度を高める方法、■ポンチとダイスとのクリアラ
ンスの選定;すなわち、ポンチとダイスの型溝とのクリ
アランスを、極力小さくし、金型に対する金属板のなし
みを良くすることで、精度を高める方法、■ポンチの先
端部の形状の選定;すなわち、ポンチ底に逃げをとり、
ウェブに生した“°たるみ゛を、底突き時に逆曲げさせ
て負の角度変化要素を発生させることで、表裏の残留歪
差を緩和して、精度を高める方法、また、これに加えて
、ポンチの先端両側の角部R(以下、ポンチ肩Rと略記
)の半径を極力小さくし、底突き時において、ウェブ面
とポンチ底の接触を、ポンチ底の両側周辺に限定するこ
とで、°“たるみ”の逆曲げ範囲を広くして、その効果
をより高める方法などが採用されてきた。
The size of the angle change element of each of the three bending elements AB and BC affects the direction and magnitude of the angle change at the flange end, and the OA element is the web part created during forming. The "sag" in the flange is bent back at the bottom, and this elastically recovers after demolding, resulting in the SG at the flange.
The acid component is produced as a negative angle change component), the A''-"B element is produced as 5BIti, minute (positive angle change component) by bending by the punch shoulder R, and the BC element is A" in the process of bottoming out. It has been pointed out that a portion between -B is bent back, resulting in an SG component (negative angle change component). Also,
As a countermeasure, dimensional accuracy can be improved by improving the precision of each of the above-mentioned angle changing elements and by balancing these elements. When the radius of both upper edge corner parts R (hereinafter abbreviated as mold groove shoulder R) becomes larger, the bending fulcrum becomes wider, and the bulge of the web becomes larger during the bending process, resulting in 〇-A and B-C when bottoming out. ■ A method for suppressing the occurrence of SB and improving accuracy by increasing the die groove shoulder R radius in cases where large SB occurs at the flange end due to a large negative angle change between Selection of the clearance between the punch and the die: In other words, how to improve accuracy by minimizing the clearance between the punch and the mold groove of the die, and by improving the staining of the metal plate against the mold, ■Punch tip Selection of the shape; that is, take a relief at the bottom of the punch,
In addition to this method, the residual strain difference between the front and back surfaces is alleviated by bending the "°sag" produced in the web in reverse at the time of bottoming out to generate a negative angle change element, thereby increasing accuracy. By making the radius of the corner R on both sides of the punch tip (hereinafter abbreviated as punch shoulder R) as small as possible and limiting the contact between the web surface and the bottom of the punch to the periphery of both sides of the bottom of the punch when hitting the bottom, ° Methods such as widening the range of reverse bending of ``sag'' to further enhance the effect have been adopted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前述の高強度鋼板ように材料強度が高くなった
り、材料の降伏強度ムこ変動がある場合、上記の従来技
術を適用するに、その都度に最適成形条件を把握し、用
いる工具を最適な形状のものに変更しなければ、寸法精
度の良い成形品を得ることができず、また、前述の超高
強度鋼板のように極めて材料強度が高い場合、その形状
制御効果にも限界が生し、これらを精度良く成形するこ
とは実用上極めて困難であり、未だ十分なる対応策とは
なり得ないのが現状であった。
However, when the material strength increases or the yield strength of the material fluctuates, as in the case of the high-strength steel plate mentioned above, applying the above-mentioned conventional technology requires understanding the optimal forming conditions each time, and selecting the optimal tool. Unless the shape is changed to a molded product with good dimensional accuracy, it is not possible to obtain a molded product with good dimensional accuracy.In addition, when the material strength is extremely high like the ultra-high strength steel plate mentioned above, there is a limit to the shape control effect. However, it is extremely difficult in practice to mold these with high precision, and the current situation is that there is still no sufficient countermeasure.

本発明は、上記従来の問題点に鑑み、比較的に薄肉で、
かつ高強度の金属板を、SGないしSBの発生を抑制し
得て、高精度で成形し得る金属板のブレス0曲げ加工方
法の提供を目的とする。
In view of the above conventional problems, the present invention has a relatively thin wall,
Another object of the present invention is to provide a zero-pressure bending method for a metal plate that can suppress the occurrence of SG or SB and form a high-strength metal plate with high precision.

〔課題を解決するための手段] 上記の目的を達成するために、本発明の金属板のプレス
0曲げ加工方法は、金属板を、ポンチにてダイスの型溝
内に押圧し、U字状の断面形状にプレス0曲げ加工する
に際して、断面におけるウェブの両側の曲げ角R部を除
く両側端それぞれから、両側の曲げ角R部を除くウェブ
幅の1/4以内とする内側までの間の、金属板のウェブ
の両側端部に、プレス下死点において1〜3%の圧縮塑
性歪みを付与するものである。
[Means for Solving the Problems] In order to achieve the above object, the metal plate press zero bending method of the present invention presses the metal plate into the mold groove of the die with a punch to form a U-shape. When performing press zero bending into a cross-sectional shape of , a compressive plastic strain of 1 to 3% is applied to both ends of the web of the metal plate at the bottom dead center of the press.

〔作用〕[Effect]

本発明者等は、超高強度高槻のように極めて強度の高い
金属板を、精度良くブレス0曲げ加工する方法を見出す
ための指針を得んがために、U曲げ成形過程における破
戒式材料の詳細な変形挙動を、FEM(有限要素法)に
基づいて解析した。
In order to obtain guidelines for finding a method for accurately bending extremely high-strength metal plates such as ultra-high-strength Takatsuki with zero stress, the inventors of the present invention investigated the use of Hakkai-style materials in the U-bending process. Detailed deformation behavior was analyzed based on FEM (finite element method).

そして、その調査結果から、従来指摘されている第8図
に示した各要素〇−A、A  B−B  Cの内で、ウ
ェブ面のOA間の材料挙動が最終製品の角度変化に大き
な役割を果たしており、しかも、その挙動は単純ではな
いとの知見を得た。
From the results of the investigation, it was found that among the elements 〇-A, A B-B C shown in Fig. 8, which have been pointed out previously, the material behavior between the OA of the web surface plays a major role in the angle change of the final product. Moreover, we found that the behavior is not simple.

ここで、その調査要領を説明すると、引張強度が30k
gf/mm2級〜100kgf/mm2級の各種鋼板を
、ブレス0曲げ加工し、これらについて前述の第7図に
示した各要素OA、A  B、B  Cに対応する角度
変化要素の影響を調べたのであるが、本調査では、ポン
チPの下死点における決め押し後に、被成形鋼板Mを離
型してSB状態を検討するのではなく、その説明図であ
る第2図aに示すように、決め押し後に、まず、5TE
P 1でポンチPの両肩R部の上部(図中の斜線AとA
”部)のみの拘束を外し、5TEP 2でポンチPの両
PR部(図中の斜線BとB゛部)の拘束を外し、最後に
、5TEP 3でポンチPの底部(図中の斜線C部)の
拘束を外し、これら各5TEPにおけるフランジ部のS
B角角度型計測すると共に、これらの計測値を解析する
ことにより、R部近傍のフランジ部(B  C)、R部
(B  C)、底部(OA)それぞれの全体のSBに対
する影響を検討したのである。
Here, to explain the investigation procedure, the tensile strength is 30k.
Various steel plates of gf/mm2 class to 100 kgf/mm2 class were subjected to zero-pressure bending, and the influence of the angle change elements corresponding to each element OA, A B, B C shown in the above-mentioned Fig. 7 was investigated. However, in this investigation, after the final push at the bottom dead center of the punch P, the steel plate M to be formed is not released from the mold and the SB state is examined, but as shown in Fig. 2 a, which is an explanatory diagram. , After the decisive push, first, 5TE
At P 1, the upper part of both shoulders R of punch P (diagonal lines A and A in the figure)
At 5TEP 2, remove the restraints from both PR parts of the punch P (shaded areas B and B in the figure), and finally, at 5TEP 3, remove the restraints from the bottom of the punch P (shaded area C in the figure). part), and remove the restraint of the flange part at each of these 5 TEPs.
By measuring the B angle and analyzing these measured values, we investigated the influence of the flange (B C) near the R section, the R section (B C), and the bottom (OA) on the overall SB. It is.

これら各5TEPにて計測したフランジ部のSB角角度
型値を、第2図すのグラフに例示する。
The SB angle type values of the flange portion measured at each of these 5 TEPs are illustrated in the graph of FIG.

なお、第2図すのグラフ中の、○印のプロ・7トは、5
P30 (30kgf/mm”級)鋼板、◎印のプo 
7トは、SP60(60kgf/開2級)網板、・印の
プロットは、SPloo(100kgf/mm”級)鋼
板の各5TEPでのSB角角度値値ある。なお、同グラ
フ中に示すSB角角度型マイナス値は、IsG角度θI
と同義である。
In addition, in the graph of Figure 2, the 7th mark is 5.
P30 (30kgf/mm” class) steel plate, ◎ mark o
7 shows the SB angle value of SP60 (60kgf/open 2nd class) net plate, and the plot marked with . is the SB angle value at each 5TEP of SPloo (100kgf/mm" class) steel plate. In addition, the SB angle value shown in the same graph Square angle type negative value is IsG angle θI
is synonymous with

第2図すのグラフによると、各5TEPにおけるフラン
ジ部のSB角角度型、大きく変化しており、特に、SP
loo(100kgf/mm2級)のような高強度材料
の場合に、その傾向が顕著に認められる。
According to the graph in Figure 2, the SB angle type of the flange part in each 5TEP changes greatly, especially the SP
This tendency is noticeable in the case of high-strength materials such as LOO (100 kgf/mm2 class).

また、各5TEPでのSB角角度型、5TEP 1で、
全てマイナス値でSG現象を示し、かつ、材料強度と比
例関係にてSG側に増大している。
Also, SB square angle type at each 5TEP, 5TEP 1,
All the values are negative, indicating the SG phenomenon, and increasing toward the SG side in proportion to the material strength.

そして、5TEP 2では、5TEP 1で認、められ
たSGが、はぼ金型寸法と同角度に戻っており、この段
階では、金型寸法に近い精度が得られ、しかも、高強度
鋼であっても同様に良い精度が得られることがわかる。
In 5TEP 2, the SG recognized in 5TEP 1 returned to the same angle as the mold dimension, and at this stage, accuracy close to the mold dimension was obtained, and moreover, with high-strength steel. It can be seen that good accuracy can be obtained even if

また、このことは、ポンチ肩R部での曲げによる5BF
li、分゛(正の角度変化成分)と、R部近傍のフラン
ジ部のSG威分(負の角度変化成分)とが、はぼバラン
スし、それぞれの角度変化要素を相殺し合う関係にある
ことを示唆する。
Also, this means that the 5BF due to bending at the punch shoulder R part
The li, minute (positive angle change component) and the SG force (negative angle change component) of the flange near the R section are in a nearly balanced relationship, canceling out each angle change element. suggests that.

さらに、ポンチ底部の拘束が外されるSTεP3では、
それぞれのSB角角度型、5TEP 1での値より大き
な値で、再びマイナス値となり、このときも材料強度と
比例関係にてSG側に増大している。
Furthermore, in STεP3 where the constraint on the bottom of the punch is removed,
The value is larger than the value for each SB angle type and 5TEP 1, and becomes a negative value again, and at this time also increases toward the SG side in proportion to the material strength.

そして、これら現象を更に詳細に解析した結果、第3図
a乃至第3図Cに模式的に示すように、成形途中で破戒
形鋼板Mのウェブ部に生した°“たるみ′”は、ポンチ
P下死点直前の底突き段lS(第3図a)から、ポンチ
Pの圧下に伴い、ダイスDの底押し板からの反力を受け
て、逆曲げ(第3図b)されるのであるが、このとき、
第3図す中に示すウェブの逆曲げ部イーロと両側の曲げ
R部との間、すなわち同図中のローハおよびとイー二部
に、大きな曲げ応力が発生して、板厚方向に応力勾配の
ある塑性歪みが導入されており、これらローハおよびイ
ー二部の塑性歪みに起因する表裏の応力差が、決め押し
により金型になしんだ(第3図C)後にも残留し、離型
後の成形品にSG現象として現出することが、明らかと
なった。
As a result of further detailed analysis of these phenomena, as schematically shown in Figures 3a to 3C, the ``sag'' that occurs in the web portion of the broken steel sheet M during forming is caused by the punching. From the bottom punch stage lS (Figure 3a) just before the bottom dead center of P, as the punch P is pressed down, it receives a reaction force from the bottom push plate of the die D and is reversely bent (Figure 3b). However, at this time,
A large bending stress is generated between the reverse bending part of the web shown in Figure 3 and the bending R parts on both sides, that is, the lower part and the part of E2 in the figure, and a stress gradient is generated in the thickness direction. A certain plastic strain is introduced, and the stress difference between the front and back surfaces caused by the plastic strain in the lower and E parts remains even after the mold is flattened by pressing (Fig. 3C), resulting in mold release. It has become clear that the SG phenomenon appears in subsequent molded products.

すなわち、いずれも成形品全体としてみると、ウェブの
ローハおよびイー二部の塑性歪みに起因するSG現象と
して整理し得ることが判明した。
That is, when looking at the molded product as a whole, it was found that both cases can be classified as an SG phenomenon caused by plastic strain in the lower and E parts of the web.

更にまた、曲げR部位近傍の板厚方向の応力勾配分布の
解析結果から、応力勾配のある塑性歪みが導入されるウ
ェブのローハおよびイー二部の領域は、ウェブ幅によっ
て異なるが、その曲げR部部近傍の板厚り方向の応力勾
配分布の模式図である第4図に示すように、断面におけ
るポンチ肩Rが平坦なポンチ底に移行する点、すなわち
、ポンチ底をなす直線と、該直線に内接するポンチ肩R
をなす円弧線との交点Pからウェブ中心に向けて、両側
の交点間の距離の概ね1/4以内とする範囲にあること
が明らかとなった。
Furthermore, from the analysis results of the stress gradient distribution in the plate thickness direction in the vicinity of the bending R region, the regions of the lower and E parts of the web where plastic strain with a stress gradient is introduced vary depending on the web width, but the bending R As shown in FIG. 4, which is a schematic diagram of the stress gradient distribution in the thickness direction near the part, the point where the punch shoulder R transitions to the flat punch bottom in the cross section, that is, the straight line forming the punch bottom, and the point where the punch shoulder R transitions to the flat punch bottom, Punch shoulder R inscribed in a straight line
It has become clear that the distance from the intersection point P with the arc line forming the arc line toward the center of the web is approximately within 1/4 of the distance between the intersection points on both sides.

これら解析結果から、本発明者等は、プレス0曲げ加工
に際して、上記のウェブのローハおよびイー二部に生し
る応力勾配のある塑性歪みに基づく表裏の応力差を、解
消ないしは軽減し得るとき、高強度材料についても、高
精度のU曲げ底形を遺戒することが可能となり、また、
この応力差の解消ないしは軽減には、上記ローハおよび
イー二部に、プレス下死点において圧縮歪みを導入する
ことが有効であるとの結論を得たのである。
Based on these analysis results, the present inventors have determined that it is possible to eliminate or reduce the stress difference between the front and back surfaces due to plastic strain with a stress gradient that occurs in the lower and E parts of the web during press zero bending. , even for high-strength materials, it is now possible to create a highly accurate U-bent bottom shape, and
In order to eliminate or reduce this stress difference, it was concluded that it is effective to introduce compressive strain into the lower and E parts at the bottom dead center of the press.

そこで、この結論の有効性と、付与すべき圧縮歪量を明
確化するために、プレス下死点におけるフランジのロー
ハおよびイー二部に負荷する決め押し荷重を変化させて
、付与された圧縮歪! (X)と、成形品のフランジの
角度変化との関係を調べた。このときの解析には、汎用
構造解析プログラムABAQじSを用いた。また、破戒
形鋼板としては、板厚が1.21の100kgf/mm
”級の高強度調板を用いた。これらの結果を、第1表に
示す。
Therefore, in order to clarify the validity of this conclusion and the amount of compressive strain that should be applied, we changed the pressing load applied to the lower and E parts of the flange at the bottom dead center of the press, and ! The relationship between (X) and the angle change of the flange of the molded product was investigated. The general purpose structural analysis program ABAQjiS was used for this analysis. In addition, as a break-through steel plate, 100kgf/mm with a plate thickness of 1.21 is used.
The results are shown in Table 1.

なお、これら調査に用いた100kgf/m−縁高強度
鋼板の材料特性は、ヤング率ε=21000kgf/m
m”、ポアソン比シー0.3で、その応力/塑性歪み特
性は、第5図に示すものである。また、金型としては、
先端部の断面の幅を100mmとし、その肩Rの半径を
5mmとしたポンチと、深さ30mmの断面角形で、そ
の型溝肩Rの半径を5mmとした型溝を有するダイスと
を用いた。そして、ポンチとダイス型溝とのクリアラン
スは、被成形板の板厚+0.1mmである1、3mmと
した。また、鋼板と金型との摩擦係数μm0.15とし
、プレス下死点における決め押し荷重を負荷する部位は
、第3図すに示すウェブのローハおよびイー二部であっ
て、その範囲は、両側の曲げ角R部を除くウェブの両側
端それぞれから、両側の曲げ角R部を除くウェブ幅の1
/4である22.5mm内側までの間とした。
In addition, the material properties of the 100 kgf/m-edge high strength steel plate used in these investigations are Young's modulus ε = 21000 kgf/m
m'', Poisson's ratio sea: 0.3, and its stress/plastic strain characteristics are shown in Figure 5.In addition, as a mold,
A punch with a cross-sectional width of 100 mm at the tip and a radius of shoulder R of 5 mm, and a die having a rectangular cross-section with a depth of 30 mm and a groove with a radius of shoulder R of 5 mm were used. . The clearance between the punch and the die groove was set to 1.3 mm, which was the thickness of the plate to be formed + 0.1 mm. In addition, the coefficient of friction between the steel plate and the mold is μm 0.15, and the parts to which the pressing load is applied at the bottom dead center of the press are the lower and E parts of the web shown in Fig. 3, and the range thereof is as follows: 1 of the web width excluding the bending angle R parts on both sides from each side edge of the web excluding the bending angle R parts on both sides
/4, which is 22.5 mm inside.

第1表に示すように、上記のウェブ両側部に、プレス下
死点における決め押しによって、適切な塑性変形歪みを
付与するとき、塑性変形歪みを付与しない場合(No、
1例)との比較において、成形品のSG量を大幅に減少
可能であり、前記結論の有効性を確認することができた
。なお、付与された歪量の増加に伴って、フランジの角
度変化(SG)値は、指数曲線を描くが如く減少し、か
つ、その減少傾向は、歪量を1.0%前後とした例をほ
ぼ境にして、それより少ない領域では急激に変化し、そ
れより多い領域では緩やかであった。
As shown in Table 1, when appropriate plastic deformation strain is applied to both sides of the web by pressing at the bottom dead center of the press, and when no plastic deformation strain is applied (No.
In comparison with Example 1), it was possible to significantly reduce the amount of SG in the molded product, confirming the validity of the above conclusion. It should be noted that as the amount of strain applied increases, the angular change (SG) value of the flange decreases as if drawing an exponential curve, and this decreasing trend is observed when the amount of strain is around 1.0%. There was a sharp change in areas with less than that, and a gradual change in areas with more.

ここで、本発明においては、フランジの断面幅方向の両
側に付与する塑性変形歪量を、1〜3%と限定した。こ
れは、付与する塑性変形歪量が、1%未満であると、中
央部の逆曲げに伴うウェフ面ポンチ肩近傍に生じている
塑性曲げによる表裏の応力差が残留し、安定かつ十分な
精度が得られないからであり、また、3%以上の圧縮塑
性歪量を与える場合には、成形品の寸法精度をより高め
得るものの、必要とされる下死点での加圧力が極めて大
きくなるため、大容量のプレスを必要とし、適用が限定
されることとなり、加えて、金型の剛性を大きく高める
必要が生じ、金型材料の選定に制約が生したり、その補
則のために構成が複雑になったりして、金型製作費の大
幅な上昇を招くので、実用上好ましくないからである。
Here, in the present invention, the amount of plastic deformation strain imparted to both sides of the flange in the cross-sectional width direction is limited to 1 to 3%. This is because if the amount of plastic deformation strain applied is less than 1%, the stress difference between the front and back surfaces due to the plastic bending that occurs near the punch shoulder of the web surface due to the reverse bending of the center portion will remain, resulting in stable and sufficient accuracy. In addition, if a compressive plastic strain of 3% or more is applied, the dimensional accuracy of the molded product can be further improved, but the required pressing force at the bottom dead center becomes extremely large. Therefore, a large-capacity press is required, which limits its application.In addition, it is necessary to greatly increase the rigidity of the mold, which creates constraints on the selection of mold materials, and requires construction to supplement this. This is because it becomes complicated and causes a significant increase in mold production costs, which is not practical.

〔実施例] 以下に、本発明の実施例を第1図を用いて明する。第1
図は、本実施例の鋼板のブレスU曲げ加工を説明するた
めの断面図であって、プレス下死点における決め押し時
の状態を示すものである。
[Example] An example of the present invention will be explained below with reference to FIG. 1st
The figure is a sectional view for explaining the press U bending process of the steel plate of this example, and shows the state at the time of final pressing at the bottom dead center of the press.

第1図において、(1)は被成形鋼板であって、この被
成形綱板(1)は、そのU曲げ成形の最終段階であるプ
レス下死点にて、ポンチ(2)とダイス(3)の型溝(
3a)とで央め押しされている断面状態を示す。
In Fig. 1, (1) is a steel plate to be formed, and this steel plate (1) is pressed with a punch (2) and a die (3) at the bottom dead center of the press, which is the final stage of U-bending. ) mold groove (
3a) shows a cross-sectional state in which the center is pressed.

ここで、本実施例においては、ポンチ(2)とダイス(
3)は、図示を省略した通常のプレスの上下アンビルに
取付け、また、ダイス(3)の型溝(3a)は、通常の
角形の断面形状のものを用いた。一方、断面におけるポ
ンチ(2)底の幅方向中央に、ポンチ(2)の両肩Rを
除く断面幅Wの1/2幅の逃げを設け、この断面幅Wの
両側のW/4を、中央部より所定量下方に突出させた。
Here, in this example, the punch (2) and the die (
3) was attached to the upper and lower anvils of a normal press (not shown), and the mold groove (3a) of the die (3) had a normal rectangular cross-sectional shape. On the other hand, at the center of the bottom of the punch (2) in the width direction in the cross section, a clearance of 1/2 width of the cross-sectional width W excluding both shoulders R of the punch (2) is provided, and W/4 on both sides of this cross-sectional width W are It was made to protrude downward by a predetermined amount from the center part.

そして、このように形成したポンチ(2)底にて、第1
図に示す決め押し時において、被成形綱板(1)のフラ
ンジの断面両側の所定領域に、1〜3%の圧縮塑性歪み
を付与させる。
Then, at the bottom of the punch (2) formed in this way, the first
At the time of final pressing shown in the figure, a compressive plastic strain of 1 to 3% is applied to predetermined areas on both sides of the flange cross section of the steel plate (1) to be formed.

上記の構成にて、100kgf/mm2〜140kgf
/mm2級の鋼板を被成形板(1)として、自動車用の
ハンハーをプレス0曲げ加工したところ、得られた各成
形品は、離型後における形状変化(SBないしSO)量
が極小で、いずれも良好なる寸法精度を示し、本発明の
優れた効果を確認することができた。
With the above configuration, 100kgf/mm2 to 140kgf
/mm2 grade steel plate was used as the plate to be formed (1), and when an automobile hanger was subjected to press zero bending, each of the obtained molded products had an extremely small amount of shape change (SB or SO) after release from the mold. All exhibited good dimensional accuracy, confirming the excellent effects of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明に係る金属板のプレス0曲げ加工方法は、その曲
げ成形過程においてフランジ部の表裏間に生しる応力差
を、プレス下死点での決め押しにより、容易に解消ない
し緩和し得て、従来において通用が制約されていた超高
強度鋼板などについても、高精度なU曲げ成形を可能と
するという、実用上優れた効果を発揮するものである。
The press zero bending method for a metal plate according to the present invention can easily eliminate or alleviate the stress difference that occurs between the front and back of the flange portion during the bending process by pressing firmly at the bottom dead center of the press. This method exhibits excellent practical effects in that it enables highly accurate U-bending even for ultra-high-strength steel plates and the like, whose use has been limited in the past.

【図面の簡単な説明】 第1図は本発明の実施例のプレス0曲げ加工の決め押し
時の状態を示す説明断面図、 第2図aは本発明に関わるブレスU曲げ加工おける角度
変化要素の調査要領の説明図、第2図すは本発明に関わ
るプレス0曲げ加工おける角度変化要素の調査の各5T
EPでのフランジ部のスプリングバク角度θを示すグラ
フ、第3図a乃至第3図Cは本発明に関わるプレス0曲
げ加工おける材料の挙動を示す模式図、第4図は本発明
に関わる被成形綱板の曲げR部近傍の板厚方向の応力勾
配分布を示す模式図、第5図は本発明に関わる解析に用
いた材料の応力/塑性歪み特性を示すグラフ、 第6図a乃至第6図すは従来のプレス0曲げ加工の概念
説明断面図、 第7図aは従来のプレス0曲げ加工において生しるスプ
リングゴー(SO)現象の説明図、第7図すは従来のプ
レス0曲げ加工において生しるスプリングバンク(SB
)現象の説明図、第8図は従来技術に関わるU曲げ加工
における角度変化要素の説明図である。 (1)−被成形鋼板、   (2)−ポンチ、(3)−
ダイス、     (3a)−型溝。
[Brief Description of the Drawings] Fig. 1 is an explanatory sectional view showing the state at the time of final pressing of press 0 bending according to the embodiment of the present invention, Fig. 2a is an angle change element in press U bending according to the present invention Figure 2 is an explanatory diagram of the investigation procedure for each 5T of the investigation of angle change elements in press zero bending related to the present invention.
Graphs showing the spring back angle θ of the flange part in EP, FIGS. 3a to 3C are schematic diagrams showing the behavior of the material in press zero bending process related to the present invention, and FIG. A schematic diagram showing the stress gradient distribution in the plate thickness direction near the bending R part of a formed steel plate, FIG. 5 is a graph showing the stress/plastic strain characteristics of the material used in the analysis related to the present invention, and FIGS. Figure 6 is a conceptual cross-sectional view of conventional press 0 bending process, Figure 7a is an explanatory diagram of the spring-go (SO) phenomenon that occurs in conventional press 0 bending process, and Figure 7 is a conventional press 0 bending process. Spring bank (SB) produced during bending
) An explanatory diagram of the phenomenon, FIG. 8 is an explanatory diagram of angle changing elements in U-bending processing related to the prior art. (1) - Steel plate to be formed, (2) - Punch, (3) -
Die, (3a) - mold groove.

Claims (1)

【特許請求の範囲】[Claims] 金属板を、ポンチにてダイスの型溝内に押圧し、U字状
の断面形状にプレスU曲げ加工するに際して、断面にお
けるウェブの両側の曲げ角R部を除く両側端それぞれか
ら、両側の曲げ角R部を除くウェブ幅の1/4以内とす
る内側までの間の、金属板のウェブの両側端部に、プレ
ス下死点において1〜3%の圧縮塑性歪みを付与するこ
とを特徴とする金属板のプレスU曲げ加工方法。
When pressing a metal plate into the mold groove of a die with a punch and press U-bending it into a U-shaped cross-sectional shape, bending of both sides is performed from each side edge of the web in the cross section, excluding the bending angle R portion on both sides. A compressive plastic strain of 1 to 3% is applied at the bottom dead center of the press to both ends of the web of the metal plate up to the inner side within 1/4 of the web width excluding the corner R part. A press U-bending method for metal plates.
JP6382690A 1990-03-13 1990-03-13 Method for executing u-bending of metallic plate by press Pending JPH03264116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6382690A JPH03264116A (en) 1990-03-13 1990-03-13 Method for executing u-bending of metallic plate by press

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6382690A JPH03264116A (en) 1990-03-13 1990-03-13 Method for executing u-bending of metallic plate by press

Publications (1)

Publication Number Publication Date
JPH03264116A true JPH03264116A (en) 1991-11-25

Family

ID=13240556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6382690A Pending JPH03264116A (en) 1990-03-13 1990-03-13 Method for executing u-bending of metallic plate by press

Country Status (1)

Country Link
JP (1) JPH03264116A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840158A (en) * 1994-07-27 1996-02-13 Nkk Corp Manufacture of bumper beam
US5901601A (en) * 1997-04-25 1999-05-11 Toyota Jidosha Kabushiki Kaisha Method and apparatus for bending malleable plates
US5953951A (en) * 1997-05-08 1999-09-21 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing bent products
DE4344787C2 (en) * 1992-12-28 2001-06-07 Fuji Photo Film Co Ltd Sheet metal bending process and sheet bending device for two-stage bending of a thin metal plate
JP2010234416A (en) * 2009-03-31 2010-10-21 Toyota Central R&D Labs Inc Analysis method for final pressing, program, storage medium, and analysis device for final pressing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4344787C2 (en) * 1992-12-28 2001-06-07 Fuji Photo Film Co Ltd Sheet metal bending process and sheet bending device for two-stage bending of a thin metal plate
JPH0840158A (en) * 1994-07-27 1996-02-13 Nkk Corp Manufacture of bumper beam
US5901601A (en) * 1997-04-25 1999-05-11 Toyota Jidosha Kabushiki Kaisha Method and apparatus for bending malleable plates
DE19818471B4 (en) * 1997-04-25 2004-12-02 Toyota Jidosha K.K., Toyota Method and device for die bending a sheet of cold-formable material
US5953951A (en) * 1997-05-08 1999-09-21 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing bent products
DE19820473B4 (en) * 1997-05-08 2006-01-19 Toyota Jidosha K.K., Toyota Method and apparatus for producing a folded in cross-section and in the longitudinal direction at least partially bent product
JP2010234416A (en) * 2009-03-31 2010-10-21 Toyota Central R&D Labs Inc Analysis method for final pressing, program, storage medium, and analysis device for final pressing

Similar Documents

Publication Publication Date Title
EP1602418A2 (en) Bent-forming method
KR101962557B1 (en) Press forming method and press forming die
KR101539559B1 (en) Press-forming mold designing method and press-forming mold
KR102291185B1 (en) Method for manufacturing press-formed products
CN110087791B (en) Press forming method
TW201703892A (en) Method for producing press-molded article, press-molded article and press apparatus
CN108698105B (en) Method for producing press-molded article
KR102361285B1 (en) Manufacturing method of press parts, press forming apparatus, and metal plate for press forming
JP2006320941A (en) Pressing method and press die
CN107635684B (en) Impact forming method and punch-forming mold
CN106660098A (en) Press forming method
JPH03264116A (en) Method for executing u-bending of metallic plate by press
JP3442122B2 (en) Press molding method
US20150047406A1 (en) Method of reducing wrinkles in pressed sheet metal components
JP6387866B2 (en) Press mold
JP7243657B2 (en) Shape change prediction method for press-formed products
JP7060233B2 (en) Molding method for press-molded products
KR100815739B1 (en) Equipment for measuring of spring-back
JP2014226678A (en) Method for bend forming of metal plate
JP3473868B2 (en) Springback straightening method
JP7001073B2 (en) Press molding method
JPS6123525A (en) Bender
Anggono et al. Combined method of spring-forward and spring-back for die compensation acceleration
JP5262303B2 (en) Metal plate press forming method
JP7529069B1 (en) Press forming simulation analysis method, device and program, and method for manufacturing press-formed product