JPH0326397A - Waste water treating device - Google Patents

Waste water treating device

Info

Publication number
JPH0326397A
JPH0326397A JP1156833A JP15683389A JPH0326397A JP H0326397 A JPH0326397 A JP H0326397A JP 1156833 A JP1156833 A JP 1156833A JP 15683389 A JP15683389 A JP 15683389A JP H0326397 A JPH0326397 A JP H0326397A
Authority
JP
Japan
Prior art keywords
gas
pipe
tank
mixed liquid
pressurizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1156833A
Other languages
Japanese (ja)
Inventor
Sakae Fukunaga
栄 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1156833A priority Critical patent/JPH0326397A/en
Publication of JPH0326397A publication Critical patent/JPH0326397A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Abstract

PURPOSE:To obtain the device with which the treatment efficiency is enhanced and the running and maintenance costs are reduced by providing the suction and discharge ports of a pipe in a reaction vessel, connecting a pressurizing means to the upper part of the pipe and connecting a means for exhausting a gas in a pressurized chamber and agitating a liq. mixture in the vessel. CONSTITUTION:The inside of the pipe 15 is pressurized by a booster pump 24 constituting a pressurizing means 16 to form the pressurized chamber 17 at all times at the upper part of the pipe, a valve 25 constituting an evacuating means 18 is opened at regular time intervals, hence the pressurized chamber 17 is intermittently exhausted, and a liq. mixture 9 in the vessel close to its bottom 1a is intermittently sucked into the pipe 15. Consequently, the liq. mixture 9 close to the bottom 1a is intermittently agitated, the dead space is effectively broken by the dynamic pressure, and efficiency in treating waste water is improved. The power cost is low as compared with the method in which waste water is forcedly circulated in the reaction vessel 1, and the running and maintenance costs are drastically reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機廃水を生物化学的な反応を利用して処理
する廃水処理技術に係り、特に反応槽内の汚泥を有効に
撹拌しうる廃水処理装置に間するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a wastewater treatment technology that treats organic wastewater using biochemical reactions, and in particular, a technology that can effectively stir sludge in a reaction tank. It is installed in wastewater treatment equipment.

[従来の技術] 一般に、工場あるいは一般家庭等から排出される有機廃
水の処理方法として生物化学的処理が用いられている。
[Prior Art] Generally, biochemical treatment is used as a method for treating organic wastewater discharged from factories or households.

この処理方法による廃水処理装置は、廃水中の有機物を
微生物によって分解あるいは消化して処理するものであ
り、第2図に示すIN戒のものが知られている。
A wastewater treatment apparatus using this treatment method processes organic matter in wastewater by decomposing or digesting it using microorganisms, and the IN method shown in FIG. 2 is known.

第2図において、1は反応槽である。この反応槽1内に
は微生物を含有した汚泥層2が形戒されている。廃水3
は原水ボンプ14により流入配管4を介して槽内底部1
aに導入されて汚泥槽2を通過する間に浄化される。浄
化水5は、反応槽1上端の越流堰6から溢れ出て越流樋
7で受けて排出される。
In FIG. 2, 1 is a reaction tank. Inside this reaction tank 1, a sludge layer 2 containing microorganisms is formed. Wastewater 3
is supplied to the tank inner bottom 1 via the inflow pipe 4 by the raw water pump 14.
a and is purified while passing through the sludge tank 2. The purified water 5 overflows from the overflow weir 6 at the upper end of the reaction tank 1, is received by the overflow gutter 7, and is discharged.

また、反応槽1内上部には廃水3中の有機物が分解して
生じるメタンガス等のガス胞を収集するためのガス回収
ドームl1が設けられ、その下方にはガス胞をガス回収
ドーム11へ案内するための整流体12が設けられてい
る。ガス回収ドーム11は反応槽1の内側面から整流体
12へ向けて角度を有して形成され、上端部にバイオガ
ス管13が接続されている。上記汚泥層2内で発生した
メタン等のガス胞は槽内混合液9中を上昇しつつ整流体
12によってガス回収ドーム11111へ案内されて収
集されバイオガス管13を通ってガスホルダー(図示せ
ず)に収容される。
In addition, a gas recovery dome l1 is provided at the upper part of the reaction tank 1 to collect gas vacuoles such as methane gas generated by the decomposition of organic matter in the waste water 3, and below the dome l1, the gas vacuoles are guided to the gas recovery dome 11. A rectifying fluid 12 is provided for this purpose. The gas recovery dome 11 is formed at an angle from the inner surface of the reaction tank 1 toward the flow regulator 12, and has a biogas pipe 13 connected to its upper end. Gas cells such as methane generated in the sludge layer 2 rise in the mixed liquid 9 in the tank and are guided by the flow regulator 12 to the gas recovery dome 11111 and collected, passing through the biogas pipe 13 to a gas holder (not shown). ).

反応槽1は上記メタンなどのガス胞の上昇によって汚泥
層2の汚泥が撹拌されることにより有効に廃水を処理で
きるように構成されている。
The reaction tank 1 is configured so that the sludge in the sludge layer 2 is stirred by the rise of gas pores such as methane, thereby effectively treating wastewater.

従って、槽1内に導入される廃水3の有機物濃度が高い
場合には有機物分解によるガス胞の発生量が多いため汚
泥が有効に撹拌されBOD除去率が高い。一方、廃水の
有機物濃度が低い場合(例えばBODが200lg/ 
Jl程度)にはガス胞の発生量が少くガス胞の上昇によ
る汚泥の撹拌が不十分になるためBOD除去,率が低い
。特に、汚泥が沈澱して反応槽1の底部に反応に関与し
ないデッドスペースDが形成されることが廃水処理装置
の廃水処理能力を大幅に低下させる原因になる。そこで
、浄化水5の一部が循環ポンプ8で反応槽1の底部1a
に環流されるようにすることで反応槽1内に上昇流を発
生させて汚泥の沈澱を防ぐ場合もある。
Therefore, when the concentration of organic matter in the wastewater 3 introduced into the tank 1 is high, the amount of gas pores generated due to the decomposition of the organic matter is large, so that the sludge is effectively agitated and the BOD removal rate is high. On the other hand, if the concentration of organic matter in wastewater is low (for example, BOD is 200 lg/
Jl), the amount of gas pores generated is small and the sludge stirring due to the rise of the gas pores is insufficient, resulting in a low BOD removal rate. In particular, the formation of a dead space D at the bottom of the reaction tank 1 that does not participate in the reaction due to sedimentation of sludge causes a significant reduction in the wastewater treatment capacity of the wastewater treatment device. Therefore, part of the purified water 5 is pumped to the bottom 1a of the reaction tank 1 by the circulation pump 8.
In some cases, the sludge is refluxed to generate an upward flow within the reaction tank 1 to prevent the sludge from settling.

[発明が解決しようとする課題] 上述したように反応槽1内に流入する廃水3の有機物濃
度が低い場合には循環ボンプ8で反応槽1内に高い上昇
流を形成することにより汚泥の沈澱を防ぐことができる
[Problems to be Solved by the Invention] As described above, when the concentration of organic matter in the wastewater 3 flowing into the reaction tank 1 is low, the circulation pump 8 forms a high upward flow in the reaction tank 1 to prevent sludge from settling. can be prevented.

しかしながら、この方法では汚泥層2を反応槽1の下方
に形戒保持するために反応槽1内に流入させる浄化水5
の流速を常にコントロールする必要があり、また循環ポ
ンプ8は連続運転させる必要があるため、その管理費及
び動力費が廃水処理装置全体の運転コスト及び維持管理
費を大幅に高めるという欠点がある。
However, in this method, the purified water 5 that flows into the reaction tank 1 in order to keep the sludge layer 2 below the reaction tank 1 is
It is necessary to constantly control the flow rate of the wastewater treatment system, and the circulation pump 8 must be operated continuously, which has the drawback that the management and power costs significantly increase the operating and maintenance costs of the entire wastewater treatment system.

本発明は上記課題を解消すべく創案されたものであり、
その目的は廃水中の有機物濃度が低い場合においても処
理能率が高く、且つ運転コスト及び維持管理費が安い廃
水処理装置を提供することにある。
The present invention was created to solve the above problems,
The purpose is to provide a wastewater treatment device that has high treatment efficiency even when the concentration of organic matter in wastewater is low, and has low operating and maintenance costs.

[課題を解決するための手段] 上記目的を達成するため本発明は、廃水を処理する反応
槽内に、管体を配設すると共にその吸排口を槽内底部に
臨ませて設け、上記管体上部に、加圧手段を接続すると
共に管体上部に形成される加圧室内のガスを排気して槽
内混合液を撹拌する排気手段を接続したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a pipe body in a reaction tank for treating wastewater, and also provides a pipe body with its suction and discharge port facing the bottom of the tank. A pressurizing means is connected to the upper part of the body, and an exhaust means is connected to exhaust the gas in the pressurizing chamber formed in the upper part of the tube and to stir the mixed liquid in the tank.

[作用] 上記構戒による本発明によれば、加圧手段が管体内にガ
スを注入することにより管体上部に加圧室が形或され、
その加圧室の容積分だけ管体内の混合液の水位が下がる
。この状態において排気手段が加圧室内のガスを排気す
ると槽内混合液の水圧により管体内の混合液の水位が急
激に元の水位まで上昇する。この時の管体内の混合液の
水位上昇分だけ反応槽底部の混合液が吸排口より管体内
に吸い込まれるため、その流圧で槽内の混合液が撹拌さ
れ、沈澱汚泥で形戒されるデッドスペースが破壊される
ことになる。
[Operation] According to the present invention according to the above structure, a pressurizing chamber is formed in the upper part of the tube by the pressurizing means injecting gas into the tube,
The water level of the mixed liquid inside the pipe is lowered by the volume of the pressurized chamber. In this state, when the exhaust means exhausts the gas in the pressurized chamber, the water pressure of the mixed liquid in the tank causes the water level of the mixed liquid in the tube to rise rapidly to the original water level. At this time, the mixed liquid at the bottom of the reaction tank is sucked into the pipe from the suction/outlet port by the amount that the water level of the mixed liquid in the tube rises, so the mixed liquid in the tank is stirred by the flow pressure and is formed into settled sludge. Dead space will be destroyed.

[実施例] 次に本発明の一実施例を第1図によって説明する。[Example] Next, one embodiment of the present invention will be described with reference to FIG.

図において、反応槽1内にはメタン菌等の微生物を含有
した汚泥層′2が形威されている。反応槽1の底部1a
には廃水3を流入させるための流入5 配管4が数箇所に接続されている.また、反応槽1の上
端部には槽内混合液9の上澄としての浄化水5を溢れ出
させるめたの越流堰6及び越流堰6から溢れ出した浄化
水5を受けるための越流樋7が設けられ、この越流樋7
に浄化水6を排出するため流出配管10が接続されてい
る。
In the figure, a sludge layer '2 containing microorganisms such as methane bacteria is present in a reaction tank 1. Bottom part 1a of reaction tank 1
Inflow pipes 5 and 4 for inflowing wastewater 3 are connected at several locations. Further, at the upper end of the reaction tank 1, there is an overflow weir 6 for overflowing the purified water 5 as the supernatant of the mixed liquid 9 in the tank, and an overflow weir 6 for receiving the purified water 5 overflowing from the overflow weir 6. An overflow gutter 7 is provided, and this overflow gutter 7
An outflow pipe 10 is connected to discharge the purified water 6 to.

また、反応槽1内には汚泥槽2において発生し、槽内混
合液9内を上昇してくるメタン等のガス胞を受けて回収
するためのガス回収ドーム11が等間隔に配設されると
共に、その下方にガス回収ドーム11にガス胞を案内す
るための整流体12が上記ガス回収ドーム11と互い違
いになるように等間隔に配設されている。ガス回収ドー
ム11はバイオガス管13を介して発生ガスを収容する
ためのガスホルダー(図示せず)に接続されている。
Furthermore, gas recovery domes 11 are arranged at equal intervals in the reaction tank 1 to receive and recover gas pores such as methane generated in the sludge tank 2 and rising in the mixed liquid 9 in the tank. At the same time, below the gas recovery dome 11, regulating fluids 12 for guiding gas cells to the gas recovery dome 11 are arranged at equal intervals so as to alternate with the gas recovery dome 11. The gas recovery dome 11 is connected via a biogas pipe 13 to a gas holder (not shown) for accommodating generated gas.

上記構成及び流入配管4に接続した原水ポンプ14によ
って反応槽1内に導入された廃水3が汚泥層2を通過す
る間に浄化され、その上澄水が浄化水5として排出され
る方式は従来技術と同様である。
The above structure and the system in which the wastewater 3 introduced into the reaction tank 1 by the raw water pump 14 connected to the inflow pipe 4 is purified while passing through the sludge layer 2, and the supernatant water is discharged as purified water 5 are conventional techniques. It is similar to

6 本発明による廃水浄化装置は槽内底部1aの槽内混合液
9を吸排水して槽内混合液9を撹拌する手段を備えたも
のである。すなわち、反応槽1内に複数の管体15がそ
の吸排口15aを槽内底部1aに臨ませて配設されると
共に、管体15内に加圧ガスを注入する加圧千段16と
、加圧手段16で管体15内に注入されたガスによって
管体上部に形成される加圧室17内のガスを排気する排
気千段18とが設けられている。管体15は上端が越流
堰6よりも高くなるように配置され、管体上部にガス出
入管19が夫々接続されている。
6 The waste water purification device according to the present invention is equipped with means for sucking and discharging the tank mixed liquid 9 at the tank inner bottom 1a and stirring the tank mixed liquid 9. That is, a plurality of tube bodies 15 are arranged in the reaction tank 1 with their suction and discharge ports 15a facing the tank inner bottom 1a, and a pressurizing stage 16 for injecting pressurized gas into the tube bodies 15; An exhaust stage 18 is provided for exhausting the gas in the pressurized chamber 17 formed in the upper part of the tube by the gas injected into the tube 15 by the pressurizing means 16. The tube body 15 is arranged so that its upper end is higher than the overflow weir 6, and gas inlet and outlet pipes 19 are connected to the upper portion of the tube body.

また、その吸排口15aは下端部が槽内底部1aに向け
て拡径されて形威されている。この管体15はガス出入
管19との接続部と上記吸排口15aを除けば気密に形
戒されている。各ガス出入管19は1基のヘッダ−20
に共に接続されている,このヘッダ−20はガス圧人管
21及びガス排出管22を介して窒素等の不活性ガスが
充填されたガス貯留槽23に接続され、ガス圧人管21
には加圧手段16を構戒する加圧ポンプ24が設けられ
ると共にガス排出管22には排気手段18を構成する弁
25が設けられている。
Further, the suction/discharge port 15a is shaped such that its lower end portion is expanded in diameter toward the tank inner bottom portion 1a. The pipe body 15 is airtight except for the connection part with the gas inlet/outlet pipe 19 and the above-mentioned intake/exhaust port 15a. Each gas inlet/outlet pipe 19 has one header 20
This header 20 is connected to a gas storage tank 23 filled with an inert gas such as nitrogen through a gas pressure manifold 21 and a gas discharge pipe 22, and is connected to a gas storage tank 23 filled with an inert gas such as nitrogen.
A pressurizing pump 24 is provided to monitor the pressurizing means 16, and a valve 25 constituting the exhaust means 18 is provided in the gas exhaust pipe 22.

加圧手段16を構成する加圧ボンプ24はガス貯留槽2
3内のガスをガス圧人管21を介してヘッダ−20に送
り込み、ヘッダ−20に接続された各ガス出入管■9を
介して各管体15に一定圧力でガスを注入して、管体1
5に一定圧力でガスを注入して管体15内の槽内混合液
9を予め設定された水位まで押し下げて管体上部に所定
の容積の加圧室17を形威し、加圧室17が形威された
後は、その加圧室17の容積を維持できる程度に加圧室
15内を加圧できるように構成されている。
The pressurizing pump 24 constituting the pressurizing means 16 is connected to the gas storage tank 2.
3 is sent to the header 20 via the gas pressure pipe 21, and gas is injected at a constant pressure into each pipe body 15 via each gas inlet/output pipe 9 connected to the header 20, and the pipe body 1
Gas is injected into 5 at a constant pressure to push down the mixed liquid 9 in the tank in the tube body 15 to a preset water level to form a pressurized chamber 17 with a predetermined volume in the upper part of the tube body. After the pressurization chamber 17 is formed, the inside of the pressurization chamber 15 can be pressurized to the extent that the volume of the pressurization chamber 17 can be maintained.

一方、排気手段18を構成する弁25は廃水処理装置の
通常の運転中は閉じられ、タイマ等(図示せず)によっ
て一定時間毎に開かれるように構成されている。
On the other hand, the valve 25 constituting the exhaust means 18 is closed during normal operation of the wastewater treatment apparatus, and is configured to be opened at regular intervals by a timer or the like (not shown).

なお、廃水3の流入位置は、管体15の吸排口15aの
直下でも良く、また第1図のように互いに隣接する吸排
口15aの中間でも良い。
The inflow position of the waste water 3 may be directly below the suction/discharge port 15a of the pipe body 15, or may be between the suction/discharge ports 15a adjacent to each other as shown in FIG.

次に本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

排気手段18を構成する弁25が閉じられた状態におい
て、加圧手段16を構或する加圧ポンプ24を駆動させ
ることにより、ガス貯留槓23内のガスが加圧されてヘ
ッダ−20内に送り込まれる。加圧されたガスはヘッダ
−20からさらに各ガス出入管19を介して各管体15
内に注入される。これにより管体上部に加圧室17が形
或され、その加圧室17の容積分だけ管体15内の槽1
内に混合液9が押し出されて管体15内の水位が低下す
る。加圧ボンプ24は管体15内の水位が予め定められ
た水位まで低下し、所定の容積の加圧室17が形戒され
た後はこの状態に加圧室17を維持する。
When the valve 25 constituting the exhaust means 18 is closed, by driving the pressurizing pump 24 constituting the pressurizing means 16, the gas in the gas storage ram 23 is pressurized and flows into the header 20. sent. The pressurized gas is further transmitted from the header 20 to each pipe body 15 via each gas inlet/output pipe 19.
injected into the body. As a result, a pressurizing chamber 17 is formed in the upper part of the tube, and the tank 1 in the tube 15 is filled by the volume of the pressurizing chamber 17.
The mixed liquid 9 is pushed out inside the pipe body 15, and the water level inside the pipe body 15 is lowered. The pressurizing pump 24 maintains the pressurizing chamber 17 in this state after the water level in the tubular body 15 has been lowered to a predetermined water level and the pressurizing chamber 17 has a predetermined volume.

この状態において排気手段18を構成する弁25がタイ
マー等(図示せず)によって開かれるとその間にヘッダ
−20内及び各管体上部に形成された加圧室17内のガ
スがガス排出管22を介してガス貯留槽23内へ排気さ
れる。管体15内の槽内混合液9は加圧室17内の加圧
ガスによりて強制的に水位が押し下げられているため、
加圧9 室17内のガスが排気されると槽内混合液9の水圧によ
りその水位が急激に元の水位まで上昇する。
In this state, when the valve 25 constituting the exhaust means 18 is opened by a timer or the like (not shown), the gas in the pressurized chamber 17 formed in the header 20 and in the upper part of each tube is discharged to the gas exhaust pipe 22. The gas is exhausted into the gas storage tank 23 through the gas storage tank 23. The water level of the mixed liquid 9 in the tank inside the pipe body 15 is forcibly pushed down by the pressurized gas in the pressurizing chamber 17.
Pressurization 9 When the gas in the chamber 17 is exhausted, the water pressure of the mixed liquid 9 in the tank causes the water level to rise rapidly to the original water level.

この時、槽内底部1a近傍の混合液9が管体15内の混
合液9の水位上昇分だけ吸排口15aより管体15内に
吸い込まれるため、その流圧で槽内混合液9が撹拌され
て沈澱汚泥で形或されるデッドスペースDが破壊される
At this time, the mixed liquid 9 near the bottom 1a of the tank is sucked into the pipe 15 through the suction/discharge port 15a by the amount of rise in the water level of the mixed liquid 9 in the pipe 15, so the mixed liquid 9 in the tank is stirred by the flow pressure. The dead space D formed by the settled sludge is destroyed.

加圧室17内のガスが排気されると弁25が閉じられ、
再び加圧ボンプ24の駆動によりガス貯留槽23内のガ
スが管体15内に徐々に注入されて管体上部に加圧室1
7が復元形成される.従って、管体15内に吸い込まれ
た槽内混合液9が再び反応槽1に戻る際は徐々に戻され
るため、反応槽1上端の越流堰6における越流負荷の急
上昇による未混合液の流出は避けられる。このように、
本実施例に示す装置によれば、加圧手段16を構或する
加圧ポンプ24が管体15内を加圧して管縦上部に常時
加圧室17を形成し、排気手段18を構成する弁25が
一定時間毎に開かれることにより間欠的に加圧室17内
が排気でき、槽内底部1 0 1a近傍の槽内混合液9を管体15内に間欠的に吸い込
むことができる,これにより、槽内底部1a近傍の槽内
混合液9を間欠的に撹拌できるため、その流圧によりデ
ッドスペースが効果的に破壊でき、廃水の処理能率が向
上できる。
When the gas in the pressurized chamber 17 is exhausted, the valve 25 is closed,
The gas in the gas storage tank 23 is gradually injected into the pipe body 15 by driving the pressure pump 24 again, and the pressurization chamber 1 is formed in the upper part of the pipe body.
7 is restored and formed. Therefore, when the tank mixed liquid 9 sucked into the pipe body 15 returns to the reaction tank 1 again, it is gradually returned, so that the unmixed liquid due to the sudden increase in overflow load at the overflow weir 6 at the upper end of the reaction tank Spills can be avoided. in this way,
According to the apparatus shown in this embodiment, the pressurizing pump 24, which constitutes the pressurizing means 16, pressurizes the inside of the tube body 15 to constantly form a pressurizing chamber 17 in the vertical upper part of the tube, and constitutes the exhaust means 18. By opening the valve 25 at regular intervals, the inside of the pressurizing chamber 17 can be evacuated intermittently, and the mixed liquid 9 in the tank near the bottom 101a of the tank can be intermittently sucked into the pipe body 15. As a result, the mixed liquid 9 in the tank near the bottom 1a of the tank can be intermittently stirred, and the dead space can be effectively destroyed by the flow pressure, and the efficiency of wastewater treatment can be improved.

また、加圧手段16を構成する加圧ボンプ24は、管体
上部に加圧室17を形成する際に、管体15内の混合液
9を所定の水位だけ押し下げる程度の加圧力を有してい
れば良く、小出力のものが使用できる。また、管体15
内に槽内混合液9を吸い込むに際しては弁25が開くと
により管体15内と反応槽1内の混合液9の水位差によ
って自動的に行われるため別途駆動装置を必要としない
Further, the pressurizing pump 24 constituting the pressurizing means 16 has a pressurizing force to the extent that it pushes down the mixed liquid 9 in the tubular body 15 by a predetermined water level when forming the pressurizing chamber 17 in the upper part of the tubular body. You can use a small output one. In addition, the pipe body 15
When the mixed liquid 9 in the tank is sucked into the tank, the valve 25 is opened and the water level difference between the mixed liquid 9 in the tube body 15 and the reaction tank 1 is automatically used to draw in the mixed liquid 9 in the tank, so no separate driving device is required.

従って、反応槽1内を撹拌するために浄化水5を循環ポ
ンプ8等により反応槽1内に強制的に循環させる従来の
方式に比べてその動力費が安く、廃水処理装置全体の運
転コスト並びに維持管理費が大幅に削減できる効果を有
する。
Therefore, compared to the conventional system in which purified water 5 is forcibly circulated within the reaction tank 1 using a circulation pump 8 or the like to agitate the inside of the reaction tank 1, the power cost is lower, and the operating cost of the entire wastewater treatment equipment is reduced. This has the effect of significantly reducing maintenance and management costs.

また、加圧千段16を構成する加圧ボンプ2411 は、管体上部に所定の容積の加圧室17が形成されたの
ち、その駆動を停止してもガス圧人管22のガス流通を
遮断できる!R造とすることにより、管体15内にガス
を注入させている間以外は駆動が停止でき、さらに動力
費を削減できる。
In addition, the pressurizing pump 2411 constituting the pressurizing stage 16 does not allow gas flow in the gas pressure man tube 22 even if its drive is stopped after the pressurizing chamber 17 of a predetermined volume is formed in the upper part of the tube body. It can be blocked! By adopting the R construction, the drive can be stopped except when gas is being injected into the pipe body 15, and power costs can be further reduced.

尚、本実施例において、ガス貯留槽23内に充填させる
ガスは窒素等の不活性ガスが望ましいが、消化ガスある
いは空気を使用することも可能である。
In this embodiment, the gas to be filled into the gas storage tank 23 is preferably an inert gas such as nitrogen, but it is also possible to use digestive gas or air.

[発明の効果] 以上要するに本発明によれば、以下の如き優れた効果を
発揮る。
[Effects of the Invention] In summary, according to the present invention, the following excellent effects are achieved.

(1)  反応槽底部の処理液が間欠的に管体内へ吸い
込まれるため反応槽底部に沈澱する汚泥によって形成さ
れるデッドスペースが効果的に破壊できる。
(1) Since the treated liquid at the bottom of the reaction tank is intermittently sucked into the tube, the dead space formed by the sludge settling at the bottom of the reaction tank can be effectively destroyed.

(2)廃水の処理能率が向上できる。(2) Wastewater treatment efficiency can be improved.

(3)  運転コスト並びに維持管理費が大幅に削減で
きる。
(3) Operating costs and maintenance costs can be significantly reduced.

1212

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は従来
例を示す構成図である。 図中、1は反応槽、1aは槽内底部、9は槽内混合液、
15は管体、15aは吸排口、16は加圧手段、17は
加圧室、18は排気手段である。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram showing a conventional example. In the figure, 1 is the reaction tank, 1a is the bottom of the tank, 9 is the mixed liquid in the tank,
15 is a tube body, 15a is an intake/exhaust port, 16 is a pressurizing means, 17 is a pressurizing chamber, and 18 is an exhaust means.

Claims (1)

【特許請求の範囲】[Claims] 1、廃水を処理する反応槽内に、管体を配設すると共に
その吸排口を槽内底部に臨ませて設け、上記管体上部に
、加圧手段を接続すると共に管体上部に形成される加圧
室内のガスを排気して槽内混合液を撹拌する排気手段を
接続したことを特徴とする廃水処理装置。
1. A pipe body is arranged in a reaction tank for treating wastewater, and its suction and discharge ports are provided facing the bottom of the tank, and a pressurizing means is connected to the top of the pipe body, and a pressure means is formed at the top of the pipe body. A wastewater treatment device characterized in that an exhaust means is connected to exhaust gas in a pressurized chamber and agitate a mixed liquid in a tank.
JP1156833A 1989-06-21 1989-06-21 Waste water treating device Pending JPH0326397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1156833A JPH0326397A (en) 1989-06-21 1989-06-21 Waste water treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1156833A JPH0326397A (en) 1989-06-21 1989-06-21 Waste water treating device

Publications (1)

Publication Number Publication Date
JPH0326397A true JPH0326397A (en) 1991-02-04

Family

ID=15636355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1156833A Pending JPH0326397A (en) 1989-06-21 1989-06-21 Waste water treating device

Country Status (1)

Country Link
JP (1) JPH0326397A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311168A (en) * 2011-08-22 2012-01-11 天津市华水自来水建设有限公司 water-channel water distribution-type water-distributing system for hydrolysis-acidification pool in industrial waste water treatment
CN102491469A (en) * 2011-12-13 2012-06-13 郑州大学 Integrated precipitating and mud collection backflow device
WO2016129678A1 (en) * 2015-02-12 2016-08-18 積水化学工業株式会社 Laminate and water treatment system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311168A (en) * 2011-08-22 2012-01-11 天津市华水自来水建设有限公司 water-channel water distribution-type water-distributing system for hydrolysis-acidification pool in industrial waste water treatment
CN102491469A (en) * 2011-12-13 2012-06-13 郑州大学 Integrated precipitating and mud collection backflow device
WO2016129678A1 (en) * 2015-02-12 2016-08-18 積水化学工業株式会社 Laminate and water treatment system
JPWO2016129678A1 (en) * 2015-02-12 2017-11-24 積水化学工業株式会社 Laminate and water treatment system

Similar Documents

Publication Publication Date Title
EP1860074A2 (en) Apparatus and method for treating wastewater
JP5961756B2 (en) Biological sewage treatment apparatus and method
CN101323482B (en) Deep well aeration film bioreactor waste water treatment process and apparatus
CN108503019A (en) A kind of membrane bioreactor and sewage water treatment method
JPH02214597A (en) Device for nitrifying sewage
JP2007136366A (en) Biological wastewater treatment apparatus and biological wastewater treatment method
JP2001170631A (en) Method and device for stirring membrane type reaction vessel
JPH0326397A (en) Waste water treating device
JP2000061491A (en) Anaerobic water treatment equipment
JP2006043705A (en) Anaerobic water treatment apparatus
KR100246493B1 (en) Sewage and waste water disposal plant
EP1098852B1 (en) Method and apparatus for treating liquid with ultrasonic vibrations
JP3852109B2 (en) Methane fermentation treatment equipment
JP3087914B2 (en) Aeration treatment equipment
CN106115918A (en) Integration pillar high concentrated organic wastewater processor
KR100220189B1 (en) Wastewater treatment device
JPH11147098A (en) Anaerobic treatment apparatus
JP4011431B2 (en) Ozone treatment method
JPH0534799Y2 (en)
JPH08290187A (en) Treatment of waste water and device therefor
CN114477414B (en) Device and method for removing iron and manganese in underground water based on self-circulation of high-concentration active manganese oxide
KR102300917B1 (en) Sequential batch wastewater treatment method of removing nitrogen and phosphor using divided sewage input and air mixing
JPS6136474B2 (en)
JP3566077B2 (en) Organic wastewater biochemical treatment equipment
JP2004321899A (en) Biological treatment method and apparatus therefor